
Report on the

Programming Language

Haskell

A Non-stri
t, Purely Fun
tional Language

Version 1.0

1 April 1990

Paul Hudak

1

[editor℄

Philip Wadler

2

[editor℄

Arvind

3

Brian Boutel

4

Jon Fairbairn

5

Joseph Fasel

6

Kevin Hammond

2

John Hughes

2

Thomas Johnsson

2;7

Di
k Kieburtz

8

Rishiyur Nikhil

3

Simon Peyton Jones

2;9

Mike Reeve

10

David Wise

11

Jonathan Young

1;3

Authors' aÆliations: (1) Yale University, (2) University of Glasgow, (3) Mas-

sa
husetts Institute of Te
hnology, (4) Vi
toria University of Welling-

ton, (5) Cambridge University, (6) Los Alamos National Laboratory,

(7) Chalmers University of Te
hnology, (8) Oregon Graduate Institute of

S
ien
e and Te
hnology, (9) University College, London, (10) Imperial Col-

lege, (11) Indiana University.

CONTENTS i

Contents

1 Introdu
tion 1

1.1 Program Stru
ture . 1

1.2 The Haskell Kernel . 2

1.3 Values and Types . 2

1.4 Namespa
es . 2

1.5 Layout . 3

2 Lexi
al Stru
ture 6

2.1 Notational Conventions . 6

2.2 Lexi
al Program Stru
ture . 6

2.3 Identi�ers and Operators . 7

2.4 Numeri
 Literals . 8

2.5 Chara
ter and String Literals . 9

3 Expressions 10

3.1 Curried Appli
ations and Lambda Abstra
tions 11

3.2 Operator Appli
ations . 11

3.3 Conditionals . 12

3.4 Lists . 12

3.5 Tuples . 13

3.6 Unit Expressions and Parenthesised Expressions 13

3.7 Arithmeti
 Sequen
es . 13

3.8 List Comprehensions . 14

3.9 Where Expressions . 15

3.10 Case Expressions . 15

3.11 Expression Type-Signatures . 16

3.12 Pattern-Mat
hing . 16

3.12.1 Patterns . 17

3.12.2 Informal semanti
s of pattern-mat
hing 18

3.12.3 Formal semanti
s of pattern-mat
hing 19

4 De
larations and Bindings 22

4.1 Overview of Types and Classes . 22

4.1.1 Syntax of Types . 23

4.1.2 Syntax of Class Assertions and Contexts 24

4.1.3 Semanti
s of Types and Classes . 25

4.2 User-De�ned Datatypes . 26

4.2.1 Algebrai
 Data Type De
larations 26

4.2.2 Type Synonym De
larations . 27

4.3 Type Classes and Overloading . 27

4.3.1 Class De
larations . 27

4.3.2 Instan
e De
larations . 28

4.3.3 Derived Instan
es . 30

4.3.4 Defaults for Overloaded Operations 31

ii CONTENTS

4.4 Nested De
larations . 32

4.4.1 Type Signatures . 32

4.4.2 Fun
tion and Pattern Bindings . 33

5 Modules 37

5.1 Overview . 37

5.1.1 Interfa
es and Implementations . 37

5.1.2 Original Names . 37

5.1.3 Closure . 38

5.1.4 The Compilation System . 38

5.2 Module Implementations . 39

5.2.1 Export Lists . 39

5.2.2 Import De
larations . 41

5.3 Module Interfa
es . 42

5.3.1 Consisten
y . 42

5.3.2 Imports and Original Names . 44

5.4 Standard Prelude . 45

5.4.1 The PreludeCore Module . 45

5.4.2 The Prelude Module . 46

5.4.3 Shadowing Prelude Names and Non-Standard Preludes 46

5.5 Example . 47

5.6 Abstra
t Data Types . 47

5.7 Fixity De
larations . 48

6 Basi
 Types 49

6.1 Booleans . 49

6.2 Chara
ters and Strings . 49

6.3 Fun
tions . 50

6.4 Lists . 50

6.5 Tuples . 50

6.6 Binary Datatype . 50

6.7 Unit Datatype . 50

6.8 Numbers . 51

6.8.1 Introdu
tion . 51

6.8.2 Numeri
 Literals . 52

6.8.3 Constru
ted Numbers . 52

6.8.4 Arithmeti
 and Number-Theoreti
 Operations 55

6.8.5 Exponentiation and Logarithms . 56

6.8.6 Magnitude and Sign . 56

6.8.7 Trigonometri
 Fun
tions . 57

6.8.8 Coer
ions and Component Extra
tion 57

6.9 Arrays . 58

6.9.1 Array Constru
tion . 58

6.9.2 A

umulated Arrays . 60

6.9.3 In
remental Array Updates . 60

CONTENTS iii

6.9.4 Derived Arrays . 60

6.10 Errors . 61

7 Input/Output 62

7.1 I/O Modes . 64

7.1.1 Transparent Chara
ter Set . 65

7.1.2 Presentation . 65

7.1.3 A

eptan
e . 66

7.1.4 E
hoing . 66

7.2 File System Requests . 68

7.3 Channel System Requests . 69

7.4 Environment Requests . 70

7.5 Continuation-based I/O . 71

7.6 A Small Example . 74

A Standard Prelude 75

A.1 Prelude PreludeBuiltin . 76

A.2 Prelude PreludeCore . 77

A.3 Prelude PreludeRatio . 87

A.4 Prelude PreludeComplex . 88

A.5 Prelude PreludeList . 90

A.6 Prelude PreludeArray . 91

A.7 Prelude PreludeText . 92

A.8 Prelude PreludeIO . 101

B Syntax 105

B.1 Notational Conventions . 105

B.2 Lexi
al Syntax . 105

B.3 Layout . 106

B.4 Context-Free Syntax . 107

B.5 Interfa
e Syntax . 111

C Input/Output Semanti
s 112

C.1 Optional Requests . 116

D Spe
i�
ation of Derived Instan
es 118

D.1 Spe
i�
ation of showsPre
 . 122

D.2 Spe
i�
ation of readsPre
 . 123

D.3 An example . 125

iv CONTENTS

Prefa
e

\Some half dozen persons have written te
hni
ally on
ombinatory logi
, and

most of these, in
luding ourselves, have published something erroneous. Sin
e

some of our fellow sinners are among the most
areful and
ompetent logi
ians

on the
ontemporary s
ene, we regard this as eviden
e that the subje
t is re-

fra
tory. Thus fullness of exposition is ne
essary for a

ura
y; and ex
essive

ondensation would be false e
onomy here, even more than it is ordinarily."

