
DRAFT DRAFT

Implementing Real-time Interactive Multi-User Games
with

Fudgets

Magnus Carlsson & Thomas Hallgren

{magnus,hallgren}@cs.chalmers.se

1 Introduction

This paper consists of two parts: the first part (section 2) illustrates how the Fudget system [1][2] can
be used to write real-time interactive games in Haskell. This shows that the Fudget system is not lim-
ited to traditional, fairly static, graphical user interfaces, but also allows you to construct interfaces
with lots of animated objects. A program with one concurrent process (one fudget) per animated
object will have a much nicer structure than a single-threaded, sequential program.

The second part of the paper (section 3) describes a way to extend the Haskell I/O system to make
it possible to write multi-user games. We introduce mechanisms for communication over the network
with other processes (by means of UNIX sockets) and for making indeterministic choices. This is use-
ful for client/server programming in general; multi-user games is just one particular example. section
3 gives an example of a client/server application called Chat, where the server distributes messages
from connected clients to all clients.

2 Interactive Real-Time Games

The Fudget system is implemented on top of the X windows system. A Fudget program is essentially
a function from a stream of X events to a stream of X commands (see Figure 1). This makes it possible
to write interactive programs with graphical user interfaces. A program is either in a resting state wait-
ing for some X event, or busy computing some X commands as a response to an X event. Most X
events are caused by some keyboard or mouse activity.

The X windows interface is implemented by an extension to Haskell’s stream based I/O system.
but in the following sections it is sufficient to think of a Fudget program as a function of type

[XEvent] → [XCommand]

X
Server

Commands Events

Fudget
program

Figure 1: A Fudget program’s connection with the outside world

DRAFT DRAFT

where the type XCommand contain constructors corresponding to various calls to the Xlib library [5]
and XEvent contain constructors corresponding to the various X events.

2.1 Real-time extension to the X Windows interface

In real-time programs, output is affected not only by the flow of input from the user, but also by the
flow of time in the real world. Output is produced not only as response to user input, but also at spe-
cific moments in time. To make it possible to write Fudget programs with real-time behaviour we have
made the following extensions to the XCommand and XEvent types1:

data XCommand =
...
| SetTimer Int Int Int -- first delay, interval, timer identity
| RemoveTimer Int -- timer identity

data XEvent =
...
| TimerAlarm Int -- timer identity

After outputting the command SetTimer d i n, a program will receive TimerAlarm n in the
input XEvent stream at approximately the times d+k*i milliseconds after the SetTimer command
was output, where k is a non-negative integer. The timer alarms are merged in chronological order
with the ordinary XEvent input, saving us from having to introduce some explicit indeterministic
merge operation in the language. This technique is known as hiatonic input [3].

2.2 Space Invaders

In this section we describe an implementation of the classical game Space Invaders. Only the most
fundamental parts of the game has actually been implemented (see Figure 2),

In this game, an army of invaders from outer space is approaching the earth. The player must shoot
them all down before they reach the surface. The player controls a gun, which can be moved horizon-
tally at the bottom of the screen (the surface of the earth) and which can fire vertically. The invaders
initially move from left to right. When the right most invader reaches the right edge of the screen all

1. This extension was designed and implemented by Lennart Augustsson.

Figure 2: Space Invaders - a typical interactive real-time game

DRAFT DRAFT

invaders first move downwards a small distance, then move horizontally again until the left most
invader reaches the left edge, and so on.

2.2.1 Structure of the Space Invaders implementation

In this section we describe an implementation of Space Invaders, where the each object is imple-
mented as a fudget. The objects are:

1. spaceF: the space fudget. This is the black background in which all the other objects move
around.

2. gunF: the gun.

3. torpedoF: the torpedoes fired by the gun.

4. invaderF: a number of invaders

gunF and torpedoF use timers internally to control the speed of their motion. To coordinate the
motion of the invaders, they are controlled by a common timer which is located in a windowless
fudget called timerF. There is also an abstract fudget called shoutSP, which broadcasts timer alarms
and other input to all invaders.

