
DRAFT 1 DRAFT

Client/Server Applications with Fudgets

Magnus Carlsson & Thomas Hallgren

{magnus,hallgren}@cs.chalmers.se

1 Abstract

The Fudget library, which is based on parallel stream processors, has been used to write Haskell [6]
and LML programs with graphical user interfaces [1][2]. It has now been enhanced with capabilities
for Internet socket communication, making it possible to write client / server applications with
Fudgets. The sockets are introduced in a way that makes it possible for the compiler to catch errors
that would occur if the client and server disagreed on the type of the messages that they exchange.

2 Organisation

Organisation of the paper: Internet sockets are presented in section 3. The Haskell interface for sock-
ets is described in section 4. A fudget supporting the development of servers is given in section 5, and
finally, we present the Calendar example in section 6.

3 Internet stream sockets

The type of sockets that we consider here are Internet stream sockets. They provide a reliable, two-
way connection, similar to pipes, between any two computers on Internet. They are used in Unix tools
like telnet, ftp, finger, mail, usenet and World Wide Web.

We will use them for two purposes: firstly, the server creates a listener socket. This socket is not
used for communication, its purpose is to accept connections from clients. Secondly, when a connec-
tion is accepted, communication sockets are created in both the client and the server, and these are
used for the actual communication.

Since there can be many listener sockets on a computer, they are distinguished by port numbers.
When a server creates a listener socket, it must provide a port number. When a client wants to connect
to a server, it must specify on what computer the server is running, and the port number.

4 Sockets in Haskell

In Haskell, we introduce two abstract types for listener sockets and communication sockets:

data LSocket -- Listener sockets
data Socket -- Communication sockets

The port number is just a type synonym:

type Port = Int

Of course, it is important that the client and server agree on what port number to use. Moreover, if
we want to develop both the client and the server in Haskell, we can use the type system to ensure that
both programs agree on the type of the messages that they exchange. This is done by associating ports
with the types of the messages transmitted and received:

data TPort t r = TPort Port

DRAFT 2 DRAFT

t and r are the message types that the client transmit and receive, respectively.
We need sockets that carry this type information too:

data TLSocket t r = TLSocket LSocket
data TSocket t r = TSocket Socket

When a client wants to open a connection to the server, it uses openSocketF:

openSocketF :: HostName -> TPort t r ->(TSocket t r -> F c d) -> F c d

The first argument is the name of the computer where the server is running. openSocketF will return
a typed communication socket to the continuing fudget. Note that the socket will get the same type as
the port.

The communication is performed by the fudget transceiverF:

transceiverF :: (Text t, Text r) => TSocket t r -> F t (SocketMsg r)

data SocketMsg a = SocketMsg a | SocketEOS

The output from transceiverF is either a message from the socket, or SocketEOS, if the connection
was closed by the server. Currently, transceiverF converts messages to and from strings by using the
functions read and show, that are defined for types in the class Text. A more efficient version would
use a binary protocol. Note that the class Binary is not good enough, since it does not take into account
e.g. byte order.

5 Servers in Haskell

To write servers, we use socketServerF:

socketServerF :: TPort t r -> (TSocket r t -> F a (SocketMsg b)) -> F (Int,a) (Int,ClientMsg b)

data ClientMsg a = ClientMsg (SocketMsg a) | ClientNew

socketServerF will create a listener socket with the specified port number, and wait for connections.
When a client is accepted a client handler fudget is spawned to serve the new connection (the second
argument specifies the client handlers). In addition, the message ClientNew is emitted. The handler is
expected to emit messages of type SocketMsg. If a handler emits SocketEOS, it will be killed, and
socketServerF outputs ClientMsg SocketEOS. Since many handlers can be active, they are associated
with unique integer tags.

The client handler is given a communication socket for the accepted client. The message types of
the socket are flipped compared to the port message types. This is because the messages that the client
transmits are the messages that the server receives, and vice versa.

A simple client handler could be transceiverF. In the next section, we will see a server that uses
transceiverF as the client handler.

DRAFT 3 DRAFT

6 Example: Calendar

Outside the lunch room in our department, there is a whiteboard where the week’s activities are reg-
istered. We will look at an electronic version of this calendar, where people can get a view like this
on her workstation:

The entries in the calendar can be edited by everyone. When that happens, all calendar clients should
be updated immediately.

The calendar consists of a server maintaing a database, and the clients, running on the worksta-
tions. The server program is as follows:

module Main where -- Server

import Fudgets
import Socket
import Port

main = fudlogue (server port)

server port =
 let broadcast cl db =
 getSP $ \(i,e) ->
 let clbuti = filter (/= i) cl
 in case e of
 ClientNew ->
 putSP [(i,d) | d <- db] $ -- Send the database to the new client
 broadcast (i:cl) db
 ClientMsg (SocketMsg s) ->
 let db’ = replace s db in -- Update database
 putSP [(i,s) | i <- clbuti] $ -- Inform all the other clients of the new entry
 broadcast cl db'
 ClientMsg SocketEOS ->
 broadcast clbuti db -- Remove the client from the client list

 in loopF (broadcast [] [] >^^=< socketServerF port transceiverF)

DRAFT 4 DRAFT

The server consists of the stream processor broadcast, and a socketServerF, where the output from
the stream processor goes to socketServerF, and vice versa:

broadcast maintains to values: cl, which is a list of the tags of the connected clients, and db, the
database, organised as a list of (key,value) pairs. This database is sent to newly connected clients.
When a user changes an entry in her client, it will send that entry to the server, which will update the
database1 and use the client list to broadcast the new entry to all the other connect clients. Finally,
when a client disconnects, it is removed from the client list.

Now, what are the keys and the values in the database? Their types are determined by the port type,
which is imported from Port:

module Port where

import Fudgets
import Socket

type SymTPort a = TPort a a

port :: SymTPort ((String,Int),String)
-- e.g. (("Torsdag",13),"Doktorandkurs:")
port = tPort 8888

Here, the messages are declared to be pairs of (string,int) pairs and strings. The idea is that the client
program also should import this definition of the port, to ensure type correctness. The data types TPort
and TSocket are abstract, and therefore it is impossible for the programmer to change the type of an
already typed port or socket. The things to remember are: to use the same port declaration in the client
and the server, and to give the port a monomorphic type signature.2

References
[1] M. Carlsson & T. Hallgren, Fudgets - A Graphical User Interface in a Lazy Functional

Language, in FPCA 93’ - Conference on Functional Programming Languages and Computer
Architecture, pages 321--330, June 1993.

[2] M. Carlsson & T. Hallgren, The Fudget distribution, Available by anonymous ftp from
ftp.chalmers.se:/pub/haskell/chalmers/lml-0.999.?.lmlx.tar.Z.

1. Unfortunately, the update will not take place until a new client connects, resulting in a space leak. It can be elimi-
nated by inserting "seq (force db’) $" after "let db’ = replace s db in".

2. In this example, the server cannot be compiled if the type signature is omitted, since there will be an ambiguous
overloading in transceiverF.

socketServerF

broadcast

DRAFT 5 DRAFT

[3] Paul Hudak et al., Report on the Programming Language Haskell: A Non-Strict, Purely
Functional Language, March 1992. Version 1.2. Also in Sigplan Notices, May 1992.

