
Programming with Fudgets

Magnus Carlsson & Thomas Hallgren
December 9, 1994

b a

sp

left

b1+b2 a1+a2

a2

a1b1

left >+< right

right

b2

intDispF buttonF

accSP

Int Click

Fudgets Programming Tutorial iii

Table of Contents
1. Introduction ... 1

2. Graphical User Interfaces ... 1

2.1. A General Note on Graphical User Interfaces 1

2.2. GUI Programming with the X Windows system............................... 1

3. GUI Programming with Fudgets ... 3

3.1. What is a Fudget? ... 3

3.2. The "Hello, World!" Example ... 4

3.3. Composing fudgets.. 5

3.4. Layout .. 6

3.5. Adding Application Specific code ... 7

3.6. Stream Processors and Abstract Fudgets.. 8

4. A bigger example.. 10

4.1. The Counter Example.. 10

Exercises .. 12

4.2. How should Fudget Programs be structured?................................. 12

Exercises .. 12

5. Writing Your Own Fudget .. 13

5.1. The Dial Example ... 13

Exercises .. 16

6. Compiling and Getting Documentation .. 16

6.1. Compiling Fudget Programs.. 16

6.2. On-line documentation ... 16

6.3. Note!... 16

7. Summary .. 16

iv Fudgets Programming Tutorial

1

Programming with Fudgets
A tutorial

Magnus Carlsson & Thomas Hallgren1

December 9, 1994

1. Introduction

In this lecture you will learn how to write programs with graphical user
interfaces in Haskell. We will use the Fudget library which is a Graphical
User Interface programming toolkit for use with Haskell and the
X Windows system.

2. Graphical User Interfaces

2.1. A General Note on Graphical User Interfaces

Figure 1 illustrates a typical Graphical User Interface (GUI). There are but-
tons, text entry fields, popup menus, toggle buttons, etc. It is the user who
decides in what order things happen. All the parts of the user interface must
be prepared to respond to input at any time, independently of one another.

One important point here is that graphical user interfaces are inherently
parallel. This should preferably be reflected in the programs we write to
manage them. We will see later how this is accomplished with Fudgets.

2.2. GUI Programming with the X Windows system

In the X Windows system, a program interacts with the user by communi-
cating with a server process (the X server) which handles the lowest level
interface with the hardware (display, keyboard, mouse). The program sends

1. Authors’ current address: Department of Computer Sciences, Chalmers University of
Technology, S-412 96 Göteborg, Sweden. Email: {magnus,hallgren}@cs.chalmers.se

Figure 1: A typical Graphical User Interface

X
Server

Commands Events

X
program

2 Fudgets Programming Tutorial

a stream of commands (for creating windows, drawing lines, writing text
etc.) to the server and receives a stream of input events (which tells the pro-
gram about keys on the keyboard, buttons on the mouse, motion of the
mouse, etc.) from the server. Most of the commands and events are related
to a specific window. Each window has its own coordinate system used for
the drawing commands. All drawing commands are relative to a window
and clipped by its boundaries.

The windows have an hierarchical organization with windows in other win-
dows. Each window has a specific position in a parent window. Most events
are sent to the window under the pointer, which the user controls with the
mouse. For each window, the programmer can decide how sensitive it
should be to various events. For example, to implement a graphic button,
you could create a window that is sensitive only to events telling when the
pointer enters or leaves the window and when a specific mouse button is
pressed or released in it. Most user interface building blocks, so called widg-
ets (window gadgets), are built up by a number of windows in this way.

In addition to this window tree, sibling windows are organized in a stacking
order, telling which window should hide which when they overlap. When a
hidden part of a window becomes visible (e.g. because the user rearranged
the windows), the X server sends an Expose event to the program, telling it
that the newly exposed part of the window needs to be redrawn1.

Traditionally, X programs are written in C or similar imperative languages.
As illustrated by the diagram below, the interface to X goes through a set of

libraries providing different levels of abstraction. The highest level libraries
provide sets of standard widgets. Typical widgets are push buttons, scroll
bars, pop-up menus, etc.

The Fudgets library does not make use of the existing higher layers of librar-
ies, but is built on top of Xlib, and provides abstractions of its own, suitable
for use in a functional language. The Fudgets analogue to widgets are called
fudgets (functional widgets).