Figure 3 illustrates how the fudgets are interconnected. The information flow is as follows: the
space fudget outputs mouse and keyboard events to gunF. (This allows the user to place the mouse
pointer anywhere in the window to control the gun.) The gun respond to these events by starting or
stopping to move, or by firing a torpedo. When the gun is fired, it outputs its current position to the
torpedo fudget. The torpedo then starts moving upwards from that position. When it hits something,
it outputs its current position to the invaders. Each invader then checks if the hit is within the area it
occupies on the screen and, if so, it removes its window and dies.

Below, we take a closer look at invaderF. The other fudgets are just variations on a theme, so we
won’t discuss them further.

Figure 3: The processes and their interconnection in the Space Invaders implementation.

scoreF

Int

spaceInvadersF =

invadersF =

shoutSP timerF

PointPoint+Tick

InvaderMsg

Int

listF [invaderF n | n<- ...]

invadersF

Point

torpedoF

Point

gunF

XEvent

spaceF

DRAFT DRAFT

invaderF maintains an internal state consisting of the following parts: the current position (a
Point), the current direction (left or right), if it is time to turn (i.e., move downward at the next timer
alarm, and then change directions).

The invaders speak the following language:

data InvaderMsg = Tick | Turn | Hit Point | Death (Int,Int)

When an invaders hears a Tick, it moves one step in the current direction. It also checks if it has
reached an edge, in which case it outputs Turn, which is received by all invaders. When an invader
hears a Turn it remembers that it is time to turn at the next Tick. When a torpedo has hit something
at position p, all invaders receive Hit p, and check if p is within their screen area. If so, it outputs
Death n, where n is the identity of the invader. n is used by shoutSP, so that it doesn’t have to shout
to dead invaders. It is also used to determine how many points to add to the score.

The fact that all objects are implemented as fudgets mean that each object has its own X window.
To move an object you move its window. No drawing commands need to be output.

How does the torpedo know if it has hit something? The torpedo is a window which moves behind
all other windows. This means that it becomes obscured when it hits something. The X server sends
a VisibilityNotifty event when this happens. This causes the torpedo to stop and send its current
position to the invaders.

2.2.2 About the efficiency of the Space Invaders implementation

One major point of the Fudget system (and of functional programming in general) is to simplify and
speed up program development. But it is of course also important that the efficiency of the resulting
program is acceptable.

We have measured the CPU time consumption of the Space Invaders implementation described
above running on a Sparcstation IPX in a situation where 55 invaders move twice per second, the gun
and the torpedo move every 30ms. The average CPU load was approximately 60%. 10% of this was
consumed by the X server. As a comparison, the program xinvaders, a C program implemented
directly on top of Xlib, consumes less than 5% CPU time in a similar situation.

As usual, programming on a higher abstraction level results in a less efficient solution. Part of the
inefficiency comes from the use of Haskell and the Fudget system. The load on the X server comes
from the fact that the moving objects are represented as windows. Not surprisingly, moving a window
is a more expensive operation than just drawing an image of the same size. But using techniques out-
lined in the next section, it is possible to rewrite the Fudget program to draw in a single window, like
the C program, and still keep the same nice program structure, i.e., one process per moving object.

Above, we compared the efficiency of a high level implementation (using the Fudget system) of
the game with a low level implementation. It would also be interesting compare other user interface
toolkits, e.g. Motif and Interviews, to the Fudget system.

The CPU time consumption figures above does not say much about the real-time behaviour of the
two implementations. The fact is that the C program meets the real-time deadlines, but the Fudget pro-
gram does not. As a response to a Tick from timerF, all 55 invaders should move one step. Com-
puting and outputting 55 MoveWindow commands unfortunately takes much more than 30ms, which
means that the MoveWindow commands for the gun and the torpedo will be output too late, resulting
in a very jerky motion. This problem can be solved in at least two different ways: manually, by not
moving all 55 invaders at the same time and thus not blocking output from other fudgets for longer
than 30ms; automatically (from the point of view of the application programmer), by introducing par-
allel evaluation and some kind of fair, indeterministic merge of the output from different fudgets. The
latter solution is of course the more general one, and we hope to improve the Fudget system in this
direction.

