
Lecture Notes
4 augusti 1995

2

3

Programming with Fudgets1

Thomas Hallgren & Magnus Carlsson
Computing Science, Chalmers University of Technology,

S-412 96 Göteborg, Sweden.
E-mail: hallgren, magnus@cs.chalmers.se

1 Introduction
In these notes we present the Fudget Library and the ideas underlying it. The Fudget Library
is primarily a toolkit for the construction of Graphical User Interfaces (GUIs) on a high
level of abstraction in the lazy functional language Haskell, but it also allows you to con-
struct programs that communicate across the Internet with other programs.

Apart from describing how to use the Fudget Library, we try to describe the underlying
ideas in such a way that the reader should be able to use them in his/her own favourite func-
tional language.

The design of the Fudget Library started with the desire to find a good abstraction of GUI
building blocks, i.e., an abstraction that makes use of the powerful abstraction mechanisms
found in functional languages (higher order functions, polymorphism, etc.) and thereby,
hopefully, is better than the abstractions you find in typical GUI toolkits for conventional,
imperative languages. We consider an abstraction to be better if it simplifies programming,
e.g., by making programs more concise and thereby easier to write, read and maintain.

An additional consideration is that in today’s programming language implementations,
there usually is a conflict between efficiency and high level of abstraction, so a good
abstraction is one that can have a reasonably efficient implementation. If we can not have
that, we have lost contact with the real world. To summarise:

It is important not to lose contact with the real world, but this does not imply
that one must pass around the world explicitly.

The main abstraction used in the Fudget Library is the fudget. A fudget is a process which
can, via message passing, communicate with other concurrently running fudgets and with
the outside world. A fudget is a first class value of a type that reflects what types of mes-
sages the fudget sends and receives. This makes communication type safe. A fudget may
have an internal state, which is not visible in the type of the fudget. Fudget programming in
this respect resembles object oriented programming, where state information is distributed
and hidden within objects rather than centralized and exposed to arbitrary use or misuse.
But the encapsulation of state information also makes fudgets easy to compose, like func-
tions in functional languages.

Fudgets are implemented on top of stream processors, a simpler kind of process that
communicates with its surroundings through an input stream and an output stream of val-
ues.

1. From LNCS 925, First International Spring School on Advanced Functional Programming Techniques,
Båstad, Sweden, May 1995. Also at ftp://ftp.cs.chalmers.se/pub/cs-reports/papers/fudgets-springschool.ps.Z

4

1.1 Overview

We start with a quick recapitulation of some common I/O methods in functional languages
(Section 2). In these methods you specify a single-threaded sequence of I/O operations, so
the functional program in effect takes the form of a sequential imperative program on the
top level.

For reactive programming (Section 2.3), a more attractive program structure is a set of
concurrent processes, so we introduce stream processors (Section 3). A stream processor is
a process that consumes an input stream and produces an output stream. Combinators for
serial composition, parallel composition and loops allow programs to be structured as a net-
work of stream processors. Stream processors can be programmed purely functionally.

In addition to communicating with neighbours in a network, in a reactive programming
context many stream processors will also need to communicate with external entities
through the I/O system. We therefore introduce fudgets (Section 4), stream processors
which have access to the I/O system in addition to streams for communication with other
stream processors or fudgets. Reactive programs can be built as networks of fudgets.

The main use of fudgets is the construction of Graphical User Interfaces (GUIs). The
building blocks in GUIs (buttons, menus, sliders, etc.) are reminiscent of physical devices
in that they are self-contained units that operate more or less independently and in parallel.
The reactive programming model is thus very natural for GUIs. In the Fudget Library, GUI
elements are represented as fudgets.2 Complex user interfaces are built by combining fud-
gets representing GUI elements and other stream processors (Section 5).

There are two aspects in the design of GUI programs with fudgets: the computational
aspect and the visual aspect. The fudget system allows you to worry about them one at a
time. Thanks to the automatic layout system you can concentrate on the computational
aspect during the initial development stage. You can later add layout information to the pro-
gram, if the default layout isn’t adequate (Section 5.5).

When designing software libraries, e.g., GUI toolkits, there is often a tension between
generality and simplicity. Generality is often achieved by using many parameters. Having
to give values for a lot of parameters clearly makes library components more difficult to use.
In some programming languages there is a mechanism that allows a function parameter to
be omitted if the function definition specifies a default value for it. This makes functions
easy to use and customizable at the same time. The language that we use (Haskell) does not
have such a mechanism, but the scheme used in the fudget library comes pretty close. It uses
Haskell’s type class system to avoid proliferation of names (Section 5.6).

The second use of fudgets that we cover is the construction of network based cli-
ent/server programs. A typical server must be able to handle connections from several
simultaneous clients, so it is useful to structure a server with a handler process (i.e., a han-
dler fudget) for each client. Programs written in Haskell with the fudget library can com-
municate with programs written in other languages, but for the case where all programs
involved are written in Haskell we show a simple way to make sure that the communication
is type safe (Section 6).

2. The word fudget comes from functional widget, where widget comes from window gadget.

5

1.2 A First Example

As a preview of Graphical User Interface construction with the Fudget Library, Figure 1
shows a small program: a simple counter. The user interface contains a button and a numeric
display. When you press the button the number in the display is incremented.

The core of the program is the definition of counterF, where two fudgets implementing
the two user interface elements and a stream processor implementing the click counter are
connected using the serial composition operator >==<. Data flow from right to left. The but-
ton outputs clicks are fed to the counter. For every click, the counter increments its internal
integer state and outputs the new value to the display.

Readers mainly interested in GUI construction may want to skip directly to Section 5
and then go back to the earlier sections to learn more about what stream processors and fud-
gets really are.

1.3 Notation

All programs in these lecture notes are written in the pure functional language Haskell [7].
We deviate from Haskell syntax on two points:

• We write instead of ->.

• We write a+b instead of Either a b, the standard sum type in Haskell, defined as

data Either a b = Left a | Right b

This proviso aside, the presented examples should compile and run "as is".
To avoid nested bracketing in large expressions we will often use the infix operator $

defined as
f $ x = f x

$ is right associative and has low precedence, so you can write, e.g.,
f $ g $ h $ \x x+1

Fig. 1. The Counter Example

module Main(main) where -- A simple counter

import Fudgets

main :: Dialogue
main = fudlogue (shellF "Counter" counterF)

counterF = intDispF >==< absF countSP >==< incButtonF

incButtonF :: F Click Click
incButtonF = buttonF "Increment"

countSP :: SP Click Int
countSP = putSP startstate $
 mapAccumlSP inc startstate
where inc n Click = (n+1,n+1)

startstate = 0

6

instead of
f (g (h (\x x+1)))

Note that in Haskell, functions can be used as infix operators by placing them in backquotes.
For example, parSP (parallel composition of stream processors) is a function taking two
arguments. We will write

sp1 ‘parSP‘ sp2

instead of
parSP sp1 sp2

2 Input/Output in Functional Languages
In this chapter we give a brief introduction to Input/Output in functional languages. Several
models of I/O for lazy functional languages have been developed during the years. Good
surveys can be found in [3] and [6]. Here, we present Landin’s stream model of I/O and the
synchronized streams used in Haskell. We present continuation based I/O and monadic I/O
as abstractions from streams and note that they are sequential in nature. We note that for
some purposes it is more natural to use a set of concurrent processes than a single-threaded
sequence of I/O operations to describe the I/O behaviour of a program.

2.1 Referential Transparency and I/O?

In traditional imperative languages Input/Output operations are usually accomplished by
calling some predefined procedures that perform the desired operation as a side effect. In
functional languages, however, side effects are usually not wanted, since they break refer-
ential transparency. As an example, suppose there was a function

write :: String String

which would take a string and return it unchanged and, as a side effect, print the string on
the terminal. Then the program

let s = write "Ha"
in (s,s)

would probably not produce the same result as
(write "Ha", write "Ha")

This means that many nice algebraic laws, such as
2*a = a+a
a+b = b+a

no longer hold for arbitrary subexpressions a and b.
Still, this is how I/O works in most strict functional languages like LISP and

Standard ML. In a lazy language you don’t really want to think about when or if functions
are actually called, so specifying I/O in this way is not very useful.

7

2.2 Programming Styles for Sequential I/O

In order to maintain referential transparency, I/O in functional languages is not thought of
as something that happens as a side effect of calling certain functions. Instead the program
is thought of as a pure function from some input to some output.

2.2.1 Landin’s Stream Based I/O model

Suppose the only I/O operations we want in a program are reading from the computer key-
board and writing to the computer screen (Figure 2). Then the program can be a function

from a list of characters (the characters read from the keyboard) to a list of characters (the
ones printed on the screen).

As an example, a program to read a sequence of numbers and print their sum could look
something like

show . sum . map read . words

where words turns a string into a list of words, and show and read are overloaded functions
that convert to and from string representations of data, respectively.

At first it may seem that thinking of programs as functions from input to output only
allows you to write programs with batch behaviour: first read all input, then perform the
computation and finally print the result. But thanks to laziness, I/O and computations can
be interleaved. Input is not demanded until it is needed in the computation of the next out-
put. As an example, a program like

map toUpper

(where toUpper converts lower case letters to upper case letters) reads, processes and out-
puts one character at a time.

The above described I/O method is Landin’s streams model of I/O [8].

Program

CharactersCharacters

Fig. 2. Landin’s Stream I/O model.

8

2.2.2 I/O Based on Synchronized Streams

I/O in Haskell is also based on streams, but to allow more general I/O operations the ele-
ments in the streams are not just characters (Figure 3). The output stream contains requests

to the operating system. The input list contains responses to the requests. A program in Has-
kell is a function of the type

type Dialogue = [Response] [Request]

where
data Request = ReadFile String

| WriteFile String String
| DeleteFile String
| ReadChan String
| AppendChan String String
| ...

data Response = Success
| Str String
| Failure IOError
| ...

data IOError = ...

The requests and response streams are synchronized: for each request in the output stream
there is a corresponding response in the input stream. A particular request always generates
the same kind of response, if the operation succeeds. For example, the response to
WriteFile filename newContents is Success and the response to ReadFile filename is
Str contents, where contents is the contents of the file. If an operation fails, the response is
Failure ioerror.

For example, to read some lines of text from a file called "forward" and write them in
reverse order to a file called "backward" one could write:

main responses =
ReadFile "forward" :
(case responses of

Str contents : responses'
let revcontents = (unlines.reverse.lines) contents
in WriteFile "backward" revcontents :
 [])

This program doesn’t do any error handling.