1. Unless you are using backing store, where bitmaps for the hidden parts of a window
are stored off screen. This method is patented by AT&T, but allegedly, Richard Stallman
implemented it way back but didn’t bother to write about it.

A pointer

A button

Operating system

Xlib

Xt

widget sets

Application program (C)

Operating system

Xlib

The Fudget library

Application program (Haskell)

Fudgets Programming Tutorial 3

Fudgets are similar to widgets, in that there is a set of standard fudgets,
fudgets can be combined to form more complex fudgets, and when no suit-
able standard fudget is available, you can write one of your own. The
advantage of fudgets over widgets is that the full power of a functional lan-
guage (Haskell or LML) can be utilised when writing them. As a matter of
fact, one of the reasons why the Fudgets library was built on top of Xlib,
instead just being an interface to some existing widget set, was that we
wanted to find out how good functional programs are for this kind of pro-
gramming.

3. GUI Programming with Fudgets

3.1. What is a Fudget?

So, what is a Fudget? Recall that an X program essentially is a stream proc-
essor: it receives a stream of events from the X server and sends a stream of
commands to it. And this is essentially what a fudget is as well: a stream
processor. So, a Fudgets program (an X program written in Haskell or LML,
using the Fudgets library) is a fudget, usually obtained by combining sim-
ple fudgets into more complex ones in a hierarchical structure.

What streams does a fudget process? To implement various user interface
components, fudgets control windows, so they need to exchange com-
mands and events with the X server. Different fudgets control different win-
dows, in parallel and independently of one another. But a fudget also
should be able to interact with other parts of the program. For example,
selecting something from a menu should probably have some effects other
than the graphical effects you see on the screen. Figure 2 illustrates the dou-
ble nature of the fudget: there is a low level world, where commands are
sent to a window and events returned, and then there is the high level
world, where fudget specific messages are received and sent.

So, a fudget is a process with two low level streams, and two high level
streams. You can think of the low level streams as always connected directly
to the window controlled by the fudget. The types are the same for all fudg-
ets. The type of high level streams varies, and what they are connected to is
specified by the programmer.

High level messages

X level commands &
events

Window

b a

Figure 2: A fudget of type F a b

4 Fudgets Programming Tutorial

In the Fudget library, the type

F a b

denotes the type of a fudget with high level input of type a and high level
output of type b.

3.2. The "Hello, World!" Example

We haven’t seen yet how to program the connections between fudgets, but
before we continue with that, let’s look at a very simple example, where no
connections are required. This example illustrates what the main program
should look like, as well as some other practical details.

This first program just displays a message in a window (see Figure 3).

The Fudgets library contains a fudget1 for displaying messages,

displayF:: Alignment→Maybe Rect→FontName→String→F String a

which when given an alignment directive, an optional rectangle (position
and size), a font name and last but not least, a string, will display that string
properly aligned with the specified font. The display fudget can also receive
new strings to display on its high level input, but we do not make use of that
possibility in this program.

We have put the display in a shell window created with the shell fudget,

simpleShellF:: String→[WindowAttributes]→Maybe Rect→F a b→F a b

which given the name of the window, a list of window attributes, an
optional rectangle (position and size) of the window and a fudget to put in
that window, creates the shell window.

This illustrates the typical structure of a Fudgets program. In the main func-
tion, which in Haskell should have the type Dialogue,

type Dialogue = [Response]→[Request]

we call the function fudlouge,

fudlogue:: F a b→Dialogue

1. To be precise, displayF is a function returning a fudget, but for convenience, we will
often say "a fudget" when we mean "a function returning a fudget".

module Main where -- The "Hello, World!" program
import Fudgets

main = fudlogue (simpleShellF "Hello" [] Nothing helloF)

helloF = displayF ACenter Nothing "fixed" "Hello, World!"

Figure 3: The "Hello World" program

Fudgets Programming Tutorial 5

which sets up the communication with the X server, gathers commands sent
from all fudgets in the program and sends them to the X server, and distrib-
ute events coming from the X server to the appropriate fudgets.