DRAFT DRAFT

2.3 Programming with concurrent processes in Haskell

Above, we outlined a program structure where each moving object on the screen is represented as a
process (a Fudget). Each process controls a window on the screen. It is of course possible to generalise
this and use processes for purposes other than controlling user interface elements.

Processes in the Fudget library are called stream processors and are represented by the type
SP a b, where a is the type of input messages and b is the type of output messages. Stream proces-
sors are programmed in a continuation style using the following three basic constructors:

nullSP :: SP a b -- does nothing
putSP :: [b] → SP a b → SP a b -- writes to the output stream
getSP :: (a→SP a b) → SP a b -- reads from the input stream

The behaviour of a single Fudget is usually implemented as one sequential program by using these
operators. Then there are combinators for parallel and serial composition of stream processors, on
which the corresponding Fudget combinators are based.

serCompSP :: SP a b → SP c a → SP c b
compSumSP :: SP a b → SP c d → SP (a+c) (b+d)

Input to a parallel composition, sp1 ‘compSumSP‘ sp2, is delivered to one of sp1 and sp2. Some-
times it is more natural to broadcast the input to all processes in a parallel composition. Recall from
section 2.2.1 that we used a separate stream processor shoutSP for this purpose. Some overhead can
be avoided by using a tailor made combinator for parallel composition with broadcast instead. We
therefore introduce parSP:

parSP :: SP a b → SP a b → SP a b

This also makes it easy to write stream processors that dynamically split into two or more parallel
processes. One of the processes in a parallel composition can terminate without leaving any overhead
behind.

nullSP ‘parSP‘ sp == sp ‘parSP‘ nullSP == sp

We can also introduce a sequential composition operator:

seqSP :: SP a b → SP a b → SP a b

sp1 ‘seqSP‘ sp2 behaves like sp1 until sp1 becomes nullSP, and then behaves like sp2 (without
any overhead).

These new operators provide a more flexible way to program the behaviour of single fudgets. For
example they can be used in the Space Invaders program to keep the structure with one process per
moving object although all drawing is done in one window.

However, the stream processor idea presented in this section, although designed in the context of
the Fudget system, is independent of the Fudget system and can surely be useful when solving other
programming problems which can be decomposed as a number of concurrent processes.

3 Multi-User Games

3.1 Input/Output in Haskell

The Haskell Report [6] describes input/output in Haskell in terms of streams. Today, monadic I/O has
become increasingly popular [7], but the original presentation with the data types Request and
Response fits better with the stream processor model used in Fudgets. Therefore, the necessary
extensions will be made in the stream-I/O model.

DRAFT DRAFT

3.1.1 Dialogue, Response and Request

A Haskell program has the type Dialogue, where

type Dialogue = [Response] -> [Request]

From the view of the operating system, the program is a stream processor that emits requests, and is
to be fed with the responses corresponding to these requests. The data types Request and Response
are:

data Request =
 -- file system requests:

 ReadFile String
| WriteFile String String
| AppendFile String String
| DeleteFile String
| StatusFile String

 -- channel system requests:
| ReadChan String
| AppendChan String String
| StatusChan String

 -- environment requests:
| Echo Bool
| GetArgs
| GetEnv String
| SetEnv String String

data Response =
 Success
| Str String
| StrList [String]
| Bn Bin
| Failure IOError

The Request data type has requests regarding the file system, channel system, and the environment.
In client/server applications, the communication between programs is carried out on channels. Unfor-
tunately, the channel system as defined in Haskell is too weak for our purposes. There is only a fixed
set of channels, namely stdin, stdout, stderr, and stdecho. We need the possibility to dynam-
ically create new channels to clients via Unix sockets. Therefore, we suggest the additional requests
and responses

data Request =
... -- expected response:
| OpenLSocket LSocketAddress -- GotLSocket
| OpenSocket SocketAddress -- GotSocket
| CloseLSocket LSocket -- Success
| CloseSocket Socket -- Success
| AcceptSocket LSocket -- GotSocket
| ReadSocket Socket -- Str
| WriteSocket Socket String -- Success

data Response =
...
| GotLSocket LSocket
| GotSocket Socket

type LSocketAddress = String
type SocketAddress = String

data LSocket
data Socket

The requests are similar to the existing channel system requests, but instead of using strings for encod-
ing channels, we use two primitive handle types, LSocket and Socket. LSocket corresponds to
Unix sockets that are used to accept connections (Listener sockets), and Socket is a channel which
can be read from or written to (corresponds to a connected or accepted Unix socket).