Haskell program

Operating system

Request Response

Fig. 3. The I/O model in Haskell.

9

2.2.3 I/O in Continuation Passing Style

Dealing with the request and response lists explicitly is a bit clumsy. It is easy to make mis-
takes, like trying to use a response before the corresponding request has been output, or for-
getting to inspect and remove a response from the response list.

Fortunately, it is easy to abstract away from the request and response lists. By using the
functions doRequest and done shown in Figure 4, we make sure that we do not use the
wrong response at the wrong time.

The example program can now be written like this:
main2 =
doRequest (ReadFile "forward") $ \ (Str contents)
let revcontents = (unlines.reverse.lines) contents
in doRequest (WriteFile "backward" revcontents) $ \ Success

done

This programming style is called continuation passing style (CPS). The function
doRequest takes a request to perform and a function that defines how the program should
continue after that.

Using doRequest you can define even more convenient functions for various I/O oper-
ations. Here is a function for reading a file with error handling:

readFile :: String
(IOError Dialogue)
(String Dialogue)
Dialogue

readFile filename failcont continuation =
doRequest (ReadFile filename) $ \ response
case response of
Str contents continuation contents
Failure error failcont error

In Haskell there are predefined functions like readFile for most I/O requests.

2.2.4 I/O in Monadic Style

An abstraction that has proved to be useful for many purposes is the monad [14]. An I/O
system based on monads is proposed for version 1.3 of Haskell [4].

doRequest :: Request (Response Dialogue) Dialogue
doRequest request continuation responses =
request :
case responses of
response : responses continuation response responses

done:: Dialogue
done[] = []

Fig. 4. Abstracting away from the request and response lists.

10

Monadic style I/O operations can be implemented on top of synchronized streams in
much the same way as CPS style I/O. A simple I/O monad (without error handling) is shown
in Figure 5. In monadic style, the above example would look like this:

main = doIO mainIO

mainIO =
readFileIO "forward" `bindIO` \ contents
let revcontents = (unlines.reverse.lines) contents
in writeFileIO "backward" revcontents)

2.3 Concurrency and GUI Programming

We have seen above how you can use streams, continuations, or monads, to specify a
sequence of I/O operations that the program should perform.

For many purposes, a single sequence of I/O operations is an adequate description of the
I/O behaviour of a program. But there are other cases. For programs that interact with sev-
eral external entities (teletype terminals, other computers on a network, elements in a graph-
ical user interface, robotic sensors/motors, etc.) there is usually no predetermined order in
which I/O operations will occur. The program must be prepared to react to input from any
of the external entities. In this situation it can be more attractive to organize the program as
a set of concurrent processes. You define one "handler" process per external entity, to deal
with the low level aspects of the interaction with the entity. You then add processes that
communicate with the handlers on a higher level. Figure 6 shows a simple program with a

-- The I/O monad type
type IO a = (a Dialogue) Dialogue

doIO :: IO () Dialogue
doIO io = io (\() done)

returnIO :: a IO a
returnIO x = \ cont cont x

bindIO :: IO a (a IO b) IO b
io1 `bindIO` xio2 =
\ cont io1 (\x xio2 x cont)

-- requestIO: performs one request and returns the response
requestIO :: Request IO Response
requestIO req =
\ cont resps

req : case resps of
resp1:resps' cont resp1 resps'

-- Convenient functions for reading and writing files
readFileIO :: String IO String
readFileIO filename =
requestIO (ReadFile filename) `bindIO` \(Str contents)
returnIO contents

writeFileIO :: String String IO ()
writeFileIO filename contents = ...

Fig. 5. Monadic I/O (without error handling) on top of synchronized streams.

11

graphical user interface structured in this way. The program just shows a button and a
numeric display. When you press the button, the number in the display is incremented. The
program contains one process per user interface element. They handle the graphical appear-
ance and behaviour of the respective elements. The program also contains a process that
does some "useful" work, i.e. counting the button clicks.

To support the above outlined reactive programming model, you need to introduce some
kind of process concept in the language. The next chapter describes one way of doing this.

3 Stream Processors
In this chapter we introduce stream processors; a simple but still practical incarnation of
the process concept, which can be implemented within a purely functional language. We
then define a set of combinators for building networks of stream processors. The stream
processors will be first class values, which can be passed around as messages.

First, a stream is a potentially infinite sequence of values occurring at different points in
time. A stream can be seen as a communication channel, transferring information from one
place (a producer) to another (a consumer).

A stream processor is a process which consumes some input streams and produces some
output streams. A stream processor may have an internal state, i.e., output produced at a cer-
tain point in time can depend on all input consumed before that point in time.

Although stream processors may in general have many input and output streams, in the fol-
lowing we will only consider stream processors with a single input stream and a single out-
put stream (see Figure 7). This allows us to develop a small set of simple combinators with
which it is possible to build complex networks of stream processors. The restriction may

Fig. 6. A program with a graphical user interface, structured
according to the reactive programming model.

Display Button

Counter

Fig. 7. A general stream processor and a stream processor with a sin-
gle input stream and a single output stream.

12

seem severe, but the chosen set of combinators allows streams to be merged and split, so a
stream processor with many input/output stream can be represented as one with a single
input and output stream.

In the following sections, we will present operations used to define atomic stream proc-
essors together with a set of combinators for building networks of stream processors. We
define three basic compositions: serial composition, parallel composition and loops (circu-
lar connections). These are sufficient to describe any network of stream processors.3 We
will also briefly cover an operational semantics of stream processors, the implementation
of stream processors in a lazy functional language and some pragmatical aspects.

3.1 The Stream Processor Type

How should stream processors be represented in a lazy functional language? A first attempt
is to represent streams as lists,

type Stream a = [a]

and stream processors as list functions,
type SP input output = [input] [output] -- First attempt

With this definition, the type Dialogue in Haskell would be equal to
SP Response Request.

For various reasons, this is not how stream processors are represented in the Fudget
library. (We will come back this in Section 3.6.) The Fudget library provides an abstract
type for stream processors,

data SP input output

where input and output are the types of the elements in the input and output streams,
respectively (Figure 8).

The library also provides the function
runSP :: SP i o [i] [o]

which, when applied to a stream processor from responses to requests, gives us a
Dialogue.

3.2 Atomic Stream Processors in Continuation Style

The behaviour of an atomic stream processor is described by a sequential program. There
are three basic actions a stream processor can take:

• it can put a value in its output stream,

• it can get a value from its input stream,

3. We leave the proof as an exercise for the interested reader.

Fig. 8. A stream processor of type SP i o.

io

13

• it can terminate.

The Fudget library provides the following continuation style operations for these actions:
putSP :: output SP input output SP input output

getSP :: (input SP input output) SP input output

nullSP :: SP input output

As an example of how to use these in recursive definitions of stream processors, consider
the identity stream processor4

-- The identity stream processor
idSP :: SP a a
idSP = getSP $ \ x putSP x idSP

and the following stream processor equivalents of the well known list functions:
mapSP :: (a b) SP a b
mapSP f = getSP $ \ x putSP (f x) $ mapSP f

filterSP :: (a Bool) SP a a
filterSP p = getSP $ \ x if p x

 then putSP x $ filterSP p
 else filterSP p

3.3 Stream Processors with Encapsulated State

A stream processor can maintain an internal state. In practice, this can be accomplished by
using an accumulating argument in a recursively defined stream processor. As a concrete
example, consider sumSP, a stream processor that computes the accumulated sum of its
input stream:

sumSP :: Int SP Int Int
sumSP acc = getSP $ \ n putSP (acc+n) $ sumSP (acc+n)

In this case, the internal state happens to be a value of the type Int, which also happens to
be the type of the input and output streams. In general, the type of the state need not be vis-
ible in the type of the stream processor.

The Fudget library provides two functions for construction of stream processors with
internal state:

mapAccumlSP :: (s i (s, o)) s SP i o

concatMapAccumlSP :: (s i (s, [o])) s SP i o

Using mapAccumlSP we can define sumSP without recursion like this:
sumSP :: Int SP Int Int
sumSP = mapAccumlSP (\ acc n (acc+n,acc+n))

Representing state information as one or more accumulating arguments is useful when the
behaviour of the stream processor is uniform with respect to the state. If a stream processor
reacts differently to input depending on its current state, it can be more convenient to use a
set of mutually recursive stream processors that define a finite state automaton. As a simple
example, consider a stream processor that outputs every other element in its input stream:

passOnSP = getSP $ \ x putSP x $ skipSP
skipSP = getSP $ \ x passOnSP

4. The infix operator $ is just function application. More information about notation is in the introduction.

14

It has two states: the "pass on" state where the next input is passed on to the output, and the
"skip" state where the next input is skipped.

3.4 Plumbing: Composing Stream Processors

3.4.1 Serial Composition

The simplest combinator is the one for serial composition,
serCompSP :: SP b c SP a b SP a c

It connects the output stream of one stream processor to the input of another, as illustrated
in Figure 9. Streams flow from right to left, just like values in function compositions, f1 . f2.

3.4.2 Parallel Compositions

The combinator for parallel composition in Figure 10 is really the key combinator for

stream processors. It allows us to write reactive programs composed by more or less inde-
pendent, concurrent processes. The idea with parallel composition is that two stream proc-
essors should be able to run in parallel, independently of one another. The output streams
should be merged in chronological order. We won’t be able to achieve exactly this in a func-
tional language, but for stream processors whose behaviour is dominated by I/O operations
rather than internal computations we will get close enough for practical purposes.

There is however more than one possible definition of parallel composition. How should
values in the input stream be distributed to the two stream processors? How should the out-
put streams be merged? We define two versions:

• Let sp1 ‘parSP‘ sp2 denote parallel composition where input values are propagated
to both sp1 and sp2 and output is merged in chronological order. We will call this ver-
sion untagged or broadcasting parallel composition.

sp1 ‘serCompSP‘ sp2

sp2sp1

Fig. 9. Serial composition of stream processors.

Fig. 10. Parallel composition of stream processors.

sp1 ‘parSP‘ sp2

sp1

sp2

15

• Let sp1 ‘compSP‘ sp2 denote parallel composition where the values of the input and
output streams are elements of a disjoint union. Values in the input stream tagged
Left or Right are untagged and sent to either sp1 or sp2, respectively. Likewise, the
tag of a value in the output stream indicates from which component it came. We will
call this version tagged parallel composition.

