O
0
>
T1
—
)
0
>
T1
—

Implementing Real-time Interactive Multi-User Games
with
Fudgets

Magnus Carlsson & Thomas Hallgren

{magnus,hallgren}@cs.chalmers.se

1 Introduction

This paper consists of two parts: thefirst part (section 2) illustrates how the Fudget system [1][2] can
be used to write real-time interactive gamesin Haskell. This shows that the Fudget systemis not lim-
ited to traditional, fairly static, graphical user interfaces, but also allows you to construct interfaces
with lots of animated objects. A program with one concurrent process (one fudget) per animated
object will have a much nicer structure than a single-threaded, sequential program.

The second part of the paper (section 3) describes away to extend the Haskell 1/0 system to make
it possible to write multi-user games. We introduce mechanisms for communication over the network
with other processes (by means of UNIX sockets) and for making indeterministic choices. Thisisuse-
ful for client/server programming in general; multi-user gamesis just one particular example. section
3 gives an example of a client/server application called Chat, where the server distributes messages
from connected clientsto al clients.

2 Interactive Real-Time Games

The Fudget system isimplemented on top of the X windows system. A Fudget program is essentially
afunction from astream of X eventsto astream of X commands (see Figure 1). Thismakesit possible
to writeinteractive programswith graphical user interfaces. A programiseither in aresting state wait-
ing for some X event, or busy computing some X commands as a response to an X event. Most X
events are caused by some keyboard or mouse activity.

The X windows interface is implemented by an extension to Haskell’s stream based 1/0 system.
but in the following sectionsit is sufficient to think of a Fudget program as a function of type

[XEvent] — [XConmand]

Figure 1: A Fudget program’s connection with the outside world

DRAFE

-
_|

RAF

_|

where the type XCommand contain constructors corresponding to various calls to the Xlib library [5]
and XEvent contain constructors corresponding to the various X events.

2.1 Real-time extension to the X Windows interface

In real-time programs, output is affected not only by the flow of input from the user, but also by the
flow of timein the real world. Output is produced not only as response to user input, but also at spe-
cific momentsintime. To makeit possibleto write Fudget programswith real-time behaviour we have
made the following extensions to the XConmand and XEvent typ&l:

dat a XCommand =

i”SetTirrer Int Int Int -- first delay, interval, timer identity
| RernoveTiner |nt -- timer identity

data XEvent =

ilil'irrerAIarmInt -- timer identity

After outputting the command Set Ti ner d i n, a program will receive Ti mer Al arm n in the
input XEvent stream at approximately the times d+k*i milliseconds after the Set Ti mer command
was output, where k is a non-negative integer. The timer alarms are merged in chronological order
with the ordinary XEvent input, saving us from having to introduce some explicit indeterministic
merge operation in the language. This technique is known as hiatonic input [3].

2.2 Space Invaders

In this section we describe an implementation of the classical game Space Invaders. Only the most
fundamental parts of the game has actually been implemented (see Figure 2),

In thisgame, an army of invaders from outer spaceis approaching the earth. The player must shoot
them all down before they reach the surface. The player controls a gun, which can be moved horizon-
tally at the bottom of the screen (the surface of the earth) and which can fire vertically. The invaders
initially move from left to right. When the right most invader reaches the right edge of the screen all

Figure 2: Space Invaders - atypical interactive real-time game

1. This extension was designed and implemented by Lennart Augustsson.

-,

RAF

_|

DRAFE

_|

invaders first move downwards a small distance, then move horizontally again until the left most
invader reaches the left edge, and so on.

2.2.1 Structure of the Space Invaders implementation

In this section we describe an implementation of Space Invaders, where the each object is imple-
mented as a fudget. The objects are:

1. spaceF: the space fudget. Thisis the black background in which al the other objects move
around.

2. gunF: the gun.
3. tor pedoF: the torpedoes fired by the gun.
4. i nvader F: anumber of invaders

gunF and t or pedoF use timers internally to control the speed of their motion. To coordinate the
motion of the invaders, they are controlled by a common timer which is located in a windowless
fudget calledt i mer F. Thereisalso an abstract fudget called shout SP, which broadcaststimer alarms
and other input to all invaders.