3.3. Composing fudgets

As soon as we write a Fudget program with more than one user interface
element, there are two things to consider:

1. How should the high level streams of the parts be connected?

2. How should the parts be placed in the window?

We start with the connections. The Fudget library contains two basic ways
to compose two fudgets: parallel composition and serial composition (see
Figure 4). Here are the two operators and their types:

>+< :: F a1 b1→ F a2 b2 → F (a1+a2) (b1+b2)
>==< :: F b c → F a b → F a c

Here a+b denotes the type Sum a b, which is defined as follows:

data Sum a b = Inl a | Inr b

Parallel composition allows two fudgets to operate parallel, but does not
create any connections between them. Serial composition allows two fudg-
ets to operate in parallel and in addition creates a unidirectional connection
between them.

Some notes: the type of >==< is very similar to the type of the ordinary func-
tion composition operator:

(.) :: (b→c) → (a→b) → (a→c)

So, fudgets have something in common with functions.

A type like F (a1+a2) (b1+b2) can be interpreted in at least two different ways:

• as a parallel composition of two fudgets

• as a single fudget which just happens to have high level input and output
streams of type a1+a2 and b1+b2 respectively.

Figure 4: Parallel and serial composition of fudgets

left

b1+b2 a1+a2

a2

a1b1

left >+< right

right

b2

left right

left >==< right

abc

6 Fudgets Programming Tutorial

In other words, you don’t have to worry about the internal structure of a
fudget when you use it. Another illustration of this is the following equality:

((f1>+<f2) >==< (f3>+<f4)) == ((f1>==<f3) >+< (f2>==<f4))

As a simple example of the use of a composition operator, consider modify-
ing the "Hello, world!" program to include a quit button. There already is a
ready-to-use quit button in the library,

quitButtonF :: F a b

which we can put in parallel with helloF like this:

main = fudlogue (simpleShellF "Hello" [] Nothing mainF)
mainF = helloF >+< quitButtonF -- Warning: this doesn’t work
helloF = ...

But this program doesn’t work properly, because we haven’t specified the
layout.

3.4. Layout

Just using the combinators shown in the previous section isn’t enough when
combining graphical fudgets (but as we will see later, they can be used when
"abstract fudgets" are involved), because you also need to specify the place-
ment of the fudgets in the window.

Layout can be done in two ways: manually or automatically.

As we have seen above, many fudgets have an argument of type Maybe Rect.
To use manual layout, you specify Just rectangle here. To use automatic lay-
out, you specify Nothing. Automatic layout is recommended because it saves
you from having to figure out sizes and pixel coordinates and because it is
dynamic, i.e., the layout is automatically adjusted if the user resizes the win-
dow.

With automatic layout, the only thing you have to worry about is the rela-
tive placement of fudgets when they are combined. In the current version of
the Fudget library this is done by using special versions of the composition
operators:

>+#< :: F a1 b1→ (Int, Orientation, F a2 b2) → F (a1+a2) (b1+b2)
>==#< :: F b c → (Int, Orientation, F a b) → F a c

These operators work like ones without a # in the name, except that second
argument should be a triple instead of just a fudget. The integer specifies the
distance between the fudgets. The relative placement is specified with an
element from the type Orientation:

data Orientation = LAbove | LBelow | LRightOf | LLeftOf

Now we can write a working version of the "Hello, world!" program from
the previous section:

mainF = helloF >+#< (5, LAbove, quitButtonF)

You can read this as "the main fudget is the parallel composition of the hello
fudget placed 5 pixels above the quit button fudget".

Fudgets Programming Tutorial 7

3.5. Adding Application Specific code

For anything but the most trivial applications, just combining fudgets from
the library using various composition operators isn’t enough. To create
more serious applications we need ways to add application specific code
that can interact with the fudgets.

As a first example, consider the a program for easy testing of a function, in
this case the factorial function (see Figure 5). When a number is entered in
the numeric entry field, its factorial will be displayed in the number display
below.

In this program we need a connection from the output of the entry field to
the input of the display, but we also need to apply the factorial function to
each number output by the entry field before it enters the display.

The Fudget library provides two operators, which are useful in situations
like this.