The types of the two combinators are:
parSP :: SP i o SP i o SP i o

compSP :: SP i1 o1 SP i2 o2 SP (i1+i2) (o1+o2)

where we use a+b as an abbreviation for Either a b, defined as usual in Haskell:
data Either a b = Left a | Right b

Note that only one of these need to be considered as primitive. The other one can be defined
in terms of the primitive one with the help of serial composition and some simple stream
processors like mapSP and filterSP.

Exercise 1. Define parSP in terms of compSP, and vice versa!

3.4.3 Circular Connections

Serial composition creates a unidirectional communication channel between two stream
processors. Parallel composition splits and merges streams but does not allow the composed
stream processors to exchange information. So, with these two operators we can not obtain
bidirectional communication between stream processors. Therefore, we introduce combi-
nators that construct loops.

The simplest possible loop combinator just connects the output of a stream processor to
its input, as illustrated in Figure 11. As with parallel composition, we define two versions
of the loop combinator:

• loopSP sp – output from sp is both looped and propagated to the output.

• loopLeftSP sp – output from sp is required to be in a disjoint union. Values tagged
Left are looped and values tagged Right are output. At the input, values from the
loop are tagged Left and values from the outside will be tagged Right.

The types of these combinators are:
loopSP :: SP a a SP a a

loopLeftSP :: SP (loop+input) (loop+output) SP input output

Each of the two loop combinators can be defined in terms of the other, so only one of them
need to be considered primitive.

Using one of the loop combinators, one can now obtain bidirectional communication
between two stream processors as shown in Figure 12.

Fig. 11. A simple loop constructor.

loopSP sp

sp

16

As another example, using loops and parallel composition we can create fully connected
networks of stream processors. With an expression like

loopSP (sp1 ‘parSP‘ sp2 ‘parSP‘ ... ‘parSP‘ spn)

we get a broadcasting network. By replacing ‘parSP‘ with ‘compSP‘ and some tag-
ging/untagging, we get a network with point-to-point communication.

3.5 An Operational Semantics for Stream Processors

Here we give an operational semantics for stream processors in the form of a set of rules for
rewriting arbitrary stream processor expressions to canonical form. A stream processor is
in canonical form if it is built using only the atomic stream processor constructors nullSP,
putSP, and getSP.

• Serial composition:

nullSP ‘serCompSP‘ sp nullSP
(e ‘putSP‘ sp1) ‘serCompSP‘ sp2 e ‘putSP‘ (sp1 ‘serCompSP‘ sp2)
getSP xsp1 ‘serCompSP‘ nullSP nullSP

getSP xsp1 ‘serCompSP‘ (e ‘putSP‘ sp2) xsp1 e ‘serCompSP‘ sp2
getSP xsp1 ‘serCompSP‘ getSP ysp2

getSP (\y getSP xsp1 ‘serCompSP‘ ysp2 y)

• Broadcasting parallel composition:

‘parSP‘ is meant to be commutative, so we give only the rules for one of two sym-
metric cases:
nullSP ‘parSP‘ sp sp
(e ‘putSP‘ sp1) ‘parSP‘ sp2 e ‘putSP‘ (sp1 ‘parSP‘ sp2)
(getSP xsp1) ‘parSP‘ (getSP xsp2) getSP (\x xsp1 x ‘parSP‘ xsp2 x)

• Tagged parallel composition

nullSP ‘compSP‘ nullSP nullSP
(e ‘putSP‘ sp1) ‘compSP‘ sp2 Left e ‘putSP‘ (sp1 ‘compSP‘ sp2)
sp1 ‘compSP‘ (e ‘putSP‘ sp2) Right e ‘putSP‘ (sp1 ‘compSP‘ sp2)

getSP xsp1 ‘compSP‘ getSP ysp2

getSP $ \z case z of
Left x xsp1 x ‘compSP‘ getSP ysp2
Right y getSP xsp1 ‘compSP‘ ysp2 y

Fig. 12. Using a loop to obtain bidirectional communication.

loopSP (sp1 ‘serCompSP‘ sp2)

sp2sp1

17

The rules for serial compositions are deterministic, but the rules for parallel compositions
are not. For example, the expression

(a ‘putSP‘ nullSP) ‘parSP‘ (b ‘putSP‘ nullSP)

can be reduced to two canonical forms:
a ‘putSP‘ b ‘putSP‘ nullSP

b ‘putSP‘ a ‘putSP‘ nullSP.

This leaves room for both sequential and parallel implementations.

3.6 Implementation of Stream Processors

Using list functions to represent stream processors, SP i o = [i] [o], in a sequential
language causes some problems. Parallel composition can not be expressed. A reasonable
definition would have to look something like this:

(sp1 ‘parSP‘ sp2) xs = merge (sp1 xs) (sp2 xs)
 where merge ys zs = ???

But what should we replace ??? with so that the first output from the composition is the first
output to become available from one of the components? For example, if sp1 = but sp2

= 1: , then (sp1 ‘parSP‘ sp2) should be 1: . But so should (sp2 ‘parSP‘ sp1) , so
??? must be an expression that chooses the one of ys and zs which happens to be non-bot-
tom. This can clearly not be done in an ordinary purely functional language. We would need
a bottom-avoiding operator, like amb, McCarthy’s ambivalent operator [9].

So, instead of using lists, we use a data type with constructors corresponding to the
actions a stream processor can take (as described in Section 3.2):

data SP i o
= NullSP
| PutSP o (SP i o)
| GetSP (i SP i o)

We call this the continuation-based representation of stream processors. It differs from the
list-based representation in that it makes the consumption of the input stream observable,
i.e., a stream processor must evaluate to GetSP sp each time it wants to read a value from
the input stream. It thus comes closer to the operational semantics. It also allows you to
make a useful implementation of parallel composition.

With the continuation-based representation, serial composition can be implemented like
in Figure 13.

An implementation of broadcasting parallel composition is shown in Figure 14. The
implementation of tagged parallel composition is analogous. Note that we arbitrarily choose
to inspect the left argument sp1 first. This means that even if sp2 could compute and output
a value much faster than sp1, it will not get the chance to do so. But at least, we get the prop-
erty that if a composition can produce more output without consuming more input, it will
do so.
Exercise 2. Implement runSP :: SP a b [a] [b].
Exercise 3. Implement a combinator startupSP :: i SP i o SP i o that pre-

pends an element to the input stream of a stream processor. Make the imple-
mentation independent of the stream processor representation.

Exercise 4. Implement loopSP and loopLeftSP.

18

3.7 More plumbing

3.7.1 Stream processors and Software Re-use

For serious applications programming, it is useful to have libraries of re-usable software
components. But in many cases when you find a useful component in a library, you still
need to modify it slightly to be able to use it.

A variation of the loop combinators that has turned out to be very useful when re-using
stream processors is loopThroughRightSP, illustrated in Figure 15. The major difference
from loopSP and loopLeftSP is that the loop does not go straight back from the output to
the input of a single stream processor. Instead it goes through another stream processor.

A typical situation where loopThroughRightSP is useful is when you have a stream
processor, spold, that does almost what you want, but you need it to handle some new kind
of messages. You can then define a new stream processor spnew which can pass on old mes-
sages directly to spold and handle the new messages in the appropriate way, on its own or
by translating them to messages that spold understands. (See also section 3.1.1 in [11].)

In the composition loopThroughRightSP sp1 sp2 all communication with the outside
world is handled by sp1. sp2 is connected only to sp1 and is in this sense encapsulated inside
sp1.

Fig. 13. Implementation of serial composition with the continuation-based represen-
tation.

sp1 ‘serCompSP‘ sp2 =
 case sp1 of
 PutSP y sp1' PutSP y (sp1' ‘serCompSP‘ sp2)
 GetSP xsp1 xsp1 ‘serCompSP1‘ sp2
 NullSP NullSP

xsp1 ‘serCompSP1‘ sp2 =
 case sp2 of
 PutSP y sp2' xsp1 y ‘serCompSP‘ sp2'
 GetSP xsp2 GetSP (\ x xsp1 ‘serCompSP1‘ xsp2 x)
 NullSP NullSP

Fig. 14. Implementation of parallel composition with continuation-based repre-
sentation.

sp1 ‘parSP‘ sp2 =
case sp1 of
PutSP y sp1' PutSP y (sp1' ‘parSP‘ sp2)
GetSP xsp1 xsp1 ‘parSP1‘ sp2
NullSP sp2

xsp1 ‘parSP1‘ sp2 =
case sp2 of
PutSP y sp2' PutSP y (xsp1 ‘parSP1‘ sp2')
GetSP xsp2 GetSP (\ x xsp1 x ‘parSP‘ xsp2 x)
NullSP GetSP xsp1

19

The type of loopThroughRightSP is:
loopThroughRightSP :: SP (o2+i1) (i2+o1) SP i2 o2 SP i1 o1

Exercise 5. Implement loopThroughRightSP using loopLeftSP together with parallel
and serial compositions as appropriate.

3.7.2 Handling Multiple Input and Output Streams

Although stream processors have only one input stream, it is easy to construct programs
where one stream processor receives input from two or more other stream processors. (The
case with several outputs is analogous.) For example, the expression

sp1 ‘serCompSP‘ (sp2 ‘compSP‘ sp3)

allows sp1 to receive input from both sp2 and sp3. For most practical purposes, sp1 can be
regarded as having two input streams, as illustrated in Figure 16. When you use getSP in

sp1 to read from the input streams, messages from sp2 and sp3 will appear tagged with Left
and Right, respectively. You can not directly read selectively from one of the two input
streams, but the Fudget library provides the combinator

waitForSP :: (i Maybe i’) (i’ SP i o) SP i o

Fig. 15. Encapsulation.

loopThroughRightSP spnew spold

spold

spnew

Fig. 16. Handling multiple input streams.

sp2

sp3

sp1

sp1 ‘serCompSP‘ (sp2 ‘compSP‘ sp3)

20

which you can use to wait for a selected input. Other input is queued and can be consumed
after the selected input has been received. Using waitForSP you can define combinators to
read from one of two input streams:

getLeftSP :: (i1 SP (i1+i2) o) SP (i1+i2) o
getLeftSP = waitForSP stripLeft

getRightSP :: (i2 SP (i1+i2) o) SP (i1+i2) o
getRightSP = waitForSP stripRight

where
stripLeft :: a+b Maybe a
stripLeft (Left x) = Just x
stripLeft (Right _) = Nothing

stripRight :: a+b Maybe b
stripRight (Left _) = Nothing
stripRight (Right y) = Just y

(All of these are provided by the Fudget library.)