Figure 3 illustrates how the fudgets are interconnected. The information flow is as follows: the
space fudget outputs mouse and keyboard events to gunF. (This allows the user to place the mouse
pointer anywhere in the window to control the gun.) The gun respond to these events by starting or
stopping to move, or by firing a torpedo. When the gun is fired, it outputs its current position to the
torpedo fudget. The torpedo then starts moving upwards from that position. When it hits something,
it outputs its current position to the invaders. Each invader then checks if the hit is within the area it
occupies on the screen and, if so, it removesits window and dies.

Below, wetake acloser ook ati nvader F. The other fudgets are just variations on atheme, so we
won't discuss them further.

spacel nvader sk =

I nt Poi nt Poi nt XEvent
scor eF i nvader sF t or pedoF gunF spaceF
i nvader sF = | nvader Msg
I nt yPoi nt +Ti ck Poi nt

s (O

m shout SP timerF

listF [invaderF n | n<- ...]

Figure 3: The processes and their interconnection in the Space Invaders implementation.

DRAFE

-
_|

RAF

_|

i nvader F maintains an internal state consisting of the following parts. the current position (a
Poi nt), the current direction (left or right), if it istimeto turn (i.e., move downward at the next timer
alarm, and then change directions).

The invaders speak the following language:

data I nvaderMsg = Tick | Turn | Hit Point | Death (Int,Int)

When an invaders hears a Ti ck, it moves one step in the current direction. It also checks if it has
reached an edge, in which case it outputs Tur n, which is received by all invaders. When an invader
hearsaTur n it remembersthat it istimeto turn at the next Ti ck. When atorpedo has hit something
at position p, al invaders receive Hi t p, and check if p iswithin their screen area. If so, it outputs
Deat h n, where n istheidentity of the invader. nisused by shout SP, so that it doesn’t have to shout
to dead invaders. It is also used to determine how many points to add to the score.

The fact that all objects are implemented as fudgets mean that each object has its own X window.
To move an object you move its window. No drawing commands need to be output.

How does the torpedo know if it has hit something? The torpedo is a window which moves behind
all other windows. This means that it becomes obscured when it hits something. The X server sends
aVi si bilityNoti fty event whenthishappens. This causesthetorpedo to stop and send its current
position to the invaders.

2.2.2 About the efficiency of the Space Invaders implementation

One major point of the Fudget system (and of functional programming in general) isto simplify and
speed up program development. But it is of course also important that the efficiency of the resulting
program is acceptable.

We have measured the CPU time consumption of the Space Invaders implementation described
above running on a Sparcstation | PX in asituation where 55 invaders move twice per second, the gun
and the torpedo move every 30ms. The average CPU load was approximately 60%. 10% of this was
consumed by the X server. As a comparison, the program xinvaders, a C program implemented
directly on top of Xlib, consumes less than 5% CPU time in asimilar situation.

Asusual, programming on a higher abstraction level resultsin aless efficient solution. Part of the
inefficiency comes from the use of Haskell and the Fudget system. The load on the X server comes
from the fact that the moving objects are represented as windows. Not surprisingly, moving awindow
Isamore expensive operation than just drawing an image of the same size. But using techniques out-
lined in the next section, it is possible to rewrite the Fudget program to draw in asingle window, like
the C program, and still keep the same nice program structure, i.e., one process per moving object.

Above, we compared the efficiency of a high level implementation (using the Fudget system) of
the game with alow level implementation. It would also be interesting compare other user interface
toolkits, e.g. Motif and Interviews, to the Fudget system.

The CPU time consumption figures above does not say much about the real-time behaviour of the
two implementations. Thefact isthat the C program meetsthe real-time deadlines, but the Fudget pro-
gram does not. Asaresponseto aTi ck fromti nmer F, all 55 invaders should move one step. Com-
puting and outputting 55 MoveW ndow commands unfortunately takes much more than 30ms, which
means that the MoveW ndow commands for the gun and the torpedo will be output too late, resulting
in avery jerky motion. This problem can be solved in at least two different ways: manually, by not
moving all 55 invaders at the same time and thus not blocking output from other fudgets for longer
than 30ms; automatically (from the point of view of the application programmer), by introducing par-
allel evaluation and some kind of fair, indeterministic merge of the output from different fudgets. The
latter solution is of course the more general one, and we hope to improve the Fudget system in this
direction.