>=^< :: F b c → (a → b) → F a c -- preprocessing input with a function
>^=< :: (b → c) → F a b → F a c -- postprocessing output with a function

The resulting program is shown in Figure 6. The main fudget, mainF, is a
serial composition of a numeric entry field, implemented by inIntF, and a dis-
play, outFacF. The latter inputs numbers and displays their factorials. We
have used intDispF, which is similar to displayF (described in Section 3.2), and
attached the factorial function fac as a preprocessor, using the operator >=^<.

Figure 5: GUI for the FacTest program

Figure 6: The FacTest program

module Main where
import Fudgets

main = fudlogue (simpleShellF "FacTst" [] Nothing mainF)
mainF = outFacF >==#< (5,LBelow,inIntF)

inIntF = "x=" `labLeftOfF`
(inputDoneSP>^^=<intF 0 Nothing)

outFacF = "fac(x)=" `labLeftOfF`
 intDispF aRight Nothing defaultFont 0 >=^< fac

fac 0 = 1
fac n = n * fac(n-1)

8 Fudgets Programming Tutorial

This program also illustrates an easy way to attach a label to a fudget. The
Fudget library provides the following functions for this:

labAboveF, labBelowF, labLeftOfF, labRightOfF :: String → F a b → F a b

3.6. Stream Processors and Abstract Fudgets

Above we have seen a simple way to add application specific code to a
Fudget program. But this simple method is not enough in all cases. Consider
for example a program consisting of a button and a display which shows
how many times the button has been pressed. The button fudget in the
library just outputs a Click when it is pressed, so we need application specific
code that increments a counter and outputs its value to the display when-
ever a the button outputs a click (see Figure 7).

This problem is solved by letting the application specific code be stream
processors, just like fudgets. The application specific stream processors are
called abstract fudgets, since they can be thought of as fudgets without any
physical appearance. You obtain an abstract fudget by applying the function
absF to a stream processor

absF :: SP a b → F a b

Then the question is: how do you write stream processors? The fudget
library provides three basic functions to construct stream processors:

nullSP :: SP a b -- a "dead" stream processor
putSP :: [b] → SP a b → SP a b -- writes to the output stream

Figure 7: The Small Counter

ab

A stream processor of type SP a b

absF sp

b a

sp

Figure 8: Stream Processors and Abstract Fudgets

Fudgets Programming Tutorial 9

getSP :: (a → SP a b) → SP a b -- reads from the input stream

The library also provides a number convenient stream processor construc-
tors that can be derived from the basic ones. One of them is mapSP:

mapSP :: (a → b) → SP a b

The two operators >=^< and >^=< from the previous section can be defined
using mapSP and absF in the following way:

fud >=^< f == fud >==< absF (mapSP f)
f >^=< fud == absF (mapSP f) >==< fud

For the small counter program we need a click counting stream processor to
connect between the button and the display (see Figure 9).

Figure 10 shows the program for the small counter. The click counting
stream processor is called accSP. It uses a recursive auxiliary function accSP’,
which maintains the state (the number of clicks so far) in the parameter n.

intDispF buttonF

accSP

Figure 9: Circuit diagram for the small counter

Int Click

module Main(main) where -- The Small Counter Example
import Fudgets

main = fudlogue (simpleShellF "Räknare" [] Nothing counterF)

counterF= (intDispF aRight Nothing "fixed" 0 >==< absF accSP)
>==#<

(5,LLeftOf,buttonF Nothing buttonFont [] "Öka")

accSP = accSP’ 0
where accSP’ n =

getSP $ \ Click →
putSP [n+1] $
accSP’ (n+1)

Figure 10: The Small Counter Program

10 Fudgets Programming Tutorial

4. A bigger example

In this section we take a look at a slightly bigger Fudget program. The pro-
gram is thoroughly explained. Some new useful operators are introduced,
but most of the program resembles what we have already seen in the earlier
sections.

4.1. The Counter Example

This example illustrates how to connect several fudgets together with auto-
matic layout and how to attach application specific code using a stream
processor. The program is a simple counter, consisting of a display showing
the current value of the counter, and buttons to increment the counter, reset
the counter and to quit the program (see Figure 11).

Let’s examine the structure of this program, starting from the top. In the
function main, the main window is created with simpleShellF. The size argu-
ment is Nothing, which means that the size of the shell window is determined
by the dynamic layout mechanism. Initially, the window will be just large
enough to fit the fudgets contained in it, but the user is allowed to resize the
window, in which case the contents of the window is adjusted to fit the new
size.