Haskell B. Curry and Robert Feys

in the Prefa
e to Combinatory Logi
 [3℄, May 31, 1956

In September of 1987 a meeting was held at the
onferen
e on Fun
tional Programming

Languages and Computer Ar
hite
ture in Portland, Oregon, to dis
uss an unfortunate sit-

uation in the fun
tional programming
ommunity: there had
ome into being more than a

dozen non-stri
t, purely fun
tional programming languages, all similar in expressive power

and semanti
 underpinnings. There was a strong
onsensus at this meeting that more

widespread use of this
lass of fun
tional languages was being hampered by the la
k of a

ommon language. It was de
ided that a
ommittee should be formed to design su
h a

language, providing faster
ommuni
ation of new ideas, a stable foundation for real ap-

pli
ations development, and a vehi
le through whi
h others would be en
ouraged to use

fun
tional languages. This do
ument des
ribes the result of that
ommittee's e�orts: a

purely fun
tional programming language
alled Haskell, named after the logi
ian Haskell

B. Curry whose work provides the logi
al basis for mu
h of ours.

Goals

The
ommittee's primary goal was to design a language that satis�ed these
onstraints:

1. It should be suitable for tea
hing, resear
h, and appli
ations, in
luding building large

systems.

2. It should be
ompletely des
ribed via the publi
ation of a formal syntax and semanti
s.

3. It should be freely available. Anyone should be permitted to implement the language

and distribute it to whomever they please.

4. It should be based on ideas that enjoy a wide
onsensus.

5. It should redu
e unne
essary diversity in fun
tional programming languages.

The
ommittee hopes that Haskell
an serve as a basis for future resear
h in language

design. We hope that extensions or variants of the language may appear, in
orporating

experimental features.

CONTENTS v

This Report

This report is the oÆ
ial spe
i�
ation of the Haskell language and should be suitable for

writing programs and building implementations. It is not a tutorial on programming in

Haskell, so some familiarity with fun
tional languages is assumed. Being the �rst edition

of the spe
i�
ation, there may be some errors and in
onsisten
ies; beware.

The Next Stage

Haskell is a large and
omplex language, be
ause it is designed for a wide spe
trum of

purposes. It also introdu
es a major new te
hni
al innovation, namely using type
lasses

to handle overloading in a systemati
 way. This innovation permeates every aspe
t of the

language.

Haskell is bound to
ontain infeli
ities and errors of judgement. During the forth-

oming year we wel
ome your
omments, suggestions and
riti
isms on the language, or its

presentation in the report. Together with your input and our own experien
e of using the

language, we plan to meet in about a year's time to resolve diÆ
ulties and further stabilise

the design.

A
ommon mailing list for te
hni
al dis
ussion of Haskell
an be rea
hed at either

haskell�
s.yale.edu or haskell�
s.glasgow.a
.uk. Errata sheets for this report will

be posted there. To subs
ribe, send a request to haskell-request�
s.glasgow.a
.uk

(European residents) or haskell-request�
s.yale.edu (residents elsewhere).

We thought it would be helpful to identify the aspe
ts of the language design that

seem to be most �nely balan
ed, and hen
e are the most likely
andidates for
hange when

we review the language. The following list summarises these areas. It will only be fully

omprehensible after you have read the report.

Mutually re
ursive modules. Mutual re
ursion among modules is unrestri
ted at pre-

sent, whi
h is obviously desirable from the programmer's point of view, but whi
h poses

signi�
ant
hallenges to the
ompilation system. In parti
ular, it is not suÆ
ient to start

with trivial interfa
es for ea
h module and iterate to a �xpoint, as this example shows:

module F(f) where

import G

f [x℄ = g x

module G(g) where

import F

g = f

If a
ompilation system starts o� by giving F and G interfa
es that give the type signatures

f::a and g::b respe
tively, then
ompiling the two modules alternately will not rea
h a

vi CONTENTS

�xed point. In general, a
ompiler may need to analyse a set of mutually re
ursive modules

as a whole, rather than separately. This only happens if there is a type error, but it is

obviously undesirable behaviour.

Default methods. Se
tion 4.3.1 des
ribes how a
lass de
laration may in
lude default

methods for some of its operations. We
onsidered extending this so that a
lass de
laration

ould in
lude default methods for operations of its super
lasses, whi
h override the super-

lass's default method. This looks like an attra
tive idea, whi
h will
ertainly be
onsidered

for a future revision.

Defaults for ambiguous types. Se
tion 4.3.4 des
ribes how ambiguous typings, whi
h

arise due to the type-
lass system, are resolved. Ideally, the
hoi
e made should not matter.

For example,
onsider the expression if (length xs > 3) then E1 else E2. It should

not matter whether the length is
omputed in Int or Integer or even Float; a bad
hoi
e

ould result in a program be
oming unde�ned due to over
ow, or a less eÆ
ient program,

but if a result is produ
ed it will be
orre
t.

Our resolution rules strive only to resolve ambiguous types where the type
hosen does

not \matter" in this sense, but we have not been entirely su

essful, for example where

oating point is
on
erned. Further resear
h and pra
ti
al experien
e may suggest a better

set of rules.

Stati
 semanti
s of where bindings. In Haskell variables not bound to lambda ab-

stra
tions are not allowed to be overloaded in more than one way (Se
tion 4.4.2). This solves

two problems, whi
h are summarised below, but at the
ost of restri
ting expressiveness.

Only experien
e will tell how mu
h of a problem this is for the programmer.