DRAFT DRAFT

The requests AcceptSocket and ReadSocket (and also ReadChannel) turn out to be rather
useless in a setting where we may expect input from several sources, without knowing which of them
will come first. Therefore, we need a mechanism for merging input from many channels non-deter-
ministically. In Appendix D of the Haskell report, optional requests and responses are specified for
this purpose, namely ReadChannels and Tag:

data Request = ... | ReadChannels [String]
data Response = ... | Tag [(String, Char)]

The ReadChannels request takes a list of channel names (strings) as argument, and the response is
Tag with a merged and tagged list of characters from the channels. The channel names are used as
tags.

To handle new connections and incoming data on sockets, we add the requests

data Request =
... -- expected response:
| AcceptSockets [LSocket] -- Success
| ReadSockets [Socket] -- Success

Since the set of channels that a program wants to watch may vary, it will typically request Accept-
Sockets and ReadSockets repeatedly. However, we only want a single list of tagged channel data
to take care of. Actually, we only want one single list for all asynchronous input to the program,
including channel data, events from the X-server, and timer alarms. This is the reason why Accept-
Sockets and ReadSockets do not return tagged lists, as ReadChannels did. To get hold of the
asynchronous input list, we add

data Request = ... | GetAsyncInput

data Response = ... | GotAsyncInput [AsyncInput]

data AsyncInput =
 AISocketAccepted LSocket Socket
| AISocketRead Socket String
| AITimerAlarm Timer
| AIXEvent XEvent

If a listener socket ls is included in an AcceptSockets request, and someone connects to ls, the
value AISocketAccepted ls s will be appended to the asynchronous input list by the run-time
system. Here, s is a socket which will be used for communication to the new connection. Then, if the
program emits ReadSockets [s], input on the connection will result in values like
AISocketRead s data, where data are strings received.

3.2 Example: Chat

In this section, we will present a small sample application using the socket facilities. It is called Chat,
and allows many people to connect to a server and send messages to each other. Any message that a
user enters on his/her client, will be broadcast to all clients currently connected. Clients may connect

DRAFT DRAFT

and disconnect at any time. The other clients are notified when such events occur. In Figure 4, a screen
dump shows a typical Chat session from one client’s point of view.

The Chat application consists of two Haskell programs, the server and the client.

3.2.1 The server program

The server employs the fudget socketServerF, of type:

socketServerF :: LSocketAddress -> (Socket -> F a (SocketMsg b))
 -> F (Int,a) (Int, ServerMsg b)

data SocketMsg a = SocketMsg a | SocketEOS
data ServerMsg a = ServerMsg a | ServerEOS | ServerNew

The first argument is a listener socket address, which socketServerF will open and listen to. The
second argument is a client handler fudget. Whenever a new connection is accepted, socket-
ServerF will launch a new client handler fudget with the new socket as argument. It will also emit
the message (i,ServerNew), where i is an integer tag used for communication with the handler.
The handler can then emit messages, for example, SocketMsg "Hello". This will be tagged and
emitted by socketServerF as (i,ServerMsg "Hello"). If the handler wants to terminate, it
emits SocketEOS. This results in the handler fudget being destroyed, and the message (i,Server-
EOS) to be emitted.2 Messages can also be sent to the handler, by tagging them with i.

In the Chat server, the handler will be very simple, namely the transceiverF:

transceiverF :: Socket -> F String (SocketMsg String)

A transceiverF will send any incoming messages to the socket, and emit strings from the socket
as messages.

Now, we can have a look at our server program:

main = fudlogue (server (argKey "address" ""))

server addr = loopF (broadcast [] >^^=< socketServerF addr transceiverF)
 where
 broadcast cl = getSP $ \(i,e) ->
 let clbuti = filter (/= i) cl
 bc s cs = putSP [(i,show i++" "++s) | i <- cs]
 in case e of
 SocketNew -> bc "connected." clbuti $
 broadcast (i:cl)
 SocketMsg s -> bc "says" cl $ broadcast cl
 SocketEOS -> bc "has quit." clbuti $
 broadcast clbuti

2. SocketMsg should really be declared as a subtype of ServerMsg, if this was possible in Haskell.

Figure 4: The Chat client.