The contents of the shell window is the counter fudget, counter, which is
defined as a serial composition of a display, an “accumulator”, and some
buttons. The idea is that when the a button is pressed, a message is sent to
the accumulator, which computes the new value of the counter and sends it
to the display. The accumulator is a stream processor, attached as a preproc-
essor to the display fudget. This is the purpose of the >=^^< operator, which
has the following definition:

(>=^^<):: F b c→ SP a b →F a c
fud >=^^< sp = fud >==< absF sp

So, counter consists of two fudgets: the display, which has its input preproc-
essed by the accumulator, and the buttons. The operator >==#< connects the
output of the buttons to the input of the display. It also determines the rela-
tive placement of the display and the buttons. The display is placed above
the buttons, with sep (i.e. 5) pixels separating them.

The display itself is implemented with intDispF, taken from the Fudgets
library. The argument aRight makes the integer displayed right adjusted,
Nothing makes the position and size of the display determined by the
dynamic layout system, font tells which font to use, and startstate is the inte-
ger displayed before any other numbers are received on the input.

The buttons are implemented as a list of buttons, combined to one fudget
with untaggedListLF. The three buttons are all created with the library fudget
buttonF, and all have the same appearance, except for the label in them, and
we use the shorthand b to capture this. The behaviour of buttonF is to send
the message Click whenever the button is clicked with the mouse. We want
our buttons to do different things, so we attach post-processors to the but-
tons, to convert the clicks to other messages.

Fudgets Programming Tutorial 11

The first two buttons are similar: they both perform some operation on the
value of the counter. These button sends messages to the display. The mes-
sages contain the actual function to be performed on the counter. The short-
hand bf captures what they have in common. The argument s is the button
label, and f is the function to be sent to the display. const f is attached as a
post-processor to the button itself, to replace the Clicks by the function. This
is accomplished with the >^=< operator, which allows you to specify a func-
tion to be applied to all elements in the output stream.

Clicking the quit button should terminate the program. This is achieved by
feeding the Clicks from the quit button to the special quit fudget, quitF, which
has the special property that feeding a message to it causes the program to

module Main(main) where -- A very simple calculator
import Fudgets

main :: Dialogue
main = fudlogue (simpleShellF "Counter" [] Nothing counter)

counter :: F (Int,a) b
counter = (display >=^^< acc) >==#< (sep,LAbove,buttons)

display :: F Int b
display = intDispF aRight Nothing defaultFont startstate

type State = Int
type StateModifier = Int -> Int

buttons :: F (Int,a) StateModifier
buttons =
 let b s = buttonF Nothing buttonFont [] s
 bf s f = const f >^=< b s
 bq s = quitF >==< b s

 buttonlist = [bf "Add 1" (+1),
 bf "Clear" (const 0),
 bq "Quit"]

 layout = horizontalL sep
 in untaggedListLF layout buttonlist

acc :: SP StateModifier State
acc =
 let transform state =
 getSP $ \op ->
 let state' = op state
 in putSP [state'] $ transform state'
 in transform startstate

startstate = 0

sep = 5 -- separation, space between buttons

Figure 11: The Counter Example

12 Fudgets Programming Tutorial

terminate. quitF does not have an associated window (although it isn’t really
an abstract fudget). In the shorthand bq, the operator >==< is used to connect
the output of a button to the input of the quit fudget.

The three buttons are enumerated in buttonlist, which is then the main argu-
ment to untaggedListLF, which with its other argument, layout, is instructed to
place the buttons in buttonlist in a horizontal row with sep pixels between
them. It also merges the output streams from the buttons into one stream,
without tagging the messages. (There is a similar fudget combinator, listLF,
which also tags the messages, so that you easily can tell messages from dif-
ferent sub-fudgets apart, and also direct input to specific sub-fudgets.)

The remainder of the program contains some auxiliary definitions, most
notably the stream processor acc. It repeatedly reads a state modifier from
its input stream (using getSP), applies it to the internally maintained state
and then outputs the new state (using putSP).