-,

RAF

—
)
0
>
T1
—

2.3 Programming with concurrent processes in Haskell

Above, we outlined a program structure where each moving object on the screen is represented as a
process (a Fudget). Each process controls awindow on the screen. It is of course possibleto generalise
this and use processes for purposes other than controlling user interface elements.

Processes in the Fudget library are called stream processors and are represented by the type
SP a b, wherea isthe type of input messages and b is the type of output messages. Stream proces-
sors are programmed in a continuation style using the following three basic constructors:

nullSP :: SP ab -- does not hing
putSP :: [b] - SPab —-=SPab -- wites to the output stream
getSP :: (a—=SP ab) - SPab -- reads fromthe input stream

The behaviour of a single Fudget is usually implemented as one sequential program by using these
operators. Then there are combinators for parallel and serial composition of stream processors, on
which the corresponding Fudget combinators are based.

serCompSP :: SPab — SP c

a SPchb
compSunP :: SPab — SPc d

— SP (a+c) (b+d)

Input to aparallel composition, spl ‘ conpSunSP* sp2,isdelivered to oneof spl and sp2. Some-
times it is more natural to broadcast the input to all processes in a parallel composition. Recall from
section 2.2.1 that we used a separate stream processor shout SP for this purpose. Some overhead can
be avoided by using a tailor made combinator for paralel composition with broadcast instead. We
therefore introduce par SP:

parSP :: SPab —-SPab—-=SPab

This also makes it easy to write stream processors that dynamically split into two or more parallel
processes. One of the processesin aparallel composition can terminate without leaving any overhead
behind.

nul | SP ‘ parSP* sp == sp ‘parSP* null SP == sp
We can also introduce a sequential composition operator:
seqSP :: SPab - SPab —-=SPab

spl ‘ seqSP* sp2 behaveslikespl until spl becomesnul | SP, and then behaveslikesp2 (without
any overhead).

These new operators provide a more flexible way to program the behaviour of single fudgets. For
example they can be used in the Space Invaders program to keep the structure with one process per
moving object although all drawing is done in one window.

However, the stream processor idea presented in this section, although designed in the context of
the Fudget system, is independent of the Fudget system and can surely be useful when solving other
programming problems which can be decomposed as a number of concurrent processes.

3 Multi-User Games

3.1 Input/Output in Haskell

The Haskell Report [6] describesinput/output in Haskell in terms of streams. Today, monadic I/O has
become increasingly popular [7], but the original presentation with the data types Request and
Response fits better with the stream processor model used in Fudgets. Therefore, the necessary
extensions will be made in the stream-1/0O mode!.

DRAFT

3.1.1 Dialogue, Response and Request

A Haskell program hasthe type Di al ogue, where

type Di al ogue = [Response]

-> [Request]

DRAFT

From the view of the operating system, the program is a stream processor that emits requests, and is
to be fed with the responses corresponding to these requests. The datatypesRequest and Response

are:

data Request =
-- file systemrequests:

ReadFile String
WiteFile String String
AppendFile String String
DeleteFile String
StatusFile String
channel system requests:
ReadChan String
AppendChan String String
Stat usChan String

envi ronment requests:
Echo Bool

CGet Args

CetEnv String

SetEnv String String

dat a Response =

Success

Str String
StrList [String]
Bn Bin

Failure | CError

The Request datatype has requests regarding the file system, channel system, and the environment.
In client/server applications, the communication between programsis carried out on channels. Unfor-
tunately, the channel system as defined in Haskell istoo weak for our purposes. There is only afixed
set of channels, namely st di n, st dout , st der r, and st decho. We need the possibility to dynam-
ically create new channels to clients via Unix sockets. Therefore, we suggest the additional requests
and responses

data Request =

' bpenLSocket LSocket Addr ess
OpenSocket Socket Addr ess

Cl oseLSocket LSocket
Cl oseSocket Socket
Accept Socket LSocket
ReadSocket Socket

W iteSocket Socket String

dat a Response =

. Cot LSocket LSocket

CGot Socket Socket

type LSocket Address = String
type Socket Address = String

dat a LSocket
dat a Socket

expect ed response:
Got LSocket

Got Socket

success

Success

Got Socket

Str

Success

Therequestsare similar to the existing channel system requests, but instead of using stringsfor encod-
ing channels, we use two primitive handle types, LSocket and Socket . LSocket corresponds to
Unix sockets that are used to accept connections (Listener sockets), and Socket isachannel which
can be read from or written to (corresponds to a connected or accepted Unix socket).