These are the two problems. First, the expression (x,x) where x = fa
torial 1000

looks as though x should only be
omputed on
e, and this is the
ase. If x were used at

di�erent overloadings, however, fa
torial 1000 would be
omputed twi
e, on
e at ea
h

type. We have found examples where the loss of eÆ
ien
y is exponential in the size of

the program. Modest
ompiler optimisations
an often eliminate the problem, but we have

found no simple s
heme that
an guarantee to do so. The restri
tion solves the problem by

ensuring that all uses of x are at the same overloading, and its evaluation
an be shared as

usual.

Se
ond, a rather subtle form of type ambiguity (Se
tion 4.3.4) is eliminated by the

restri
tion to non-overloaded pattern bindings. An example is:

readNum s r = (n*r,s') where [(n,s')℄ = reads s

Here n::(Num a, Binary a) => a, s'::Binary a => Bin. If the de�nition of [(n,s')℄

is polymorphi
, the a's may be resolved as di�erent types.

CONTENTS vii

Overloaded
onstants. Overloaded
onstants (e.g. 1, whi
h has type Num a => a) are

extraordinarily
onvenient when programming, but are the sour
e of several serious te
h-

ni
al problems, in
luding both of those mentioned in the two pre
eding items. One
ould

eliminate overloaded
onstants altogether; we
onsidered this at length, and we are sure to

re
onsider it when we review the language.

Polymorphism in
ase expressions. The type of a variables bound by a Standard

ML
ase-expression is monomorphi
; we have made the same de
ision in Haskell (Se
-

tion 4.1.3). There is no te
hni
al reason why the type of su
h a variable should not be

polymorphi
; in su
h a
ase, the translation between where expressions and
ase expres-

sions would preserve the stati
 semanti
s.

We have erred on the side of
onservatism, but this de
ision will be reviewed. If imple-

mented, su
h a
hange would be upward-
ompatible.

A
knowledgements

We heartily thank these people for their useful
ontributions to this report: Lennart Au-

gustsson, Ri
hard Bird, Stephen Blott, Tom Blenko, Duke Bris
oe, Chris Cla
k, Guy

Cousineau, Tony Davie, Chris Fasel, Pat Fasel, Bob Hiromoto, Ni
 Holt, Simon B. Jones,

Stef Joosten, Mike Joy, Ri
hard Kelsey, Siau-Cheng Khoo, Amir Kishon, John Laun
hbury,

Olaf Lube
k, Randy Mi
helsen, Ri
k Mohr, Arthur Norman, Paul Otto, Larne Pekowsky,

John Peterson, Rinus Plasmeijer, John Robson, Colin Run
iman, Lauren Smith, Raman

Sundaresh, Tom Thomson, Pradeep Varma, Tony Warno
k, Stuart Wray, and Bonnie Yan-

tis. We also thank those who parti
ipated in the lively dis
ussions about Haskell on the

FP mailing list during an interim period of the design.

We owe a parti
ular debt to Mar��a Guzm�an at Yale and Will Partain at Glasgow, who

have spent many hours working on the details and typography of the report.

Finally, aside from the important foundational work laid by Chur
h, Rosser, Curry, and

others on the lambda
al
ulus, we wish to a
knowledge the in
uen
e of many noteworthy

programming languages developed over the years. Although it is diÆ
ult to pinpoint the

origin of many ideas, we parti
ularly wish to a
knowledge the in
uen
e of M
Carthy's Lisp

[8℄ (and its modern-day in
arnation, S
heme [13℄); Landin's ISWIM [7℄; Ba
kus' FP [1℄;

Gordon, Milner, and Wadsworth's ML [4℄; Burstall, Ma
Queen, and Sannella's Hope [2℄;

and Turner's series of languages
ulminating in Miranda [15℄.

1

Without these forerunners

Haskell would not have been possible.

The Haskell Committee

1 April 1990

1

Miranda is a trademark of Resear
h Software Ltd.

1

1 Introdu
tion

Haskell is a general purpose, purely fun
tional programming language in
orporating many

re
ent innovations in programming language resear
h, in
luding higher-order fun
tions,

non-stri
t semanti
s, stati
 polymorphi
 typing, user-de�ned algebrai
 data types, pattern-

mat
hing, list
omprehensions, a module system, and a ri
h set of primitive data types,

in
luding lists, arrays, arbitrary and �xed pre
ision integers, and
oating-point numbers.

Haskell is both the
ulmination and solidi�
ation of many years of resear
h on fun
tional

languages|the design has been in
uen
ed by languages as old as ISWIM and as new as

Miranda.

Although the initial emphasis was on standardisation, Haskell also has several new

features that both simplify and generalise the design. For example,

1. Rather than using ad ho
 te
hniques for overloading, Haskell provides an expli
it

overloading fa
ility, integrated with the polymorphi
 type system, that allows the

pre
ise de�nition of overloading behaviour for any operator or fun
tion.

2. The
onventional notion of \abstra
t data type" has been unbundled into two orthog-

onal
omponents: data abstra
tion and information hiding.

3. Haskell has a
exible I/O fa
ility that uni�es two popular styles of purely fun
tional

I/O|the stream model and the
ontinuation model|and both styles
an be mixed

within the same program. The system supports most of the standard operations

provided by
onventional operating systems while retaining referential transparen
y

within a program.

4. Re
ognising the importan
e of arrays, Haskell has a family of multi-dimensional non-

stri
t immutable arrays whose spe
ial intera
tion with list
omprehensions provides a

onvenient \array
omprehension" syntax for de�ning arrays monolithi
ally.

This report de�nes the syntax for Haskell programs and an informal abstra
t seman-

ti
s for the meaning of su
h programs; the formal abstra
t semanti
s is in preparation.

We leave as implementation dependent the ways in whi
h Haskell programs are to be

manipulated, interpreted,
ompiled, et
. This in
ludes su
h issues as the nature of bat
h

versus intera
tive programming environments, and the nature of error messages returned

for unde�ned programs (i.e. programs that formally evaluate to ?).

1.1 Program Stru
ture

In this se
tion, we des
ribe the abstra
t synta
ti
 and semanti
 stru
ture of Haskell, as

well as how it relates to the organisation of the rest of the report.