Exercises:

1. Extend the counter to a pocket calculator. You will probably need to
change the State type. You may find the layout function matrixL useful.

4.2. How should Fudget Programs be structured?

The counter program above illustrates one particular way to structure
Fudgets programs. We have kept the buttons and the operations they per-
form together. The advantage with this structure is that it is very easy to add
new buttons to the program. To add a decrement button, for example, just
include

bf "Sub 1" (\x→x-1)

at the appropriate position in buttonlist.

By directly giving the function that manipulate the state maintained in the
accumulator, we have hard coded the fact that the type of the state is Int. This
of course makes it hard to add buttons with functions that require a more
complex state. Making the state an abstract data type would make the pro-
gram easier to extend in this way.

Another way to structure a Fudgets program is to keep the user interface
parts and the data processing parts separate. This makes it easier to change
the user interface without changing the rest of the program, or even to have
several completely different user interfaces, for example to allow you to run
a program both from an old fashioned text terminal and from a modern
work-station running X Windows.

Exercises:

2. Restructure the counter program (or your pocket calculator) so that it can
be used both with an old fashioned text interface and a Fudget based
graphical interface. The function

concRunSP :: SP a b → [a] → [b]

can be used to create a text based interface with a stream processor.

Fudgets Programming Tutorial 13

5. Writing Your Own Fudget

A Fudgets program is a hierarchical structure of fudgets. The fudgets at the
bottom level are not built by composing existing fudgets, but by applying
windowF to a fudget kernel.

windowF :: [Command] → Maybe Rect → K a b → F a b

K a b is the type of a fudget kernel.

type K a b = SP (Message Event a) (Message Command b)
type Message low high = Low low | High high

As you can see, fudget kernels are, like abstract fudgets, stream processors.
The input and output messages can be either low level messages, i.e., events
and commands for communication with the X Windows system, or high
level messages for communication with other fudgets.

Below, we illustrate by an example what a typical fudget kernel looks like.

5.1. The Dial Example

In this example we write a fudget called dialF, which implements a simple
dial. Its type is:

 dialF: Maybe Size → Double → F Double a

Given an optional size and an initial value to display, dialF creates a fudget
that for every floating point number received on the high level input,
changes the dial to show this value. It does not produce any high level out-
put. The input number specifies the angle of the hand measured clockwise
in units of complete turns. 0.0 is straight up.

The Haskell implementation of dialF is shown in Figure 12. It is implemented
by applying windowF to the fudget kernel dialK and some other arguments.

The first argument to windowF is a list of commands to be executed right after
the window is created. In this case, the list contains two commands. The first
one sets the event mask. Since this fudget is output-only, the only events we
are interested in are exposure events. They are generated by the X server
when the contents of a window need to be re-drawn because the window
becomes exposed after being obscured by another window. A fudget that
responds to user input would in addition include things like ButtonPressMask,
ButtonReleaseMask, PointerMotionMask, KeyPressMask, etc.

The second of the two initial commands is the LayoutLimits pseudo-command.
With the argument Layout size False False, we tell an enclosing fudget that the
initial size of the dial fudget should be at least size, and that neither the hor-
izontal nor the vertical size should be fixed, but can vary freely. We use the
size supplied in optsize, or (somewhat arbitrarily) pick the size (70,70) if opt-
size is Nothing.

The second argument to windowF is an optional rectangle that determines the
position and size of the window. Here we supply Nothing, which means that
we want the dynamic layout system to compute the position and size. If you
specify some rectangle here, you indicate that this fudget should not be part

14 Fudgets Programming Tutorial

of the dynamic layout system, but instead have the fixed placement given
by the rectangle. In this case the fudget should not output a LayoutLimits com-
mand.

All drawing commands in Xlib take a GC as an argument. GCs, graphic con-
texts, contain many parameters that control how the drawing is done, such
as foreground and background colours, line width for line drawing, which
font to use for text, etc. The Fudgets library provides the function wCreateGC,

wCreateGC: GCId → GCAttributeList→ (tGCId→K a b) → K a b

which takes a template GC, a list of GC attributes to modify the template
with, a fudget kernel parameterized by a GC, and returns the argument
fudget kernel applied to a newly created GC. As the template GC you can
use any GC you have already created, or RootGC, which is a pseudo GC that
can be used only as a template and not for drawing.