DRAFT DRAFT

The function server is illustrated in Figure 6. The stream processor broadcast maintains a list of
active client numbers, and distributes messages from the socketServerF.

3.2.2 The client program

The visible part of the client program (seen in Figure 4) consists of an input field on top, realized by
a stringF, and a fudget terminalF, that shows the incoming strings on subsequent lines. In the
middle, we use transceiverF again, which handles the communication with the socket. The func-
tion prep of type SocketMsg String -> String extracts the strings from the socket messages.
The first thing that client does is to connect to the server by means of

openSocketF :: SocketAddress -> (Socket -> F a b) -> F a b

which will emit the Haskell request OpenSocket and wait for the corresponding response
GotSocket.

main = fudlogue (simpleShellF "Chat" [] None (client (argKey "address" "")))

client addr = openSocketF addr $ \s ->
 outF >==#< (5,LBelow,transceiverF s >==< inF)

inF :: F String String
inF = inputDoneF >==< stringF "" None

outF :: F (SocketMsg String) Char
outF = terminalF None defaultFont 20 50 >=^< prep
 where
 prep (SocketMsg s) = s
 prep SocketEOS = "The server died!"

The fudget structure of the client can be seen in Figure 6.

Figure 5: The server fudget

socketServerF

broadcast

Figure 6: The client fudget

transceiverF

prep

terminalF stringFinputDoneF

DRAFT DRAFT

3.3 Implementation of socketServerF

To see an example how listener sockets are used, let us have a look at the implementation of sock-
etServerF:

socketServerF :: LSocketAddress -> (Socket -> F a (SocketMsg b))
 -> F (Int,a) (Int, ServerMsg b)
socketServerF addr handler = loopLeftF (idRightF (control >+< dynListF)
 >=^^< concmapSP router)
 where
 router e =
 let todyn = Inl . Inr
 out = Inr
 in
 case e of
 -- from control
 Inl (Inl (i,f)) -> [todyn (i,DynCreate f), out (i,ServerNew)]
 -- from dynListF
 Inl (Inr (i,m)) ->
 case m of
 SocketMsg m’ -> [out (i,ServerMsg m’)]
 SocketEOS -> [out (i,ServerEOS), todyn (i,DynDestroy)]
 -- from outside
 Inr (i,m) -> [todyn (i,DynMsg m)]

 control = openLSocketF addr $ \lsocket ->
 putFu [Low (DoIO (AcceptSockets [lsocket]))] $
 (accepter 0)
 where accepter i = getFu $ \e -> case e of
 Low (AsyncInput (AISocketAccepted _ socket)) ->
 putFu [High (i,handler socket)] $
 accepter (i+1)
 _ -> accepter i

The socketServerF consists of a dynListF in parallel with the fudget control. There is also
the stream processor router which will route messages from dynListF, control, and the out-
side to the right destination. See also Figure 7 for a diagram of socketServerF.

The control fudget starts by opening a listener socket by means of

control

router

dynListF

Figure 7: socketServerF. Inside dynListF are handlers for the accepted sock-

DRAFT DRAFT

openLSocketF :: LSocketAddress -> (LSocket -> F a b) -> F a b

which emits the Haskell request OpenLSocket and waits for the response GotLSocket. Then, a
AcceptSockets request is emitted. This request is not sent directly to the run time system, because
there might be a number of fudgets in the program that want to accept sockets asynchronously. There-
fore, fudlogue (which turns the top-level fudget into a Dialogue function) maintains a table
which is the union of all listener sockets of the AcceptSockets requests that the different subfudg-
ets have emitted, together with the paths of the subfudgets. fudlogue will emit an
AcceptSockets request with all listener sockets from this table. When the asynchronous input
value AISocketAccepted ls s is received, ls will be used to look up the path to the subfudget
that wants the input.