Exercises

6. Implement waitForSP described above.
7. Implement serial composition using a tagged parallel composition and a loop.
8. Define a minimal set of primitive stream processor combinators. Define the remain-

ing combinators in terms of the minimal set and auxiliary atomic stream processors.

4 Fudgets
We have seen how stream processors can be used to structure a program as a set of concur-
rent processes.

As outlined in Section 2.3, reactive programs that communicate with several external
entities typically contain a handler process for each external entity. The handler processes
could be implemented as stream processors, but since they need to communicate both with
other stream processors and with the outside world we need a special arrangement to give
a stream processor convenient access to the I/O system. The special arrangement is called
a fudget, and was first presented in [1].

4.1 The Fudget Type

A fudget is a stream processor which has low level streams for communication with the
input/output system and high level streams for communication with other fudgets. Fudgets
can be composed with a set of combinators like the ones for plain stream processors pre-
sented above. A fudget combinator treats the high level streams like the corresponding
stream processor combinator, while the low level streams remain connected directly to the
I/O system.

The type of a fudget is
F hi ho

where hi and ho are the types of the high level input and output streams, respectively. In
order to make types more readable, the types of the low level streams are not parameters of

21

the fudget type. Instead, they are fixed to the request and response types used by the I/O
system.

Although fudgets have two input and two output streams, they can be represented as
stream processors with one input and one output stream. We will return to this in
Section 4.4.

On the top level of a fudget program, you use the function
fudlogue :: F a b Dialogue

to plug a fudget into the I/O system. fudlogue ignores the high level streams of the fudget,
so they can be of any type.

4.2 Fudget Plumbing

As mentioned above, there is a set of fudget combinators directly corresponding to the
stream processor combinators described in Section 3. Their names are obtained by replac-
ing the SP suffix with an F. There are also more convenient names for infix use:

serCompF, >==< :: F b c F a b F a c
compF, >+< :: F i1 o1 F i2 o2 F (i1+i2) (o1+o2)
parF, >*< :: F i o F i o F i o
listF :: (Eq t) => [(t, F i o)] F (t, i) (t, o)
loopF :: F a a F a a
loopLeftF :: F (loop+input) (loop+output) F input output
loopThroughRightF :: F (o2+i1) (i2+o1) F i2 o2 F i1 o1

There is one combinator we did not cover in the stream processor section, listF, but from
the type it should be clear that this is a variation of tagged parallel composition. The argu-
ment is a list of tagged fudgets. The elements in the input and output streams are paired with
a tag that says which fudget it is to or from.

High level messages

Low level requests &
responses

ho hi

Fig. 17. A fudget of type F hi ho

I/O system

22

Figure 18 illustrates serial and parallel composition of fudgets. The low level streams are

treated in the same way in both combinators, i.e., as in parallel stream processor composi-
tion, while the high level streams are treated as in the corresponding stream processor com-
binator. (The tagging of the low level streams is described in Section 4.4.)

4.3 Atomic Fudgets

Fudget programs are built by combining atomic fudgets into more complex ones, using the
combinators described above.

In addition to combining fudgets from the library, the application programmer will also
need a way to attach his own application specific code. This is done by plugging in abstract
fudgets.

4.3.1 Abstract Fudgets

An abstract fudget is a fudget that does not use its low level streams. It is simply a stream
processor connected to the high level streams of the fudget. The combinator

absF :: SP i o F i o

allows you to turn an arbitrary stream processor into an abstract fudget.

f1

f1 >*< f2

f2

f1 >==< f2

f1 f2

Fig. 18. Serial and parallel composition of fudgets.

absF sp

o i

sp

Fig. 19. Abstract Fudgets

23

Abstract fudgets are often used in serial compositions with other fudgets, i.e., composi-
tions of the form

absF sp >==< fud

fud >==< absF sp

are very common. The library provides two operators for these special cases:
(>^^=<) :: SP b c F a b F a c
sp >^^=< fud = absF sp >==< fud

(>=^^<) :: F b c SP a b F a c
fud >=^^< sp = fud >==< absF sp

Further, compositions of the form,
mapSP f >^^=< fud

fud >=^^< mapSP f

are also common, so the library provides:
(>^=<) :: (b c) F a b F a c
(>=^<) :: F b c (a b) F a c

The implementations of these operators can be very simple, but by making use of the rep-
resentation of fudgets and stream processors they can be made more efficient. This has been
done in the implementation of the Fudget library.

The next section will show some example uses of these combinators.

4.3.2 Fudgets for I/O from the Library

The Fudget system is implemented on top of the usual stream based I/O system in Haskell,
but there are extensions that make fudgets more interesting to use:

1. An interface to X Windows. There is a set of extra requests and corresponding
responses that allow you to make calls to the Xlib library. The GUI toolkit described
in Section 5 uses this extension.

2. An interface to Unix sockets. This allows fudget programs to communicate with
other programs, possibly running on different computers. This extension is used for
network communication and client/server programming, as shown in Section 6.

3. A mechanism for asynchronous input and timing, i.e., a way for a program to ask for
the next available input from any of a set of sources of input. This allows one fudget
to wait for input without blocking other fudgets from doing their work. It also allows
fudgets to do something even if no input arrives within a certain time.

The library contains fudgets that provide convenient abstraction from the details of the I/O
extensions. These fudgets are described in the sections mentioned above. Below, we just
take a quick look at some simple fudgets performing I/O.

24

Standard I/O Fudgets

To read the standard input (usually the keyboard) and write to the standard output or stand-
ard error stream (the screen), you can use the fudgets:

stdinF :: F a String
stdoutF :: F String a
stderrF :: F String a

The output from stdinF is the characters received from the program’s standard input chan-
nel. For efficiency reasons, you do not get one character at a time, but larger chunks of char-
acters. If you want the input as a stream of lines, you can use

inputLinesSP :: SP String String

As a simple example here is a fudget that copies text from the keyboard to the screen with
all letters converted to upper case:

stdoutF >==< (map toUpper >^=< stdinF)

It applies toUpper to all characters in the strings output by stdinF and then feeds the result
directly to stdoutF.

Here is a fudget that reverses lines:
(stdoutF >=^< ((++"\n").reverse)) >==< (inputLinesSP >^^=< stdinF)

The precedences and associativities of the combinators are such that we can write these fud-
gets as:

stdoutF >==< map toUpper >^=< stdinF
stdoutF >=^< (++"\n").reverse >==< inputLinesSP >^^=< stdinF

The Timer Fudget

The timer fudget generates output after a certain delay and/or at regular time intervals. Its
type is

data Tick = Tick

timerF :: F (Maybe (Int, Int)) Tick

The timer is initially idle. When it receives Just (interval,delay) on its input, it starts
ticking. The first tick will be output after delay milliseconds and then ticks will appear reg-
ularly at interval milliseconds intervals, unless interval is 0, in which case only one tick
will be output. Sending Nothing to the timer makes it return to the idle state.

As a simple example, here is a fudget that once a second outputs the number of seconds
that have elapsed since it was activated:

countSP >^^=< timerF >=^^< putSP (Just (1000,1000)) nullSP

where countSP = mapAccumlSP inc 0
inc n Tick = (n+1,n+1)

25

4.4 Implementation of Fudgets

4.4.1 Representing Fudgets as Stream Processors

Although fudgets have more than one input and one output stream, they can be represented
as stream processors:

type F hi ho = SP (Message TResponse hi) (Message TRequest ho)

data Message low high = Low low | High high

We use the type Message instead of the standard disjoint union Either to make programs
more readable.

The low level streams carry I/O requests and responses, but when a fudget outputs a
request we must be able to send the corresponding response back to the same fudget. For
this reason, the messages in the low level streams are tagged with a path indicating which
fudget in the hierarchy a message is from or to.

type TResponse = (Path,Response)
type TRequest = (Path,Request)

type Path = [Turn]
data Turn = L | R -- left or right

The messages output from atomic fudgets contain an empty path, []. The binary fudget
combinators prepend an L or and R onto the path in output messages to indicate whether the
message came from the left or the right subfudget. Non-binary combinators can still use a
binary encoding of subfudget positions. On the input side, the path is inspected to find out
to which subfudget the message should be propagated.

Figure 20 shows an implementation of tagged parallel composition of fudgets. We have
re-used tagged parallel composition of stream processors by adding the appropriate tag
adjusting pre- and postprocessors. Other fudget combinators can be implemented using
similar techniques.

Fig. 20. Tagged parallel composition of fudgets.

compF, (>+<) :: F i1 o1 F i2 o2 F (i1+i2) (o1+o2)

compF f1 f2 = f1 >+< f2

f1 >+< f2 = mapSP post ̀ serCompSP` (f1 ̀ compSP` f2) ̀ serCompSP` mapSP pre

 where

 post msg =
 case msg of
 Left (High ho1) High (Left ho1)
 Right (High ho2) High (Right ho2)
 Left (Low (path,req)) Low (L:path,req)
 Right (Low (path,req)) Low (R:path,req)

 pre msg =
 case msg of
 High (Left hi1) Left (High hi1)
 High (Right hi2) Right (High hi2)
 Low (L:path,resp) Left (Low (path,resp))
 Low (R:path,resp) Right (Low (path,resp))

26

When a request reaches the top level of a fudget program, the path should be detached
before the request is output to the I/O system and then attached to the response before it is
sent back into the fudget hierarchy. This is taken care of in fudlogue. A simple version of
fudlogue is shown in Figure 21. However, to handle asynchronous input you need more
than this (see Section 4.4.3).

4.4.2 Writing synchronous atomic fudgets

With the above fudget representation, an atomic fudget which repeatedly accepts a Haskell
I/O request, perform it and outputs the response can be implemented as show in Figure 22.

The combinators getHighSP and getLowSP waits for high and low level messages,
respectively. They are defined in terms of waitForSP (Section 3.7.2).

Some requests should be avoided, because when we evaluate their responses, the pro-
gram will block. For example, we should not use ReadChan stdin, because its response is
a lazy list representing the character streams from the standard input.

Files are usually OK to read, so the fudget readFileF could be useful:
readFileF :: F String (IOError + String)
readFileF = post >^=< requestF >=^< ReadFile
 where post (Str s) = Right s
 post (Failure f) = Left f

Fig. 21. A simple version of fudlogue. It does not handle asynchronous input.

fudlogue :: F a b Dialogue
fudlogue mainF = runSP (loopThroughRightSP routeSP (lowSP mainF))

routeSP =
getLeftSP $ \ (path,request)
putSP (Right request) $
getRightSP $ \ response
putSP (Left (path,response)) $
routeSP

lowSP :: SP (Message li hi) (Message lo ho) SP li lo
lowSP fud = filterLowSP `serCompSP` fud `serCompSP` mapSP Low

filterLowSP = mapFilterSP stripLow

stripLow (Low low) = Just low
stripLow (High _) = Nothing

requestF :: F Request Response
requestF = getHighSP $ \ req
 putSP (Low ([],req)) $
 getLowSP (_,response) $ \ resp
 putSP (High response) $
 requestF

Fig. 22. An atomic fudget for synchronous I/O.