1. At the top-most level a Haskell program is a set of modules (des
ribed in Se
tion 5).

Modules provide a way to
ontrol namespa
es and to re-use software in large programs.

2 1 INTRODUCTION

2. The top level of a module
onsists of a
olle
tion of de
larations, of whi
h there are

several kinds, all des
ribed in Se
tion 4. De
larations de�ne things su
h as ordinary

values, data types, type
lasses, and �xity information.

3. At the next lower level are expressions, des
ribed in Se
tion 3. An expression denotes

a value and has a stati
 type; expressions are at the heart of Haskell programming

\in the small."

4. At the bottom level is Haskell's lexi
al stru
ture, de�ned in Se
tion 2. The lexi
al

stru
ture
aptures the
on
rete representation of Haskell programs in text �les.

This report pro
eeds bottom-up with respe
t to Haskell's synta
ti
 stru
ture.

The se
tions not mentioned above are Se
tion 6, whi
h des
ribes the standard built-

in datatypes in Haskell, and Se
tion 7, whi
h dis
usses the I/O fa
ility in Haskell

(i.e. how Haskell programs
ommuni
ate with the outside world). Also, there are several

appendi
es des
ribing the standard prelude, the
on
rete syntax, the semanti
s of I/O, and

the spe
i�
ation of derived instan
es.

1.2 The Haskell Kernel

Haskell has adopted many of the
onvenient synta
ti
 stru
tures that have be
ome popular

in fun
tional programming. In all
ases their formal semanti
s
an be given via translation

into a proper subset of Haskell
alled the Haskell kernel. It is essentially a slightly

sugared variant of the lambda
al
ulus with a straightforward denotational semanti
s. The

translation of ea
h synta
ti
 stru
ture into the kernel is given as the syntax is introdu
ed.

This modular design fa
ilitates reasoning about Haskell programs and provides useful

guidelines for implementors of the language.

1.3 Values and Types

An expression evaluates to a value and has a stati
 type. Values and types are not mixed

in Haskell. However, the type system allows user-de�ned datatypes of various sorts,

and permits not only parametri
 polymorphism (using a traditional Hindley-Milner type

stru
ture) but also ad ho
 polymorphism, or overloading (using type
lasses).

Errors in Haskell are semanti
ally equivalent to ?. Te
hni
ally, they are not distin-

guishable from non-termination, so the language in
ludes no me
hanism for dete
ting or

a
ting upon errors. Of
ourse, implementations will probably try to provide useful infor-

mation about errors.

1.4 Namespa
es

There are six kinds of names in Haskell: those for variables and
onstru
tors denote

values; those for type variables, type
onstru
tors, and type
lasses refer to entities related

to the type system; and module names refer to modules. There are three
onstraints on

naming:

1.5 Layout 3

1. Names for variables and type variables are identi�ers beginning with small letters; the

other four kinds of names are identi�ers beginning with
apitals.

2. Constru
tor operators are operators beginning with \:"; variable operators are oper-

ators not beginning with \:".

3. An identi�er must not be used as the name of a type
onstru
tor and a
lass in the

same s
ope.

These are the only
onstraints; for example, Int may simultaneously be the name of a

module,
lass, and
onstru
tor within a single s
ope.

Haskell provides a lexi
al syntax for in�x operators (either fun
tions or
onstru
tors).

To emphasise that operators are bound to the same things as identi�ers, and to allow the two

to be used inter
hangeably, there is a simple way to
onvert between the two: any fun
tion

or
onstru
tor identi�er may be
onverted into an operator by en
losing it in ba
kquotes,

and any operator may be
onverted into an identi�er by en
losing it in parentheses. For

example, x + y is equivalent to (+) x y, and f x y is the same as x �f� y. These lexi
al

matters are dis
ussed further in Se
tion 2.

Examples of Haskell program fragments in running text are given in typewriter font:

z+1 where x = 1

y = 2

z = x+y

\Holes" in program fragments representing arbitrary pie
es of Haskell
ode are written

in itali
s, as in if e

1

then e

2

else e

3

. Generally the itali
ised names will be mnemoni
,

su
h as e for expressions, d for de
larations, t for types, et
.

1.5 Layout

In the syntax given in the rest of the report, de
laration lists are always pre
eded by the

keyword where or of, and are en
losed within
urly bra
es ({ }) with the individual de
-

larations separated by semi
olons (;). For example, the syntax of a where expression is:

exp where { de
l

1

; de
l

2

; : : : ; de
l

n

}

Haskell permits the omission of the bra
es and semi
olons by using layout to
onvey

the same information. This allows both layout-sensitive and -insensitive styles of
oding,

whi
h
an be freely mixed within one program. Be
ause layout is not required, Haskell

programs may be me
hani
ally produ
ed by other programs.

The layout (or \o�-side") rule takes e�e
t whenever the open bra
e is omitted after the

keyword where or of. When this happens, the indentation of the next lexeme (whether or

not on a new line) is remembered and the omitted open bra
e is inserted (the whitespa
e

pre
eding the lexeme may in
lude
omments). For ea
h subsequent line, if it
ontains only

whitespa
e or is indented more, then the previous item is
ontinued (nothing is inserted);

4 1 INTRODUCTION

if it is indented the same amount, then a new item begins (a semi
olon is inserted); and if

it is indented less, then the de
laration list ends (a
lose bra
e is inserted). A
lose bra
e is

also inserted whenever the synta
ti

ategory
ontaining the de
laration list ends (i.e. if an

illegal lexeme is en
ountered at a point where a
lose bra
e would be legal, a
lose bra
e is

inserted). The layout rule will mat
h only those open bra
es that it has inserted; an open

bra
e that the user has inserted must be mat
hed by a
lose bra
e inserted by the user.

Given these rules, a single newline may a
tually terminate several de
laration lists. Also,

these rules permit:

f x = exp1 where a = 1; b = 2

g y = exp2

making a, b and g all part of the same de
laration list.

To fa
ilitate the use of layout at the top level of a module (several modules may reside

in one �le), the keyword module and the end-of-�le token are assumed to o

ur in
olumn

0 (whereas normally the �rst
olumn is 1). Otherwise, all top-level de
larations would have

to be indented.