In our fudget kernel, dialK, we create a GC with RootGC as a template, and
change the line width to 3 pixels.

After creating the GC, dialK turns into a state machine, described by the
recursive function dialK’. The state is held in the two arguments of dialK’: value
and size.

module DialF(dialF) where
import Fudgets

dialF :: Maybe Size -> Double -> F Double a
dialF optsize startvalue =
 let startcmds = [ChangeWindowAttributes [CWEventMask [ExposureMask]],
 LayoutLimits (Layout size False False)]
 size = case optsize of
 Just s -> s
 Nothing -> Point 70 70
 in windowF startcmds Nothing (dialK startvalue size)

dialK startvalue size =
 wCreateGC RootGC [GCLineWidth (Width 3)] (\gc ->
 let redraw v s = putK (drawDial gc v s) (dialK' v s)
 dialK' value size =
 getK (\msg->
 case msg of
 Low (Expose _ 0) -> redraw value size
 Low (LayoutSize size') -> redraw value size'
 High value' -> redraw value' size
 _ -> dialK' value size)
 in dialK' startvalue size)

drawDial gc value size =
 let r = scalePoint 0.5 size
 p = r ‘padd‘ rect r (2.0 * pi * value)
 in map Low [ClearWindow, WDrawLine gc (Line r p)]

rect (Point w h) r =
 Point (floor (fromInt w * sin r)) (floor (fromInt (-h) * cos r))

Figure 12: The Haskell implementation of the dial fudget

Fudgets Programming Tutorial 15

A fudget kernel normally uses putK and getK to input/output messages.

putK :: [b] → K a b → K a b
getK :: (a → K a b) → K a b

They are actually the same functions as putSP and getSP, but the automati-
cally inferred types becomes much more readable when they contain K a b
instead of SP (Message Event a) (Message Command b)...

Fudgets that show something in a window must be prepared to re-draw
what they show when they receive an exposure event. In Fudgets, exposure
events take the form Expose rect n, where rect tells what part of the window
that actually needs to be re-drawn. Exposure events generally come in
bursts, and n tells how many more exposure events containing further rec-
tangles will follow after this event.

The dial is very easy to draw, so keeping track of which part of the window
to redraw will not significantly reduce the amount of re-drawing required.
It is enough to redraw the entire dial after receiving the last exposure event
in a burst.

If dialK’ receives the pseudo-event LayoutSize, the dynamic layout mechanism
has resized the window. dialK’ responds by redrawing the dial in its new size.

If dialK’ receives a new value in a high level message, the dial is redrawn with
the new value.

Input other that exposure events, the LayoutSize event, high level messages is
silently ignored. A fudget is in general expected to ignore any low level
input it doesn’t know how to handle.

After dialK follows two support functions: drawDial, that generates the draw-
ing commands for drawing the dial, and rect, which converts coordinates
from polar to rectangular form.

Figure 13 shows a simple program to test dialF:

module Main where
import Fudgets
import DialF

main = fudlogue (simpleShellF "Dial" [] Nothing tstF)

tstF = dialF Nothing 0.0 >=^< (\x->fromInt x/360.0) >==#<
 (4,LBelow,inputDoneSP>^^=<intF 0 Nothing)

Figure 13: Test program for dialF

16 Fudgets Programming Tutorial

Exercises:

3. Add drawing commands to make the dial look nicer.

4. Enhance dialF to an input/output fudget. Allow the user to change the
value of the dial by clicking the mouse in it. Use GrabButton and motion
events to make the dial follow the mouse while a mouse button is
pressed.

6. Compiling and Getting Documentation

6.1. Compiling Fudget Programs

To compile a Fudgets program, use the command hbcxmake. For example, if
your main program is in a file called Counter.hs, then you can compile it with
the following command:

hbcxmake Counter

hbcxmake is an automatic make program, so even if your program consists of
more than one module you only need to run hbcxmake on the main module.

6.2. On-line documentation

• Information on the Fudgets system can be found in the WWW via URL

http://www.cs.chalmers.se/Fudgets/

(Use a WWW browser like netscape or Mosaic). From there you can find a
link to the reference manual and other documentation.