DRAFT DRAFT

The requests Accept Socket and ReadSocket (and also ReadChannel) turn out to be rather
useless in a setting where we may expect input from several sources, without knowing which of them
will come first. Therefore, we need a mechanism for merging input from many channels non-deter-
ministically. In Appendix D of the Haskell report, optional requests and responses are specified for
this purpose, namely ReadChannel s and Tag:

dat a Request
dat a Response

| ReadChannels [String]
| Tag [(String, Char)]

The ReadChannel s request takes alist of channel names (strings) as argument, and the response is
Tag with a merged and tagged list of characters from the channels. The channel names are used as
tags.

To handle new connections and incoming data on sockets, we add the requests

dat a Request =
- expected response:
| Accept Sockets [LSocket] -- Success
| ReadSockets [Socket] -- Success

Since the set of channels that a program wants to watch may vary, it will typically request Accept -
Socket s and ReadSocket s repeatedly. However, we only want asingle list of tagged channel data
to take care of. Actualy, we only want one single list for all asynchronous input to the program,
including channel data, events from the X-server, and timer alarms. Thisis the reason why Accept -
Socket s and ReadSocket s do not return tagged lists, as ReadChannels did. To get hold of the
asynchronous input list, we add

data Request = ... | CetAsyncl nput
data Response = ... | GotAsynclnput [Asynclnput]

data Asyncl nput =
Al Socket Accept ed LSocket Socket
| Al Socket Read Socket String
| Al'TimerA arm Ti mer
| Al XEvent XEvent

If alistener socket | s isincluded in an Accept Socket s request, and someone connectsto | s, the
value Al Socket Accepted | s s will be appended to the asynchronous input list by the run-time
system. Here, s isasocket which will be used for communication to the new connection. Then, if the
program emits ReadSockets [s], input on the connection will result in values like
Al Socket Read s dat a, wheredat a are strings received.

3.2 Example: Chat

In this section, we will present a small sample application using the socket facilities. It is called Chat,
and allows many people to connect to a server and send messages to each other. Any message that a
user enters on hig’her client, will be broadcast to all clients currently connected. Clients may connect

DRAFT DRAFT

and disconnect at any time. The other clients are notified when such events occur. In Figure 4, ascreen
dump shows atypical Chat session from one client’s point of view.
The Chat application consists of two Haskell programs, the server and the client.

3.2.1 The server program

The server employs the fudget socket Ser ver F, of type:

socket ServerF :: LSocket Address -> (Socket -> F a (SocketMsg b))
-> F (Int,a) (Int, ServerMsg b)

data Socket Msg a = Socket Msg a | Socket ECS
data ServerMsg a = ServerMsg a | ServerEOCS | Server New

The first argument is a listener socket address, which socket Ser ver F will open and listen to. The
second argument is a client handler fudget. Whenever a new connection is accepted, socket -
Ser ver F will launch a new client handler fudget with the new socket as argument. It will also emit
the message (i, Ser ver New), where i is an integer tag used for communication with the handler.
The handler can then emit messages, for example, Socket Msg " Hel | o". This will be tagged and
emitted by socket ServerF as (i, Server Msg "Hel | 0"). If the handler wants to terminate, it
emits Socket ECS. Thisresultsin the handler fudget being destroyed, and the message (i , Ser ver -
EOS) to be emitted.2 Messages can aso be sent to the handler, by tagging them withii .
In the Chat server, the handler will be very simple, namely thet r anscei ver F:

transceiverF :: Socket -> F String (SocketMsg String)

A transcei ver F will send any incoming messages to the socket, and emit strings from the socket

as messages.
Now, we can have alook at our server program:

mai n = fudl ogue (server (argKey "address" ""))
server addr = | oopF (broadcast [] >""=< socket ServerF addr transceiverF)
wher e
broadcast cl = getSP $ \(i,e) ->
let clbuti = filter (/=1i) cl
bc s ¢cs = putSP [(i,show i++" "++s) | i <- cs]

in case e of
Socket New -> bc "connected." clbuti $
broadcast (i:cl)
Socket Msg s -> bc "says" cl $ broadcast cl
Socket ECS -> bc "has quit." clbuti $
br oadcast cl buti

Ursikta, jag menade inte

2 connected.