27

4.4.3 Handling Asynchronous Input

The version of fudlogue in Figure 21 will suffice for programs where the individual fud-
gets do not block in their I/O requests. If we want to react on input from many sources (e.g.
sockets, standard input, the window system, timeout events), this implementation will not
be enough. Instead, the library version of fudlogue maintains a table which maps file
descriptors and window identifiers to paths. It then issues a request that waits for input on
any of these descriptors, or a timeout (using the UNIX select system call). When input
becomes available on a descriptor, fudlogue finds the path to the responsible fudget via the
table, and sends the input to it.

If the stream model for Haskell I/O is used, the request and response data types need to
be extended in order to implement this, something which has been done in the Chalmers
Haskell B Compiler.5 If monadic I/O is used (or rather the C monad, as in Glasgow Haskell
[12]), there is no need to change the run-time system.

4.4.4 Fudgets in other I/O models

If we implement fudgets on top of monadic I/O, we might want to perform any monadic I/O
operation in a fudget, without the old-fashioned coding in request and response values.
What we need then is a function ioF:

ioF:: IO a (a F b c) F b c

which will take an I/O operation, perform it, and pass the result to the continuation fudget.
This can be implemented by modifying the fudget type to be

data F hi ho = F (SP hi (IO (F hi ho) + ho))

The idea is that if a fudget outputs the value Left ioOp, we should perform the I/O opera-
tion ioOp which will yield the continuation fudget. fudlogue would then have the follow-
ing type and implementation:

fudlogue :: F a b IO ()
fudlogue (F f) = case f of
NullSP returnIO ()
GetSP xf returnIO ()
PutSP o f’ case o of
Left ioOp ioOp ‘bindIO‘ fudlogue
Right _ fudlogue (F f’)

Exercises

9. Implement ioF and the fudget combinators for the suggested fudget type suitable for
monadic I/O.

10. Implement fudgets on top of Clean’s I/O system [13]. One approach is to implement
monadic I/O first.

5. Or one could have the Haskell program talk to another process which implements the necessary exten-
sions.

28

5 Fudgets for Graphical User Interfaces
The Fudget concept and the Fudget library was first conceived and designed as a tool for
the construction of Graphical User Interfaces (GUIs) in a lazy functional language.
Although the Fudget library now supports other kinds of I/O, the biggest part of the library
still relates to GUI programming.

In the Fudget library, each GUI element is represented as a fudget. The library provides
fudgets for many common basic building blocks, like buttons, popup menus, text boxes, etc.
The fudget combinators introduced in Section 4 allow you to combine building blocks into
complete user interfaces.

This section starts with a couple of programming examples. They illustrate the basic
principles of how to create complete programs from GUI elements and application specific
stream processors. After the examples follows a brief presentation some common GUI fud-
gets from the library. We then describe combinators for layout and a scheme for parameter
passing with default values.

5.1 The "Hello, World!" Example

We begin with a simple program that just displays a message in a window (see Figure 23).
This example illustrates what the main program should look like, as well as some other
practical details.

The Fudgets library contains a fudget6 for static messages,
labelF :: String F a b

It just shows the argument string. It does not use its high level streams.
In the example program we have put the display in a top-level window created with the

fudget,
shellF:: String F a b F a b

which given a window title and a fudget, creates a shell window containing the graphical
user interface defined by the argument fudget. The fudgets for GUI elements, like labelF,
can not be used directly on the top level in a program, but must appear inside a shell win-
dow.

This illustrates the typical structure of a fudget program. In the main function, which in
Haskell should have the type Dialogue, we call the function fudlogue,

fudlogue:: F a b Dialogue

6. To be precise, labelF is a function returning a fudget, but for convenience, we will often say "a fud-
get" when we mean "a function returning a fudget".

module Main where -- The "Hello, World!" program
import Fudgets

main = fudlogue (shellF "Hello" helloF)

helloF = labelF "Hello, World!"

Fig. 23. The "Hello World" program.

29

which sets up the communication with the window system, gathers commands sent from all
fudgets in the program and sends them to the window system, and distributes events coming
from the window system to the appropriate fudgets.

Additional things to note with this program is that you do not need to specify the size and
placement of the GUI elements. The fudget system automatically picks a suitable size for
the label and the size of the shell is adapted to that.

Useful programs of course contain more than one GUI element. The next example will
contain two elements!

5.2 The Counter Example

This program is a simple counter. Its user interface consists of a button and a numeric dis-
play (see Figure 1). When you press the button, the number in the display is incremented.

In this program we use two basic building blocks,
intDispF :: F Int a

which is a fudget that displays the numbers it receives on the input, and
buttonF :: String F Click Click

which implements command buttons. It outputs clicks,
data Click = Click

when you press the button. Feeding clicks to its input has the same effect as clicking on the
button with the mouse.

When combining fudgets for GUI elements, there are two considerations:
1. The data flow aspect: how should they communicate, i.e., should one use a serial,

parallel, or some other combinator?
2. The visual aspect: how should the GUI elements be placed on the screen?

These are quite separate concerns, and fortunately the fudget system allows us to worry
about them one at a time. Thanks to the automatic layout system, you can concentrate on
the data flow aspect during the initial development stage. Later on, if you are not happy with

Fig. 24. The Counter Example

module Main(main) where -- A simple counter

import Fudgets

main :: Dialogue
main = fudlogue (shellF "Counter" counterF)

counterF = intDispF >==< absF countSP >==< incButtonF

incButtonF :: F Click Click
incButtonF = buttonF "Increment"

countSP :: SP Click Int
countSP = putSP startstate $
 mapAccumlSP inc startstate
where inc n Click = (n+1,n+1)

startstate = 0

30

the default layout, you can add layout information in one of the ways described in
Section 5.5.

The data flow in this program, illustrated as a circuit diagram in Figure 25, is simple and
is implemented by one program line in the definition of counterF:

intDispF >==< absF countSP >==< incButtonF

countSP contains the application specific code in this program. It starts by outputting the
initial state, so that it will be visible in the display when the program starts. It then uses
mapAccumlSP (Section 3.3) to maintain an internal counter that is incremented for each
click received from the button.

5.3 Extending the Counter

What if we want an extended counter that can be incremented, decremented and reset?
Starting from the simple counter program above, we obviously have to add two new but-

tons, but we will also have to change countSP. It will now have to deal with three different
input messages that have the effect of incrementing, decrementing and resetting the current
value of the counter.

There are different ways you can go about this. One way would be to define a data type
for the kind of messages we need,

data ButtonMsg = Inc | Dec | Reset

and then interpret these inside countSP. Another way would be to define a general state
maintaining stream processor, which receives state modifying functions on the input and
delivers the new state on the output after a state modifier has been applied. Here is such a
stream processor:

stateSP :: state SP (state state) state
stateSP state = putSP state $ mapAccumlSP modify state
where modify state f = (state’,state’)

where state’ = f state

intDispF buttonF

countSP

Fig. 25. Circuit diagram for the counter

Int Click

31

Using stateSP instead of countSP, all that is left to do to complete the extended counter is
to define buttons that output the appropriate state modifying functions,

incButtonF = fButtonF (+1) "Increment"
decButtonF = fButtonF (+(-1)) "Decrement"
resetButtonF = fButtonF (const 0) "Reset"

fButtonF f lbl = const f >^=< buttonF lbl

and put everything together. The resulting program is shown in Figure 26.

Exercises

11. Draw the circuit diagram for the extended counter.
12. Extend the extended counter to a pocket calculator. (Don’t worry about the layout of

the buttons at this point.)

5.4 More GUI elements

In this section we present some common GUI elements provided by the Fudget Library. For
more information, consult the reference manual, which is available via WWW [5].

5.4.1 Buttons

We have already seen buttonF in the examples above. It provides command buttons, i.e.,
buttons that you press to trigger some action. The Fudget library also provides toggle but-

Fig. 26. The Extended Counter Example

module Main(main) where -- An extended counter

import Fudgets

main :: Dialogue
main = fudlogue (shellF "Counter" counterF)

counterF = intDispF >==<
absF (stateSP startstate) >==<
buttonsF

buttonsF :: F a (Int Int)
buttonsF = incButtonF >*< decButtonF >*< resetButtonF

incButtonF = fButtonF (+1) "Increment"
decButtonF = fButtonF (+(-1)) "Decrement"
resetButtonF = fButtonF (const 0) "Reset"

fButtonF f lbl = const f >^=< buttonF lbl

stateSP :: state SP (state state) state
stateSP state = putSP state $
 mapAccumlSP modify state
where modify state f = (state’,state’)

where state’ = f state

startstate = 0

32

tons and radio groups (Figure 27).Pressing these buttons causes a change that have a lasting
visual effect (and probably also some other lasting effect). A toggle button changes between
two states (on and off) each time you press it. A radio group allows you to activate one of
several mutually exclusive alternatives. The types of these fudgets are

toggleButtonF :: String F Bool Bool
radioGroupF :: (Eq alt) => [(alt,String)] alt F alt alt

The input messages can be used to change the setting under program control.

5.4.2 Menus and Scrollable Lists

Menus serve much the same purpose as buttons, but they save screen space by appearing
only when activated. The fudget menuF name alts, where

menuF :: String [(alt,String)] F alt alt,

provides pull-down menus. name is the constantly visible name you press to activate the
menu and alts is the list of menu alternatives.

The fudget
popupMenuF :: [(alt,String)] F i o F (alt+i) (alt+o)

provides pop-up menus, i.e., menus that are activated when a certain mouse button (the third
by default) is pressed over the screen area occupied by the argument fudget. The menu fud-
get and the argument fudget are put in a tagged parallel composition.

As an example, suppose we wanted a compact version of the extended counter in
Section 5.3. We could then replace the three buttons with a pop-up menu attached to the dis-
play (Figure 28).