As an example, Figure 1 shows a (somewhat
ontrived) module and Figure 2 shows

the result of applying the layout rule. Note in parti
ular: (a) the line beginning }};pop,

where the termination of the previous line invokes three appli
ations of the layout rule,

orresponding to the depth (3) of the nested where
lauses, (b) the
lose bra
e in the where

lause nested within the tuple, inserted be
ause the end of the tuple was dete
ted, and

(
) the
lose bra
e at the very end, inserted be
ause of the
olumn 0 indentation of the

end-of-�le token.

When
omparing indentations for standard Haskell programs, a �xed-width font with

this tab
onvention is assumed: tab stops are 8
hara
ters apart (with the �rst tab stop

in
olumn 9), and a tab
hara
ter
auses the insertion of enough spa
es (always � 1) to

align the
urrent position with the next tab stop. Parti
ular implementations may alter

this rule to a

ommodate variable-width fonts and alternate tab
onventions, but standard

Haskell programs (i.e. ones that are portable) must observe the rule.

1.5 Layout 5

module ASta
k(Sta
k, push, pop, top, size) where

data Sta
k a = Empty

| MkSta
k a (Sta
k a)

push :: a -> Sta
k a -> Sta
k a

push x s = MkSta
k x s

size :: Sta
k a -> Integer

size s = length (stkToLst s) where

stkToLst Empty = [℄

stkToLst (MkSta
k x s) = x:xs where xs = stkToLst s

pop :: Sta
k a -> (a, Sta
k a)

pop (MkSta
k x s) = (x, r where r = s) -- (pop Empty) is an error

top :: Sta
k a -> a

top (MkSta
k x s) = x -- (top Empty) is an error

Figure 1: A sample program

module ASta
k(Sta
k, push, pop, top, size) where

{data Sta
k a = Empty

| MkSta
k a (Sta
k a)

;push :: a -> Sta
k a -> Sta
k a

;push x s = MkSta
k x s

;size :: Sta
k a -> Integer

;size s = length (stkToLst s) where

{stkToLst Empty = [℄

;stkToLst (MkSta
k x s) = x:xs where {xs = stkToLst s

}};pop :: Sta
k a -> (a, Sta
k a)

;pop (MkSta
k x s) = (x, r where {r = s}) -- (pop Empty) is an error

;top :: Sta
k a -> a

;top (MkSta
k x s) = x -- (top Empty) is an error

}

Figure 2: Sample program with layout expanded

6 2 LEXICAL STRUCTURE

2 Lexi
al Stru
ture

In this se
tion, we des
ribe the low-level lexi
al stru
ture of Haskell. Most of the details

may be skipped in a �rst reading of the report.

2.1 Notational Conventions

These notational
onventions are used for presenting syntax:

[pattern℄ optional

fpatterng zero or more repetitions

(pattern) grouping

pat

1

j pat

2

hoi
e

pat

fpat

0

g

di�eren
e|elements generated by pat

ex
ept those generated by pat

0

fibona

i terminal syntax in typewriter font

Be
ause the syntax in this se
tion des
ribes lexi
al syntax, all whitespa
e is expressed

expli
itly; there is no impli
it spa
e between juxtaposed symbols. BNF-like syntax is used

throughout, with produ
tions having the form:

nonterm ! alt

1

j alt

2

j : : : j alt

n

Care must be taken in distinguishingmeta-logi
al syntax su
h as j and [: : :℄ from
on
rete

terminal syntax (given in typewriter font) su
h as | and [...℄, although usually the
ontext

makes the distin
tion
lear.

Haskell sour
e programs are
urrently biased toward the ASCII
hara
ter set, although

future Haskell standardisation e�orts will likely address broader
hara
ter standards.

2.2 Lexi
al Program Stru
ture

program ! f lexeme j whitespa
e g

lexeme ! varid j
onid j varop j
onop j literal j spe
ial j reservedop j reservedid

literal ! integer j
oat j
har j string

spe
ial ! (j) j , j ; j [j ℄ j _ j { j }

whitespa
e ! whitestu� fwhitestu� g

whitestu� ! newline j spa
e j tab j vertab j formfeed j
omment j n
omment

newline ! a newline (system dependent)

spa
e ! a spa
e

tab ! a horizontal tab

vertab ! a verti
al tab

formfeed ! a form feed

2.3 Identi�ers and Operators 7

omment ! -- fanyg newline

n
omment ! {- fwhitespa
e j any

f{- j -}g

g -}

any ! graphi
 j spa
e j tab

graphi
 ! large j small j digit

j ! j " j # j $ j % j & j � j (j) j * j +

j , j - j . j / j : j ; j < j = j > j ? j �

j [j \ j ℄ j ^ j _ j � j { j | j } j ~

small ! a j b j : : : j z

large ! A j B j : : : j Z

digit ! 0 j 1 j : : : j 9

Chara
ters not in the
ategory graphi
 or whitestu� are not valid in Haskell programs

and should result in a lexing error.

Comments are valid whitespa
e . Ordinary
omments begin with two
onse
utive dashes

(--) and extend to the following newline. Nested
omments are en
losed by {- and -} and

an be between any two lexemes. Thus any
ontiguous portion of Haskell program text

may be turned into a
omment, whether or not that portion
ontains
omments within it.

Nested
omments also provide a
onvenient method for implementing annotations.