But we do not have to bother about anything of this machinery when we look at control. It can
perform its tasks without any knowledge about other fudgets in the program. After emitting the
AcceptSockets request, it will enter the accepter loop, which waits for asynchronous input of
form AISocketAccepted. When a new socket is accepted control applies handler to it and
spits it out as a high level message, together with a fresh integer identifier. The router will direct
this message to the dynListF fudget, which will start the new handler fudget.3 router will also
direct messages from the outside to the corresponding handler, and it will also destroy handlers when
they emit SocketEOS.

3.4 Implementation of transceiverF

transceiverF consists of a transmitter and a receiver:

transmitterF :: Socket -> F String a
transmitterF s =
 loop (\l -> getFu $ \e -> case e of
 High str -> putFu [Low (DoIO (WriteSocket s (str++"\n")))] l
 _ -> l)

receiverF :: Socket -> F a (SocketMsg String)
receiverF s = stripSum >^=< idLeftF (SocketMsg >^=<
 absF (linesSP ‘serCompSP‘ concSP))
 >==< read
 where
 read = putFu [Low (DoIO (ReadSockets [s]))] $
 loop (\l ->
 getFu $ \e ->
 case e of
 Low (AsyncInput (AISocketRead _ str)) ->
 if str == "" then putF [High (Inl SocketEOS)] l
 else putF [High (Inr str)] l
 _ -> l)

transceiverF :: Socket -> F String (SocketMsg String)
transceiverF s = receiverF s >==< transmitterF s

There is no guaranty that a string sent to a socket will be received as one message in the other end. It
might be received in smaller pieces. Therefore, the transmitter will append a line break as a separator
to the string input as high level messages and write them to the socket. Similarly, the receiver will
collect characters from the socket until a line break is seen. This is done by means of

linesSP :: SP Char String

3. dynListF understands the messages (i,DynCreate f), which creates a new fudget, (i,DynMsg m), which
sends a message to an existing fudget, and (i,DynDestroy) which destroys the fudget created with tag i.

DRAFT DRAFT

The receiver starts by sending out the ReadSockets request, which implies that the input to the socket
turns up asynchronously. If the empty string is received, this means that the end of the stream is seen,
and the receiver emits SocketEOS.

Finally, we combine receiverF and transmitterF by serial composition into
transceiverF.

4 Future work

• To implement the socket interface and the asynchronous I/O system and integrate it with the
Fudget system.

• To introduce parallel evaluation in the Fudget system.

5 Conclusions

As the Space Invaders example shows, the Fudget library is useful not only for programs with tradi-
tional, static user interfaces, but also for more dynamic interfaces with many animated objects. As
with traditional fudget programs, the program structure with one fudget per animated object reflects
very closely what you see on screen.

As the server of the Chat application shows, the Fudget library is useful not only for programs with
graphical user interfaces, but for parallel applications in general.

References
[1] M. Carlsson & T. Hallgren, Fudgets - A Graphical User Interface in a Lazy Functional

Language, in FPCA 93’ - Conference on Functional Programming Languages and Computer
Architecture, pages 321--330, June 1993.

[2] M. Carlsson & T. Hallgren, The Fudget distribution, Available by anonymous ftp from
ftp.chalmers.se:/pub/haskell/chalmers/lml-0.999.?.lmlx.tar.Z.

[3] L. Edblom, D.P. Friedman, Issues in Applicative Real-time Programming, Technical Report no.
129, Computer Science Department, Indiana University, Bloomington Indiana, USA, 1982.

[4] T. Hallgren, Introduction to Interactive Real-time Multi-user Games Programming in LML,
PMG memo 89, Dept. of Comp. Science, Chalmers, 1989

[5] J. Gettys & R.W. Scheifler, Xlib - C Language X Interface, MIT X Consortium Standard, Aug
1991.

[6] Paul Hudak et al., Report on the Programming Language Haskell: A Non-Strict, Purely
Functional Language, March 1992. Version 1.2. Also in Sigplan Notices, May 1992.

[7] S.L. Peyton Jones and P. Wadler, Imperative Functional Programming, in Proceedings of the
1993 Conference on Principles of Programming Languages, 1993.