2 says Hej hopp, ditt feta nylle!
3 connected.

1 says Vet hut!

2 has quit.

3 says Huh?

Figure 4: The Chat client.

2. Socket Msg should realy be declared as a subtype of Ser ver Msg, if thiswas possible in Haskell.

DRAFT DRAFT

Thefunction ser ver isillustrated in Figure 6. The stream processor br oadcast maintainsalist of
active client numbers, and distributes messages from the socket Ser ver F.

br oadcast

socket Ser ver H

Figure5: Theser ver fudget

3.2.2 The client program

The visible part of the client program (seen in Figure 4) consists of an input field on top, realized by
astringF, and afudget t er m nal F, that shows the incoming strings on subsequent lines. In the
middle, weuset r anscei ver F again, which handles the communication with the socket. The func-
tion pr ep of type Socket Msg String -> String extracts the strings from the socket messages.
Thefirst thing that cl i ent doesisto connect to the server by means of

openSocket F :: Socket Address -> (Socket -> Fab) ->Fab

which will emit the Haskell request OpenSocket and wait for the corresponding response
Got Socket .

mai n = fudl ogue (sinpleShell F "Chat" [] None (client (argKey "address" "")))

client addr = openSocketF addr $ \s ->
out F >==#< (5, LBel ow, transceiverF s >==< i nF)

i nF F String String
i NF = i nput DoneF >==< stringF "" None
outF :: F (SocketMsg String) Char
outF = termi nal F None defaultFont 20 50 >="< prep
wher e
prep (SocketMsg s) =s
prep Socket ECS = "The server died!"

The fudget structure of the client can be seen in Figure 6.

termnal F transcei verF i nput DoneF stringF

Figure6: Thecl i ent fudget

DRAFT DRAFT

3.3 Implementation of socket Server F

To see an example how listener sockets are used, let us have alook at the implementation of sock-
et Server F:

socket ServerF :: LSocket Address -> (Socket -> F a (SocketMsg b))
-> F (Int,a) (Int, ServerMsg b)

socket Server F addr handl er = | oopLeftF (idR ghtF (control >+< dynListF)
>=AN< concmapSP router)

wher e
router e =
let todyn = 1Inl . Inr
out = Inr
in
case e of

-- fromcontrol

Inl (Inl (i,f)) ->[todyn (i,DynCreate f), out (i, ServerNew)]
-- fromdynListF

Inl (Inr (i,m) ->

case m of
SocketMsg mi -> [out (i, ServerMsg m)]
Socket ECS -> [out (i,ServerECQS), todyn (i, DynDestroy)]

-- fromoutside
Inr (i,m ->[todyn (i,DynMsg m]

control = openLSocketF addr $ \Ilsocket ->
put Fu [Low (Dol O (Accept Sockets [Isocket]))] $
(accepter 0)
where accepter i = getFu $ \e -> case e of

Low (Asyncl nput (Al Socket Accepted _ socket)) ->
put Fu [Hi gh (i, handler socket)] $
accepter (i+1)

_ -> accepter i

The socket Ser ver F consists of adynLi st F in parallel with the fudget cont r ol . Thereis also
the stream processor r out er which will route messages from dynLi st F, cont r ol , and the out-
side to the right destination. See also Figure 7 for adiagram of socket Ser ver F.

Thecont r ol fudget starts by opening alistener socket by means of

router

dynLi stF

Figure 7. socket Ser ver F. InsdedynLi st F are handlers for the accepted sock-

DRAFT

-,

RAF

_|

openLSocketF :: LSocket Address -> (LSocket -> Fab) ->Fab

which emits the Haskell request OQpenLSocket and waits for the response Got LSocket . Then, a
Accept Socket s request isemitted. Thisrequest isnot sent directly to the run time system, because
there might be anumber of fudgetsin the program that want to accept sockets asynchronously. There-
fore, f udl ogue (which turns the top-level fudget into a Di al ogue function) maintains a table
whichistheunion of al listener sockets of the Accept Socket s requeststhat the different subfudg-
ets have emitted, together with the paths of the subfudgets. fudl ogue will emit an
Accept Socket s request with al listener sockets from this table. When the asynchronous input
value Al Socket Accepted | s sisreceived, | s will beused tolook up the path to the subfudget
that wants the input.