2.3 Identi�ers and Operators

avarid ! (small fsmall j large j digit j � j _g)

freservedidg

varid ! avarid j (avarop)

a
onid ! large fsmall j large j digit j � j _g

onid ! a
onid j (a
onop)

reservedid !
ase j
lass j data j default j deriving j else j hiding

j if j import j infix j infixl j infixr j instan
e j interfa
e

j module j of j renaming j then j to j type j where

An identi�er
onsists of a letter followed by zero or more letters, digits, unders
ores, and

a
ute a

ents. Identi�ers are lexi
ally distinguished into two
lasses: those that begin

with a small letter (variable identi�ers) and those that begin with a
apital (
onstru
tor

identi�ers). Identi�ers are
ase sensitive: name, naMe, and Name are three distin
t identi�ers

(the �rst two are variable identi�ers, the last is a
onstru
tor identi�er).

avarop ! (symbol fsymbol j :g)

freservedopg

j -

varop ! avarop j �avarid�

a
onop ! (: fsymbol j :g)

freservedopg

onop ! a
onop j �a
onid�

symbol ! ! j # j $ j % j & j * j + j . j / j < j = j > j ? j � j \ j ^ j | j ~

reservedop ! .. j :: j => j = j � j \ j | j ~

8 2 LEXICAL STRUCTURE

An operator is either symboli
 or alphanumeri
. Symboli
 operators are formed from one

or more symbols, as de�ned above, and are lexi
ally distinguished into two
lasses: those

that start with a
olon (
onstru
tors) and those that do not (fun
tions).

Alphanumeri
 operators are formed by en
losing an identi�er between grave a

ents

(ba
kquote). Any variable or
onstru
tor may be used as an operator in this way. If fun

is an identi�er (either variable or
onstru
tor), then an expression of the form fun x y is

equivalent to x �fun� y . If no �xity de
laration is given for �fun� then it defaults to in�x

with highest pre
eden
e and left asso
iativity (see Se
tion 5.7).

Similarly, any symboli
 operator may be used as a (
urried) variable or
onstru
tor by

en
losing it in parentheses. If op is an in�x operator, then an expression or pattern of the

form x op y is equivalent to (op) x y .

No spa
es are permitted in names su
h as �fun� and (op).

All operators are in�x, although there is a spe
ial syntax for pre�x negation (see Se
-

tion 3.2). All of the standard in�x operators are just pre-de�ned symbols and may be

rebound.

Although
ase is reserved,
ases is not. Similarly, although = is reserved, == and =~

are not. At ea
h point, the longest possible lexeme is read. Any kind of whitespa
e is also

a proper delimiter for lexemes.

In the remainder of the report six di�erent kinds of names will be used:

var ! varid (variables)

on !
onid (
onstru
tors)

tyvar ! avarid (type variables)

ty
on ! a
onid (type
onstru
tors)

ty
ls ! a
onid (type
lasses)

modid ! a
onid (modules)

Variables and type variables are represented by identi�ers beginning with small letters, and

the other four by identi�ers beginning with
apitals; also, variables and
onstru
tors have

in�x forms, the other four do not. Namespa
es are dis
ussed further in Se
tion 1.4.

2.4 Numeri
 Literals

integer ! digitfdigitg

oat ! integer.integer [e[-℄integer ℄

There are two distin
t kinds of numeri
 literals: integer and
oating. A
oating literal

must
ontain digits both before and after the de
imal point; this ensures that a de
imal

point
annot be mistaken for another use of the dot
hara
ter. Negative numeri
 literals

are dis
ussed in Se
tion 3.2.

2.5 Chara
ter and String Literals 9

2.5 Chara
ter and String Literals

har ! � (graphi

f� j \g

j spa
e j es
ape

f\&g

) �

string ! " fgraphi

f" j \g

j spa
e j es
ape j gapg "

es
ape ! \ (
hares
 j as
ii j integer j o o
titfo
titg j x hexitfhexitg)

hares
 ! a j b j f j n j r j t j v j \ j " j � j &

as
ii ! ^
ntrl j NUL j SOH j STX j ETX j EOT j ENQ j ACK

j BEL j BS j HT j LF j VT j FF j CR j SO j SI j DLE

j DC1 j DC2 j DC3 j DC4 j NAK j SYN j ETB j CAN

j EM j SUB j ESC j FS j GS j RS j US j SP j DEL

ntrl ! large j � j [j \ j ℄ j ^ j _

gap ! \ ftab j spa
eg newline ftab j spa
eg \

hexit ! digit j A j B j C j D j E j F j a j b j
 j d j e j f

o
tit ! 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7

Chara
ter literals are written between a
ute a

ents, as in �a�, and strings between

double quotes, as in "Hello".

Es
ape
odes may be used in
hara
ters and strings to represent spe
ial
hara
ters. Note

that � may be used in a string, but must be es
aped in a
hara
ter; similarly, " may be used

in a
hara
ter, but must be es
aped in a string. \ must always be es
aped. The
ategory

hares
 also in
ludes portable representations for the
hara
ters \alert" (\a), \ba
kspa
e"

(\b), \form feed" (\f), \new line" (\n), \
arriage return" (\r), \horizontal tab" (\t), and

\verti
al tab" (\v).

Es
ape
hara
ters for the ASCII
hara
ter set, in
luding
ontrol
hara
ters su
h as \^X,

are also provided. Numeri
 es
apes su
h as \137 are used to designate the
hara
ter with

(implementation dependent) de
imal representation 137; o
tal (e.g. \o137) and hexade
imal

(e.g. \x137) representations are also allowed. Numeri
 es
apes that are out-of-range of the

ASCII standard are unde�ned and thus non-portable.

Consistent with the \
onsume longest lexeme" rule, numeri
 es
ape
hara
ters in strings

onsist of all
onse
utive digits and may be of arbitrary length. Similarly, the one ambiguous

ASCII es
ape
ode, "\SOH", is parsed as a string of length 1. The es
ape
hara
ter \& is

provided as a \null
hara
ter" to allow strings su
h as "\137\&9" and "\SO\&H" to be

onstru
ted (both of length two). Thus "\&" is equivalent to "" and the
hara
ter �\&� is

disallowed. Further equivalen
es of
hara
ters are de�ned in Se
tion 6.2.

A string may in
lude a \gap"|two ba
kslants en
losing one newline and any number of

blanks or spa
es|whi
h is ignored. This allows one to write long strings on more than one

line by writing a ba
kslant at the end of one line and at the start of the next. For example,

"Here is a ba
kslant \\ as well as \137, \

\a numeri
 es
ape
hara
ter, and \^X, a
ontrol
hara
ter."

String literals are a
tually abbreviations for lists of
hara
ters (see Se
tion 3.4).