When the number of alternatives is large, or when they change dynamically, you can use
a scrollable list instead of a menu. The function

pickListF :: (a String) F [a] a

Fig. 27. Toggle buttons and radio groups

toggleButtonF "Run"

radioGroupF [(1,"P1"),(2,"P2"),(3,"P3),(0,"Off")] 0

Fig. 28. A Compact Extended Counter

33

(shown in Figure 29) takes a show function and returns a fudget that displays lists of alter-
natives received on the high level input. When an alternative is selected, by clicking on it,
it will appear in the output stream.

Exercises

13. Implement the compact extended counter. Hint: a handy combinator is serCom-
pLeftToRightF,

serCompLeftToRightF :: F (i+a) (a+o) F i o

which turns a tagged parallel composition into a serial composition.

5.4.3 Entering values

Choosing an alternative from a list is usually easier than typing something, e.g., the name
of a colour, on the keyboard. But when there is no predefined set of alternatives, you can
use fudgets that allow the user to enter values from the keyboard. The library provides

stringF :: InF String String
intF :: InF Int Int

for entering strings and integers (see Figure 30). For entering other types of values, you can
use stringF and attach the appropriate printer and parser functions. The type InF is defined
as

type InF a b = F a (InputMsg b)
data InputMsg b = ...

The input fudgets have two kinds of output messages: one that is output whenever the cur-
rent value changes and one that is output when the user indicates, e.g., by pressing the
Return or Enter key, that the value is complete. You can use

stripInputMsg :: InputMsg a a
inputDoneSP :: SP (InputMsg a) a

as postprocessors to filter out the messages you are interested in. Use
stripInputMsg >^=< stringF

if you are interested in all changes made to a string, and
inputDoneSP >^^=< stringF

if you only want a message when the user has completed a string.

Fig. 29. pickListF Fig. 30. stringF

34

5.4.4 Displaying and editing text

The library provides the fudgets
moreF :: F [String] a
moreFileF, moreFileShellF:: F String a

which can display longer text.7 The input to moreF is lines of text to be displayed. The other
two fudgets display the contents of file names received on the high level input. moreFile-
ShellF in addition appears in its own shell window with a title reflecting the name of the
file being displayed.

There also is a text editor fudget:
editorF :: F EditCmd EditEvt

which supports cut/paste editing with the mouse as well as a small subset of the keystrokes
used in GNU emacs. It also has an undo/redo mechanism.

5.4.5 Scroll Bars

GUI elements that potentially can become very large, like pickListF, moreF and editorF
have scroll bars attached by default. There are also combinators to explicitly add scroll bars:

scrollF, vScrollF, hScrollF :: F a b F a b

The v and h version give only vertical and horizontal scroll bars, respectively. The argument
fudget can be any combination of GUI elements.

5.5 Layout

When developing fudget programs, normally we don’t have to think about the actual layout
of the GUI fudgets if we don’t want to. For example, the fudget

shellF "Buttons" (buttonF "A Button" >+< buttonF "Another Button")

will get some default layout which might look like Figure 30. Sooner or later, we will want

to have control over the layout, though. The GUI library lets us do this two different ways:
1. Fudget Combinator Layout. This method is based on variants of the fudget combi-

nators >+<, >==<, and listF. It is a quick way of adding layout control to a program.
However, the layout possibilities are limited by the structure of the fudget program.

2. Name Layout. Here, the layout is specified separately from the fudget structure. GUI
fudgets are given names, and these are used to specify layout at one place inside each
shellF.

Before describing these, we will present the layout combinators that both of them use.

7. The names comes from the fact that they serve the same purpose as the UNIX program more.

Fig. 30.

35

5.5.1 Boxes, Placers and Spacers

Layout is done hierarchically. Each GUI fudget will reside in a box, which will have a cer-
tain size and position when the layout is complete. A list of boxes can be put inside a single
box by a placer, which also defines how the boxes should be placed in relation to each other
inside the larger box. The effects of some placers are illustrated in Figure 31. The parameter

to matrixP specifies the number of columns the matrix should have. The types of the plac-
ers are

horizontalP :: Placer
verticalP :: Placer
matrixP :: Int Placer
revP :: Placer Placer

The effect of applying revP is as if the list of boxes were reversed. Another higher order
placer is flipP, which transforms a placer into a mirror symmetric placer, with respect to
the line x = y:

flipP :: Placer Placer

Hence, we can define verticalP as
verticalP = flipP horizontalP

So, placers are used to specify the layout of a group of boxes. In contrast, spacers are used
to wrap a box around a single box. Spacers could be used to determine how a box should
be aligned if it is given too much space, or to add extra space around a box. Examples of

spacers that deal with alignment can be seen in Figure 32. On top, the box (placed with

Fig. 31. Different placers.

horizontalP

verticalP
matrixP 3

revP horizontalP

x

y

Fig. 32. Spacers for alignment.

leftS

hCenterS

rightS

(none)

36

horizontalP) has to fill up all the available space. The lower three boxes have been placed
inside a box, which consumes the extra space. The spacers used are derived from the spacer
hAlignS, whose argument tells the ratio between the space to the left and the right side of
the box:

hAlignS :: RealFrac a => a Spacer
leftS = hAlignS 0
hCenterS = hAlignS 0.5
rightS = hAlignS 1

There is a corresponding spacer to flipP, namely flipS. It too flips the x and y coordinates,
and let us define some useful vertical spacers:

flipS :: Spacer Spacer
vAlignS a = flipS (hAlignS a)
topS = flipS leftS
vCenterS = flipS hCenterS
bottomS = flipS rightS

By compS, we can compose spacers, and define a spacer that centers both horizontally and
vertically:

compS :: Spacer Spacer Spacer
centerS = vCenterS ‘compS‘ hCenterS

To add extra space to the left and right of a box, we use hMarginS left right, where
hMarginS :: Distance Distance Spacer
type Distance = Int

Distances are given in number of pixels.8 From hMarginS, we can derive marginS, which
adds equally much space on all sides of a box:

vMarginS above below = flipS (hMarginS above below)
marginS s = vMarginS s s ‘compS‘ hMarginS s s

Spacers can be applied to fudgets by means of spacerF:
spacerF :: Spacer F a b F a b

spacerF f will apply the spacer to all boxes inside f.9 We can also modify a placer by
wrapping a spacer around the box that the placer assembles:

spacerP :: Spacer Placer Placer

For example, spacerP leftS horizontalP gives a horizontal placer which will left adjust
its boxes.

5.5.2 Combinator Layout

Combinator layout is good when flexible layout is not a major issue in your program. As an
example, we could specify that the two buttons in Figure 30 should have vertical layout by
saying that the first button should be above the second:

shellF "Buttons"
 ((buttonF "A Button",Above) >+#< buttonF "Another Button")

8. This is easy to implement, but makes programs somewhat device dependent.
9. It will not apply it recursively to the boxes inside the boxes, however.

37

Here, we have replaced >+< with >+#< which takes an extra layout argument:
(>+#<) :: (F a b,Orientation) F c d F (a+c) (b+d)
data Orientation = Above | Below | RightOf | LeftOf

The result can be seen in Figure 33. In a similar way, the first button could be placed below,

to the right of, or to the left of the second button, by using the corresponding constructor of
type Orientation.

The same trick can be used on serial composition by using >==#<:
(>==#<) :: (F a b,Orientation) F c a F c b

If we want to specify the layout for the fudgets inside a listF, we use listLF instead:
listLF :: (Eq a) => Placer [(a, F b c)] F (a, b) (a, c)

The first argument to listLF is a placer, specifying the layout.
Suppose we have the following fudget, where we have used combinator layout:

top = (intDispF >=^^< acc,Above) >==#< buttons

buttons = snd >^=< listLF verticalP (number 1 buttonlist)
buttonlist = [const f >^=< buttonF s | (f,s) <- list]
 where list = [((+1), "Increment"),
 ((+(-1)),"Decrement")]

acc = ac 0 where ac n = putSP n $ getSP $ \f ac (f n)

It will have the layout shown in Figure 31a. Now, suppose we want the number display to

appear between the buttons, as in Figure 31b. We can not do that with combinator layout
without restructuring the program, because the buttons reside in a listLF, whose placer will
box them together. By using Name Layout, we get around the problem.

5.5.3 Name Layout

To separate layout from fudget structure, we put unique names on each box (usually cor-
responding to a simple GUI fudget) whose layout we want to control, by using nameF:

type LName = String
nameF :: LName F a b F a b

Fig. 33.

Fig. 34.a b

38

The layout of the boxes which have been named in this way is specified using the type
NameLayout. Here are the basic functions for constructing NameLayout values:

leafNL :: LName NameLayout
placeNL :: Placer [NameLayout] NameLayout
spaceNL :: Spacer NameLayout NameLayout

The desired layout in Figure 31b has the buttons in a row, so we will use verticalP. To
apply the layout to named boxes, we use nameLayoutF:

nameLayoutF :: NameLayout F a b F a b

The names used for the boxes are "bound" by nameLayoutF, by corresponding occurrences
of leafNL. Our example becomes

top = nameLayoutF layout $ nameF dispN textF >=^^< acc >==< buttons

buttons = snd >^=< listF (number 1 buttonlist)
buttonlist = [const f >^=< nameF n (buttonF s) | (n,f,s) <- list]
 where list = [(incN,(+1), "Increment"),
 (decN,((+(-1)),"Decrement")]

acc = ac 0 where ac n = putSP n $ getSP $ \f ac (f n)
-- only layout below
layout = listNL verticalP (map leafNL [incN, dispN, decN])
incN = "inc"
decN = "dec"
dispN = "disp"

Now, we can muck around with the layout of the two buttons and the display as much as we
want, without changing the rest of the program. The actual strings used for names are not
important, as long as they are unique within the part of the fudget structure where they are
in scope. So instead we could write

(incN:decN:dispN:_) = map show [1..]

5.5.4 The placer fudget (the middle way)

Actually, there is a third way of doing layout, which is somewhere in between Fudget Com-
binator Layout and Name Layout. The fudget

placerF :: Placer F a b F a b

will apply the placer to all boxes in the argument fudget. The order of the boxes is left to
right, with respect to the combinators listF, dynListF, >==< and >+<. Actually, when there
is no layout specified in a shell fudget with more than one box in it, an implicit placer fudget
is applied to obtain one box, which the shell fudget can handle.