But we do not have to bother about anything of this machinery when welook at cont r ol . It can
perform its tasks without any knowledge about other fudgets in the program. After emitting the
Accept Socket s request, it will enter theaccept er loop, which waits for asynchronousinput of
form Al Socket Accept ed. When anew socket is accepted cont r ol applieshandl| er toitand
spitsit out as a high level message, together with a fresh integer identifier. Ther out er will direct
this message to the dynLi st F fudget, which will start the new handler fudget.3 rout er will also
direct messages from the outside to the corresponding handler, and it will also destroy handlers when
they emit Socket ECS.

3.4 Implementation of t r anscei ver F

t ranscei ver F consists of atransmitter and areceiver:

transmtterF :: Socket -> F String a
transmitterF s =
loop (\l -> getFu $ \e -> case e of
Hi gh str -> putFu [Low (Dol O (WiteSocket s (str++"\n")))] |
_->1)

receiverF :: Socket -> F a (SocketMsg String)
receiverF s = stripSum >"=< idLeftF (SocketMsg >"=<
absF (linesSP ‘ser ConpSP* concSP))
>==< read
wher e
read = putFu [Low (Dol O (ReadSockets [s]))] $
loop (\I ->
getFu $ \e ->

case e of
Low (Asyncl nput (Al SocketRead _ str)) ->
if str == "" then putF [H gh (Inl SocketECS)] |
el se putF [High (Inr str)] |
_->1)

transceiverF :: Socket -> F String (SocketMsg String)
transceiverF s = receiverF s >==< transnitterF s

Thereis no guaranty that a string sent to a socket will be received as one message in the other end. It
might be received in smaller pieces. Therefore, the transmitter will append aline break as a separator
to the string input as high level messages and write them to the socket. Similarly, the receiver will
collect characters from the socket until aline break is seen. Thisis done by means of

linesSP :: SP Char String

3.dynLi st Funderstandsthe messages(i , DynCr eat e f), which createsanew fudget, (i , DynMsg m), which
sends a message to an existing fudget, and (i , DynDest r oy) which destroys the fudget created with tagi .

-,

RAF

_|

DRAFE

_|

Therecelver starts by sending out the ReadSocket s request, which impliesthat the input to the socket
turns up asynchronoudly. If the empty string is received, this means that the end of the stream is seen,
and the receiver emits Socket ECS.

Finaly, we combine receiverF and transmtterF by seriad composition into
transcei verF,

4 Future work

» To implement the socket interface and the asynchronous I/O system and integrate it with the
Fudget system.

» Tointroduce parallel evauation in the Fudget system.

5 Conclusions

As the Space Invaders example shows, the Fudget library is useful not only for programs with tradi-
tional, static user interfaces, but also for more dynamic interfaces with many animated objects. As
with traditional fudget programs, the program structure with one fudget per animated object reflects
very closely what you see on screen.

Asthe server of the Chat application shows, the Fudget library isuseful not only for programswith
graphical user interfaces, but for parallel applicationsin general.

References

[1] M. Carlsson & T. Hallgren, Fudgets - A Graphical User Interface in a Lazy Functional
Language, in FPCA 93’ - Conference on Functional Programming Languages and Computer
Architecture, pages 321--330, June 1993.

[2] M. Carlsson & T. Hallgren, The Fudget distribution, Available by anonymous ftp from
ftp.chalmers.se:/pub/haskell/chalmers/Iml-0.999.2.Imlx.tar.Z.

[3] L.Edblom, D.P. Friedman, Issuesin Applicative Real-time Programming, Technical Report no.
129, Computer Science Department, Indiana University, Bloomington Indiana, USA, 1982.

[4] T. Hallgren, Introduction to Interactive Real-time Multi-user Games Programming in LML,
PMG memo 89, Dept. of Comp. Science, Chalmers, 1989

[5] J Gettys& R.W. Scheifler, Xlib - C Language X Interface, MIT X Consortium Standard, Aug
1991.

[6] Paul Hudak et a., Report on the Programming Language Haskell: A Non-Strict, Purely
Functional Language, March 1992. Version 1.2. Also in Sigplan Notices, May 1992.

[7] S.L. Peyton Jones and P. Wadler, Imperative Functional Programming, in Proceedings of the
1993 Conference on Principles of Programming Languages, 1993.