10 3 EXPRESSIONS

3 Expressions

In this se
tion, we des
ribe the syntax and informal semanti
s of Haskell expressions,

in
luding their translations into the Haskell kernel where appropriate.

exp ! aexp

j exp aexp (fun
tion appli
ation)

j exp

1

op exp

2

(operator appli
ation)

j - aexp (pre�x -)

j \ apat

1

: : : apat

n

[gd ℄ -> exp (lambda abstra
tion; n � 1)

j if exp

1

then exp

2

else exp

3

(
onditional)

j exp where { de
ls } (where expression)

j
ase exp of { alts } (
ase expression)

j exp :: [
ontext =>℄ atype (expression type signature)

aexp ! var (variable)

j
on (
onstru
tor)

j literal

j () (unit)

j (exp) (parenthesised expression)

j (exp

1

, : : : , exp

k

) (tuple; k � 2)

j [exp

1

, : : : , exp

k

℄ (list; k � 0)

j [exp

1

[, exp

2

℄ .. [exp

3

℄ ℄ (arithmeti
 sequen
e)

j [exp | [qual ℄ ℄ (list
omprehension)

op ! varop j
onop

To disambiguate expressions, this pre
eden
e is established, from strongest to weakest:

fun
tion appli
ation

operator appli
ation (broken down into ten pre
eden
e levels|see Se
tion 5.7)

onditional expression

where expression

lambda abstra
tion

Expression type signatures are parsed as if :: were a left-asso
iative in�x operator with

pre
eden
e lower than any other operator. Negation is the only pre�x operator in Haskell;

it has the same pre
eden
e as fun
tion appli
ation. Sample parses using these rules are

shown below.

3.1 Curried Appli
ations and Lambda Abstra
tions 11

This Parses as

f x + g y (f x) + (g y)

- x + y (-x) + y

x + y where {...} (x + y) where {...}

if e1 then e2 else e3 where {...} (if e1 then e2 else e3) where {...}

\ x -> e1 where {...} \ x -> (e1 where {...})

f x y :: Int (f x y) :: Int

\ x -> a+b :: Int \ x -> ((a+b) :: Int)

3.1 Curried Appli
ations and Lambda Abstra
tions

exp ! exp aexp

j \ apat

1

: : : apat

n

[gd ℄ -> exp (n � 1)

gd ! | exp

Fun
tion appli
ation is written e

1

e

2

. Appli
ation asso
iates to the left, so the parentheses

may be omitted in (f x) y, for example. Be
ause e

1

ould be a
onstru
tor, partial

appli
ations of
onstru
tors are allowed.

Lambda abstra
tions are written \ p

1

: : : p

n

| g -> e, where the p

i

are patterns and

g is an optional guard (an expression whose type must be Bool). An expression su
h as

\x:xs->x is synta
ti
ally in
orre
t, and must be rewritten as \(x:xs)->x.

Translation: The lambda abstra
tion \ p

1

: : : p

n

| g -> e is equivalent to

\ x

1

: : : x

n

->
ase (x

1

, : : : , x

n

) of (p

1

, : : : , p

n

) | g -> e

where the x

i

are new identi�ers. Given this translation
ombined with the semanti
s of

ase expressions and pattern-mat
hing des
ribed in Se
tion 3.10, if the pattern fails to

mat
h then the result is ?.

The type of a variable bound by a lambda abstra
tion is monomorphi
, as is always the

ase in the Hindley-Milner type system.

3.2 Operator Appli
ations

exp ! exp

1

op exp

2

j - aexp (pre�x -)

The form e

1

op e

2

is the obvious in�x appli
ation of binary operator op to expressions e

1

and e

2

.

12 3 EXPRESSIONS

Although there are no pre�x operators in Haskell, the spe
ial form -e denotes pre�x

negation, and is simply syntax for negate e, where negate is as de�ned in the standard

prelude (see Table 1, page 52). Be
ause e1-e2 parses as an in�x appli
ation of the binary

operator -, one must write e1(-e2) for the alternative parsing. Similarly, (-) is syntax for

(\ x y -> x-y), as with any in�x operator, and does not denote (\ x -> -x)|one must

use negate for that.

Translation: e

1

op e

2

is equivalent to (op) e

1

e

2

. -e is equivalent to negate e

where negate, an operator in the
lass Num, is as de�ned in the standard prelude.

3.3 Conditionals

exp ! if exp

1

then exp

2

else exp

3

A
onditional expression has form if e

1

then e

2

else e

3

and returns the value of e

2

if the

value of e

1

is True, e

3

if e

1

is False, and ? otherwise.

Translation: if e

1

then e

2

else e

3

is equivalent to:

ase e

1

of { True -> e

2

; False -> e

3

}

where True and False are the two nullary
onstru
tors from the type Bool, as de�ned

in the standard prelude.

3.4 Lists

aexp ! [exp

1

, : : : , exp

k

℄ (k � 0)

Lists are written [e

1

, : : : , e

k

℄, where k � 0 ; the empty list is written [℄. Standard

operations on lists are given in the standard prelude (see Appendix A).

Translation: [e

1

, : : : , e

k

℄ is equivalent to

e

1

: (e

2

: (: : : (e

k

: [℄)))

where : and [℄ are
onstru
tors for lists, as de�ned in the standard prelude (see Se
-

tion 6.4). The types of e

1

through e

k

must all be the same (
all it t), and the type of

the overall expression is [t℄ (see Se
tion 4.1.1).

3.5 Tuples 13

3.5 Tuples

aexp ! (exp

1

, : : : , exp

k

) (k � 2)

Tuples are written (e

1

, : : : , e

k

), and may be of arbitrary length k � 2 . Standard

operations on tuples are given in the standard prelude (see Appendix A).

Translation: (e

1

, : : : , e

k

) for k � 2 is an instan
e of a k-tuple as de�ned in the

standard prelude, and requires no translation. If t

1

through t

k

are the types of e

1

through e

k

, respe
tively, then the type of the resulting tuple is (t

1

, : : : , t

k

) (see Se
-

tion 4.1.1).