With placerF, we can derive the combinators used for Fudget Combinator Layout:
listLF placer f = placerF placer (listF f)
place2F (><) (f1,al) f2 = placerF (placer al) (f1 >< f2) where

placer LeftOf = horizontalP
placer RightOf = revP horizontalP
placer Above = verticalP
placer Below = revP verticalP

(>+#<) = place2F (>+<)
(>==#<) = place2F (>==<)

If we take a look at the layout in Figure 31a again, we see that if we write a placer that per-
mutes the first and the second box (cf. revP), we could get the desired layout in b. However,

39

such a layout system would be sensitive for changes in the fudget structure (e.g., if we
change f >+< g to g >+< f, we have to change the placer. If we use Name Layout, this change
does not affect the layout.

Exercises

14. Augment the pocket calculator in exercise 12 with proper layout of the buttons.

5.6 Parameters for Customization

There are many aspects of GUI fudgets that one might want to modify, e.g. the font or the
foreground or background colours for displayF. The simple GUI fudgets have some hope-
fully reasonable default values for these aspects, but sooner or later, we will want to change
them. A simple way of doing this would be to have a data type with constructors for each
parameter that has a default value. In the case of displayF, it might be

data DisplayFParams = Font FontName |
 ForegroundColor ColorName |
 BackgroundColor ColorName

Then, one could have the display fudget take a list of display parameters as a first argument:
displayF :: [DisplayFParams] F String a

Whenever we are happy with the default values, we just use an empty parameter list, and
all is fine.

However, suppose we want to do the same trick with the button fudget. We want to be
able to customise font and colours for foreground and background, like the display fudget,
and in addition we want to specify a "hotkey" that could be used instead of clicking the but-
ton:

data ButtonFParams = Font FontName |
 ForegroundColor ColorName |
 BackgroundColor ColorName |

HotKey (ModState,Key)

Now, we are in trouble if we want to customise a button and a display in the same module,
because in a given scope in Haskell, no two constructor names should be equal. Of course,
we could rename the constructors when importing them, but this is tedious. We could also
have different constructor names to start with (ButtonFFont, ButtonFForegroundColor
etc.), which is just as tedious.

Our current solution10 is to not use constructors directly, but to use overloaded functions
instead. We will define a class for each kind of default parameter. Then, each customizable
fudget will have instances for all parameters that it accepts. This entails some more work
when defining customizable fudgets, but the fudgets become easier to use, which we feel
more than justifies the extra work.

10. The basics of this design are due to John Hughes.

40

5.6.1 A Mechanism for Default Values

Let us return to the display fudget example, and show how to make it customizable. First,
we define classes for the customizable parameters:

type Customiser a = a a

class HasFont a where
 setFont :: FontName Customiser a

class HasForegroundColor a where
 setForegroundColor :: ColorName Customiser a

class HasBackgroundColor a where
 setBackgroundColor :: ColorName Customiser a

Then, we define a data type for the parameter list to displayF:
data DisplayF = Pars [DisplayFParams]

and add the instance declarations
instance HasFont DisplayF where
 setFont p (Pars ps) = Pars (Font p:ps)

instance HasForegroundColor DisplayF where
 setForegroundColor p (Pars ps) = Pars (ForegroundColor p:ps)

instance HasBackgroundColor DisplayF where
 setBackgroundColor p (Pars ps) = Pars (BackgroundColor p:ps)

The type of displayF will be
displayF :: (Customiser DisplayF) F String a

We put these declarations inside the module defining displayF, making DisplayF abstract.
When we later use displayF, the only thing we need to know about DisplayF is its
instances, which tell us that we can set font and colours. For example:

myDisplayF = displayF (setFont "fixed" . setBackgroundColor "green")

If we want to have buttonF customizable the same way, we define the additional class:
class HasKeyEquiv a where
 setKeyEquiv :: (ModState,Key) Customiser a

The button module defines
data ButtonF = Pars [ButtonFParams]

and makes it abstract, as well as defining instances for font, colours and hotkeys.11 We can
now customise both the display fudget and the button fudget, if we want:

myFudget = displayF setMyFont >+< buttonF (setMyFont.setMyKey) "Quit"
 where setMyFont = setFont "fixed"
 setMyKey = setKeyEquiv ([Meta],"q")

11. Note that the instance declarations for font and colours will look exactly the same as for the display
parameters!

41

If we do not want to change any default values, we use standard, which doesn’t modify
anything:

standard :: Customiser a
standard p = p

standardDisplayF = displayF standard

5.6.2 The Customizable GUI Fudgets

The GUI fudget library is designed so that when you start writing a fudget program, there
should be as few distracting parameters as possible. Default values will be chosen for col-
our, fonts, layout, etc. But a customizable fudget must inevitably have an additional argu-
ment, even if it is standard. We use short and natural names for the standard versions of
GUI fudgets, without customization argument. So we have

buttonF :: String F Click Click
buttonF = buttonF’ standard
buttonF’ :: Customiser ButtonF String F Click Click

displayF :: F String a
displayF = displayF’ standard
displayF’ :: Customiser DisplayF F String a

and so on.12 This way, a programmer can start using the toolkit without having to worry
about the customization concept. Later, when the need for customization comes, just add an
apostrophe and the parameter.

Most parameters can in fact be changed dynamically, if needed. Therefore, each custom-
izable fudget comes in a third variant, which is the most expressive:

type CF p a b = F (Customiser p + a) b
buttonF’’ :: Customiser ButtonF String CF ButtonF Click Click
displayF’’ :: Customiser DisplayF CF DisplayF String a

etc.

Exercises

15. Use different colours for different kinds of buttons in the pocket calculator from
exercise 12 and 14.

6 Client/Server Programming & Typed Sockets
In this section, we will see how fudgets can be suitable for other kind of I/O than graphical
user interfaces. We will write client/server applications, where a fudget program acts as a
server on one computer. The clients are also fudget programs, and they can be run from
other computers if desired.

The server is an example of a fudget program which may not have the need for a graph-
ical user interface. However, the server should be capable of handling many clients simul-
taneously. One way of organising the server is to have a client handler for each connected

12. One could also have the apostrophe on the standard versions, something that sounds attractive since
apostrophes usually stand for omitted things (in this case the customizer). But then a programmer must learn
which fudgets are customizable (and thus need an apostrophe), even if she isn’t interested in customization.

42

client. Each client handler communicates with its client via a connection (a socket), but it
will probably also need to interact with other parts of the server. This is a situation where
fudgets come in handy. The server will dynamically create fudgets as client handlers for
each new client that connects.

We will also see how the type system of Haskell can be used to associate the address (a
host name and a port number) of a server with the type of the messages that the server can
send and receive. If the client is also written in Haskell, and imports the same specification
of the typed address as the server, we know that the client and the server will agree on the
types of the messages, or the compiler will catch a type error.

6.1 Fudgets for Internet Stream Sockets

The type of sockets that we consider here are Internet stream sockets. They provide a reli-
able, two-way connection, similar to pipes, between any two hosts on the Internet. They are
used in Unix tools like telnet, ftp, finger, mail, Usenet and World Wide Web.

6.1.1 Clients

To be able to communicate with a server, a client must know where the server is located.
The location is determined by the name of the host (a computer on the network) and a port
number. A typical host name is www.cs.chalmers.se. The port number distinguishes dif-
ferent servers running on the same host. Standard services have standard port numbers. For
example, WWW servers are usually located on port 80.

The Fudget library uses the following types:
type Host = String
type Port = Int

The simple fudget
socketTransceiverF :: Host Port F String String

allows a client to connect to a server and communicate with it (Figure 35).13 Chunks of
characters appear in the output stream as soon as they are received from the server (c.f.
stdinF in Section 4.3.2).

The simplest possible client you can write is perhaps a telnet client:
telnetF host port = stdoutF >==< socketTransceiverF host port

>==< stdinF

13. The library also provides combinators that gives more control over error handling and the opening and
closing of connections.

Fig. 35. A client about to connect to a server.

43

This simple program doesn’t do the option negotiations required by the standard telnet pro-
tocol [RFC854,855], so it doesn’t work well when connected to the standard telnet server
(on port 23). However, you can use it to talk to many other standard servers, e.g., mail and
news servers.

6.1.2 Servers

Whereas clients actively connect to a specific server, servers passively wait for clients to
connect. When a client connects, a new communication channel is established, but the
server typically continues to accept connections from other clients as well (Figure 36).

A simple fudget to create servers is
simpleSocketServerF :: Port F (Int,String) (Int,String)

The server allows clients to connect to the argument port on the host where the server is
running. A client is assigned a unique number when it connects to the server. The messages
to and from simpleSocketServerF are strings tagged with a client number. Empty strings
in the input and output streams mean that a connection should be closed or has been closed,
respectively.

This simple server fudget does not directly support a program structure with one handler
fudget per client. A better combinator is shown below.
Exercise 16. Write a chat client and a chat server. The chat client allows a user to

exchange messages with other users running the chat client. A message
entered by a user is sent to all other users.

6.2 Typed Sockets

Many Internet protocols use messages that are human readable text. When implementing
these, the natural type to use for messages is String. However, when we write both clients
and severs in Haskell, we may want to use an appropriate data type for messages sent
between clients and server, as you would do if the client and server were fudgets in the same
program. In this section we show how to abstract away from the actual representation of
messages on the network.

We introduce two abstract types for typed port numbers and typed server addresses.
These types will be parameterised on the type of messages that we can transmit and receive
on the sockets. First, we have the typed port numbers:

data TPort c s

The client program needs to know the typed address of the server:
data TServerAddress c s

Fig. 36. A communication socket is created.

44

In these types, c and s stand for the type of messages that the client and server transmit,
respectively.

To make a typed port, we apply the function tPort on a port number:
tPort :: (Text c, Text s) => Port TPort c s

The context Text in the signature tells us that not all types can be used as message types.
Values will be converted into text strings before transmitted as a message on the socket.
This is clearly not very efficient, but it is a simple way to implement a machine independent
protocol.

Given a typed port, we can form a typed server address by specifying a computer as a
host name:

tServerAddress :: TPort c s Host TServerAddress c s

For example, suppose we want to write a server that will run on the host animal, listening
on port 8888. The server should accept integer messages, and will send strings to the clients.
This can be specified by

thePort :: TPort Int String
thePort = tPort 8888
theServerAddr = tServerAddress thePort "animal"

A typed server address can be used in the client program to open a socket to the server by
means of tSocketTransceiverF:

tSocketTransceiverF ::
(Text c, Text s) => TServerAddress c s F c (Maybe s)

Again, the Text context appears, since this is where the actual conversion from and to text
strings occurs. tSocketTransceiverF will output an incoming message m as Just m, and
if the connection is closed by the other side, it will output Nothing.