• The command fudgrep can be used to find types of fudgets, etc. (This is just
grep in the Fudgets.hi, the interface file for the Fudgets library.)

• Some examples and demos can be found in

/usr/src/cs/local/Fudgets/Examples/
/usr/src/cs/local/Fudgets/Demos/

6.3. Note!

Be aware that the Fudget library is not a finished product! Some things you
expect to find may be missing, or may not work as you expect.

• Tell us if you think something is strange or missing (e.g. by email to hall-
gren@cs.chalmers.se)

7. Summary

Here is a brief list of useful things from the Fudget library.

• Top level

fudlogue:: F a b→Dialogue
simpleShellF:: String→[WindowAttributes]→Maybe Size→F a b→F a b

Fudgets Programming Tutorial 17

• Fudgets (User Interface Elements)

displayF:: Alignment→Maybe Rect→FontName→String→F String a
intDispF:: Alignment→Maybe Rect→FontName→Int→F Int a
buttonF :: Maybe Rect → FontName → [(ModState, KeySym)] → String → F a Click
quitF, quitButtonF :: F a b
intF :: Int → Maybe Rect → F Int (InputMsg Int)
stringF :: String → Maybe Rect → F String (InputMsg String)
inputDoneSP :: SP (InputMsg a) a
labAboveF, labBelowF, labLeftOfF, labRightOfF :: String → F a b → F a b
moreF, menuF, radioF, toggleButtonF

• Fudget combinators

>==<, >==#< serial composition without/with layout
>+<, >+#< parallel composition
>+#< :: F a1 b1→ (Int, Orientation, F a2 b2) → F (a1+a2) (b1+b2)
>==#< :: F b c → (Int, Orientation, F a b) → F a c

listLF :: Layouter → [(t, F a b)] → F (t, a) (t, b)
untaggedListLF :: Layouter → [F a b] → F (Int, a) b

parallel composition with layout

• Layout

aRight, aLeft, aTop, aBottom, aCenter :: Alignment
data Orientation = LAbove | LBelow | LLeftOf | LRightOf
data LayoutDir = Horizontal | Vertical
horizontalL, verticalL :: Int → Layouter
matrixL :: Int → LayoutDir → Int → Layouter

• Attaching application specific code

absF :: SP a b → F a b abstract fudget
>^^=<, >=^^< attaching post/preprocessors
>^=<, >=^< attaching functions

• Stream processors

nullSP :: SP a b dead stream processor
putSP :: [b] → SP a b → SP a b writes to the output stream
getSP :: (a→SP a b) → SP a b reads from the input stream
mapSP, concatMapSP, mapAccumlSP
concatSP, zipSP

• Fudget Kernel Programming

windowF :: [Command] → Maybe Rect → K a b → F a b
putK, getK like putSP, getSP
wCreateGC :: GCId → GCAttributeList → (GCId → K a b) → K a b
changeBg :: ColorName → K a b → K a b
safeLoadQueryFont :: FontName → (FontStruct → K a b) → K a b
allocNamedColor :: ColormapId → ColorName → (Color → K a b) → K a b
defaultColormap :: ColormapId
font_id :: FontStruct → FontId
wDrawString, wDrawLine, wDrawRectangle, wFillRectangle, wDrawArc, ...

18 Fudgets Programming Tutorial

• Types

data SP a b abstract type for stream processors
type F a b, type K a b the Fudget type, Fudget kernels
data Message a b = Low a | High b
data Sum a b = Inl a | Inr b
data Command = ... subset of Xlib commands + some others
data Event = ... subset of X events + some others
data DrawCommand = ... drawing commands
data EventMask = ButtonPressMask | ExposureMask | ...
data GCAttribute color font = GCLineWidth With | GCForeground color | GC font | ...
data Maybe a = Nothing | Justa
type FontName = String
type ColorName = String
data InputMsg a = InputChange a | InputDone KeySym a
data Point = Point Int Int
type Size = Point
data Line = Line Point Point
data Rect = Rect Point Size

• Utilities

defaultFont, buttonFont, menuFont can be changed from the command line
args, argKey to read command line arguments
padd, psub :: Point→Point→Point vector arithmetic
xcoord, ycoord :: Point -> Int selectors