In the server, we will wait for connections, and create client handlers when new clients
connect. This is accomplished with tSocketServerF:

tSocketServerF :: (Text c, Text s) => TPort c s
(F s (Maybe c) F a (Maybe b)) F (Int,a) (Int,Maybe b)

So tSocketServerF takes two arguments, the first one is the port number to listen on for
new clients. The second argument is the client handler function. Whenever a new client
connects, a socket transceiver fudget is created and supplied to the client handler function,
which yields a client handler fudget. The client handler is then spawned inside
tSocketServerF. From the outside of tSocketServerF, the different client handlers are
distinguished by unique integer tags. When a client handler emits Nothing,
tSocketServerF will interpret this as the end of a connection, and kill the handler.

The idea is that the client handlers should use the transceiver argument for the commu-
nication with the client. Complex handlers can be written with loopThroughRightF, if
desired. In many cases though, the supplied socket transceiver is good enough as a client
handler directly. A simple socket server can therefore be defined by:

simpleTSocketServerF :: TPort c s F (Int,s) (Int,Maybe c)
simpleTSocketServerF port = tSocketServerF port id

6.3 Avoiding Type Errors Between Client and Server

By using the following style for developing a client and a server, we can detect when the
client and the server disagree on the message types:

45

First, we define a typed port to be used by both the client and the server. We put this def-
inition in a module of its own. Suppose that the client sends integers to the server, which in
turn can send strings:

module MyPort where
myPort :: TPort Int String
myPort = tPort 9000

We have picked an arbitrary port number. Now, if the client is as follows:
module Main where -- Client
import MyPort
...
main = fudlogue (... tSocketTransceiverF myPort ...)

and the server
module Main where -- Server
import MyPort
...
main = fudlogue (... tSocketServerF myPort ...)

then the compiler can check that we don’t try to send messages of the wrong type. Of
course, this is not foolproof. There is always the problem of having inconsistent compiled
versions of the client and the server, for example. Or one could use different port declara-
tions in the client and the server.

Now, what happens if we forget to put a type signature on myPort? Is it not possible then
that we get inconsistent message types, since the client and the server could instantiate
myPort to different types? The answer is no, and this is because of a subtle property of Has-
kell, namely the monomorphism restriction. A consequence of this restriction is that the
type of myPort can not contain any type variables. If we forget the type signature, this
would be the case, and the compiler would complain. It is possible to circumvent the restric-
tion by explicitly expressing the context in the type signature, though. When defining typed
ports, it defeats the purpose, of course:

module MyPort where
myPort :: Text a => TPort a String -- No no, don’t do this!
myPort = tPort 9000

6.4 Example: Calendar

Outside the lunch room in our department, there is a whiteboard where the week’s activities
are registered. We will look at an electronic version of this calendar, where people can get
a view like this on their workstation (Figure 37).

The entries in the calendar can be edited by everyone. When that happens, all calendar
clients should be updated immediately.

The calendar consists of a server maintaining a database, and the clients, running on the
workstations.

6.4.1 The Calendar Server

The server’s job is to maintain a database with all the entries on the whiteboard, to receive
update messages from clients and then update the other connected clients. The server con-

46

sists of the stream processor databaseSP, and a tSocketServerF, where the output from
the stream processor goes to tSocketServerF, and vice versa (Figure 38).

databaseSP maintains two values: the client list cl, which is a list of the tags of the con-
nected clients, and the database db, organised as a list of (key,value) pairs. This database is
sent to newly connected clients. When a user changes an entry in her client, it will send that
entry to the server, which will update the database and use the client list to broadcast the
new entry to all the other connected clients. When a client disconnects, it is removed from
the client list. The client handlers (clienthandler) initially announce themselves with
NewHandler, then they apply HandlerMsg to incoming messages.

Here is a complete listing of the server:
module Main where -- Server
import Fudgets
import MyPort(myPort) -- also used in the client

main = fudlogue (server myPort)

data HandlerMsg a = NewHandler | HandlerMsg a
server port = loopF (databaseSP [] [] >^^=<
 tSocketServerF port clienthandler) where
clienthandler transceiver =

-- New client - announce myself,
-- convert Just a Just (HandlerMsg a)

 put1SP (Just NewHandler) (mapSP (mapMaybe HandlerMsg))
 >^^=< transceiver
databaseSP cl db =

Fig. 37. The calendar client.

tSocketServerF

databaseSP

Fig. 38. The structure of server. The small fudgets are
client handlers created inside the socket server.

47

 getSP $ \(i,e)
 let clbuti = filter (/= i) cl
 in case e of

-- A message from client number i:
 Just handlermsg > case handlermsg of
 -- A new client, send the database to it,
 -- and add to client list:
 NewHandler > putSP [(i,d) | d <- db] $
 databaseSP (i:cl) db
 -- Update entry in the database...14

 HandlerMsg s > let db’ = replace s db in
 -- ... and tell the other clients
 putSP [(i’,s) | i’ <- clbuti] $
 databaseSP cl db’
 -- A client disconnected, remove it from
 -- the client list:
 Nothing > databaseSP clbuti db

replace and mapMaybe are defined in the Fudget library:
replace :: (Eq a) => (a,b) [(a,b)] [(a,b)]
replace p [] = [p]
replace (t, v) ((t’, v’) : ls’) | t == t’ = (t, v) : ls’
replace p (l : ls’) = l : replace p ls’

mapMaybe:: (a b) Maybe a Maybe b
mapMaybe f Nothing = Nothing
mapMaybe f (Just x) = Just (f x)

The type of the (key,value) pairs in the database is the same as the type of the messages
received and sent, and is defined in the module MyPort:

module MyPort where
import Fudgets
type SymTPort a = TPort a a
myPort :: SymTPort ((String,Int),String)
-- e.g. (("Torsdag",13),"Doktorandkurs:")

port = tPort 8888

Exercises

17. Implement the calendar client.

7 Conclusions
Stream processors and fudgets make it possible to structure programs as networks of con-
current processes in purely functional languages, like Haskell. This is a useful program
structure when a program interacts with several external entities and all the time has to be
prepared to react to input from any external source. We have shown two concrete examples
of this. In Graphical User Interface programming the external entities that the program
interacts with are the GUI components. In Client/Server programming the server usually
interacts with several clients.

14. Unfortunately, the update will not take place until a new client connects, resulting in a space leak. It
can be eliminated by inserting seq (force db’) $ after let db’ = replace s db in.

48

Rather than being a new mechanism for I/O, the Fudget concept is an abstraction that can
be implemented on top of many existing I/O systems, e.g., stream based I/O, monadic I/O,
or the I/O model used in Clean. Although fudgets can be implemented on top of sequential
I/O models, fudgets give the feeling of programming in a parallel language.

The Fudget combinators allow programs to be built in a hierarchical way. The basic
building blocks are fudgets. Complete programs are fudgets too. This makes it easy to use
existing applications as components when writing new, larger applications.

Polymorphism and higher order functions are valuable features of functional languages
that allow libraries of re-usable software components to be both flexible and type safe. The
Fudget library clearly benefits from this.

7.1 More Information on Fudgets

There are lots of things we didn’t write about (because of time and space constraints). For
example, these notes don’t say much about the implementation of the Fudget GUI toolkit
or how to write new GUI elements. We haven’t said anything about parallel implementa-
tions of stream processors. We have not shown any large programming examples.

The WWW home page for Fudgets is located at URL
http://www.cs.chalmers.se/Fudgets/

There you can find pointers to more information on fudgets. You can also run demo pro-
grams and browse the hypertext version of the Fudget Library Reference Manual.

The Fudget library is distributed free of charge by anonymous ftp from
ftp.cs.chalmers.se (for more info, see the Fudgets home page).

7.2 Acknowledgements

Thanks to Johan Jeuring, Andrew Moran and Jan Sparud for comments on these notes. Jan
Sparud also implemented the first version of Name Layout, described in Section 5.5.3. John
Hughes came up with the idea of default parameters (Section 5.6).

References
[1] M. Carlsson & T. Hallgren, Fudgets - A Graphical User Interface in a Lazy Functional

Language, in FPCA 93’ - Conference on Functional Programming Languages and
Computer Architecture, pages 321--330, June 1993.

[2] M. Carlsson & T. Hallgren, The Fudget distribution,
See ftp://ftp.cs.chalmers.se/pub/haskell/chalmers/

[3] A. D. Gordon, Functional Programming and Input/Output, Cambridge University
Press, 1994. ISBN 0-521-47103-6.

[4] A. D. Gordon et al, Haskell 1.3 Monadic I/O Definition.
At http://www.cl.cam.ac.uk/users/adg/io.html

[5] T. Hallgren & M. Carlsson, The Fudgets Home Page.
At http://www.cs.chalmers.se/Fudgets/

[6] P. Hudak & R. S. Sundaresh. On the expressiveness of purely functional I/O systems.
Research Report YALEU/DCS/RR-665, Yale University Department of Computer
Science, March 1989.

49

[7] Paul Hudak et al., Report on the Programming Language Haskell: A Non-Strict,
Purely Functional Language, March 1992. Version 1.2. Also in Sigplan Notices, May
1992.

[8] P.J. Landin. A correspondence between ALGOL 60 and Church’s lambda-notation:
Parts I and II. Communications of the ACM, 8(2,3):89-101, 158-165, February and
March 1965.

[9] J. McCarthy. A basis for a mathematical theory of computations. In P. Brattort and D.
Hirschberg, editors, Computer Programming and Formal Systems, pages 33–70.
North-Holland, 1963.

[10] R. Milner, Communication and concurrency, Prentice-Hall International, 1989. ISBN
0-13-114984-9.

[11] R. Noble & C. Runciman, Functional Languages and Graphical User Interfaces – a
review and a case study, Technical report YCS-94-223, Dept. of Comp. Sci., Univ. of
York, Heslington, York, Y01 5DD, England, 1994.
At ftp://minster.york.ac.uk/reports/YCS-94-223.ps.Z

[12] Simon L. Peyton Jones, Cordelia V. Hall, Kevin Hammond, Will Partain, and Philip
Wadler "The Glasgow Haskell compiler: a technical overview" In Proc. UK Joint
Framework for Information Technology (JFIT) Technical Conference, July 93.
At ftp://ftp.dcs.gla.ac.uk/pub/glasgow-fp/papers/grasp-jfit.ps.Z

[13] R. Plasmeijer, Cleans’ Home Page. At http://www.cs.kun.nl/~clean/
[14] P. Wadler, "Monads for functional programming". In Lecture Notes on Advanced

Functional Programming Techniques (i.e., this volume), LNCS, Springer-Verlag
1995.