3.6 Unit Expressions and Parenthesised Expressions

aexp ! ()

j (exp)

The form (e) is simply a parenthesised expression, and is equivalent to e. The form ()

has type () (see Se
tion 4.1.1); it is the only member of that type (it
an be thought of as

the \nullary tuple")|see Se
tion 6.7.

Translation: (e) is equivalent to e.

3.7 Arithmeti
 Sequen
es

aexp ! [exp

1

[, exp

2

℄ .. [exp

3

℄ ℄

The form [e

1

, e

2

.. e

3

℄ denotes an arithmeti
 sequen
e from e

1

in in
rements of e

2

� e

1

up to e

3

(if the in
rement is positive) or down to e

3

(if the in
rement is negative). An

in�nite list of e

1

's results if the in
rement is zero, and the empty list results if e

3

is less

than e

1

and the in
rement is positive, or if e

3

is greater than e

1

and the in
rement is

negative. If the
omma and e

2

are omitted, then the in
rement is 1; if e

3

is omitted, then

the sequen
e is in�nite.

Arithmeti
 sequen
es may be de�ned over any type in
lass Enum, in
luding Int, Integer,

and Char (see Se
tion 4.3.3). For example, ['a'..'z'℄ denotes the list of lower-
ase letters

in alphabeti
al order.

14 3 EXPRESSIONS

Translation: Arithmeti
 sequen
es satisfy these identities:

[e

1

.. ℄ = enumFrom e

1

[e

1

,e

2

.. ℄ = enumFromThen e

1

e

2

[e

1

..e

3

℄ = enumFromTo e

1

e

3

[e

1

,e

2

..e

3

℄ = enumFromThenTo e

1

e

2

e

3

where enumFrom, enumFromThen, enumFromTo, and enumFromThenTo are operations in

the
lass Enum as de�ned in the standard prelude (see Se
tion 4.3.1).

3.8 List Comprehensions

aexp ! [exp | [qual ℄ ℄

qual ! qual

1

, qual

2

j pat <- exp

j exp

Quali�ers (qual) are either generators of the form p <- e, where p is a pattern (see Se
-

tion 3.12) of type t and e is an expression of type [t℄; or guards, whi
h are arbitrary

expressions of type Bool.

A list
omprehension has the form [e | q

1

, : : : , q

n

℄ and returns the list of elements

produ
ed by evaluating e in the su

essive environments
reated by the nested, depth-�rst

evaluation of the generators in the quali�er list. Binding of variables o

urs a

ording to

the normal pattern-mat
hing rules (see Se
tion 3.12), and if a mat
h fails then that element

of the list is simply skipped over. Thus:

[x | xs <- [[(1,2),(3,4)℄, [(5,4),(3,2)℄ ℄,

(3,x) <- xs ℄

yields the list [4,2℄. If a quali�er is a guard, it must evaluate to True for the previous

pattern-mat
h to su

eed.

3.9 Where Expressions 15

Translation: List
omprehensions satisfy these identities, whi
h may be used as a

translation into the kernel:

[e | p <- l ℄ = map (\p -> e) l

[e | b ℄ = if b then [e℄ else [℄

[e | q

1

, q

2

℄ =
on
at [[e | q

2

℄ | q

1

℄

where e ranges over expressions, p ranges over irrefutable patterns, l ranges over list-

valued expressions, b ranges over boolean expressions, and q

1

and q

2

range over non-

empty lists of quali�ers. If p is a refutable pattern then the identity:

[e | p <- l ℄ = [e | ~p <- [x | x <- l, ok x℄ ℄

where ok p = True

ok _ = False

where x and ok are new identi�ers not appearing in e, p, or l . These four equations

uniquely de�ne list
omprehensions.

3.9 Where Expressions

exp ! exp where { de
ls }

Where expressions have the general form e where { d

1

; : : : ; d

n

}, and introdu
e a

nested, lexi
ally-s
oped, mutually-re
ursive list of de
larations. The s
ope of the de
la-

rations is the expression e and the right hand side of the de
larations. De
larations are

des
ribed in Se
tion 4. Pattern bindings are mat
hed lazily as irrefutable patterns.

Translation: The dynami
 semanti
s of the expression e

0

where { d

1

; : : : ; d

n

}

is
aptured by this translation: After removing all type signatures, ea
h de
laration d

i

is translated into an equation of the form p

i

= e

i

, where p

i

and e

i

are patterns and

expressions respe
tively, using the translation given in Se
tion 4.4.2. On
e done, these

identities hold, whi
h may be used as a translation into the kernel:

e

0

where {p

1

= e

1

; ...; p

n

= e

n

} = e

0

where (~p

1

,...,~p

n

) = (e

0

,...,e

n

)

e

0

where p = e

1

=
ase e

1

of ~p -> e

0

when no variable in p appears free in e

1

e

0

where p = e

1

= e

0

where p = fix (\~p -> e

1

)

where fix is the least �xpoint operator. Note the use of the irrefutable patterns in

the se
ond and third rules. This same semanti
s applies to the top-level of a program

that has been translated into a where expression as des
ribed in Se
tion 5. The stati

semanti
s of where expressions is des
ribed in Se
tion 4.4.2.

3.10 Case Expressions

exp !
ase exp of { alts }

16 3 EXPRESSIONS

alts ! alt

1

; : : : ; alt

n

(n � 1)

alt ! pat [gd ℄ -> exp

gd ! | exp

A
ase expression has the form

ase e of { p

1

| g

1

-> e

1

; ... ; p

n

| g

n

-> e

n

}

where ea
h
lause p

i

| g

i

-> e

i

onsists of a pattern p

i

, an optional guard g

i

, and a body e

i

(an expression). There must be at least one
lause, and ea
h pattern must be linear|no

variable is allowed to appear more than on
e. Ea
h body must have the same type, and the

type of the whole expression is that type.

A
ase expression is evaluated by pattern-mat
hing the expression e against the indi-

vidual
lauses. The mat
hes are tried sequentially, from top to bottom. The �rst su

essful

mat
h
auses evaluation of the
orresponding
lause body, in the environment of the
ase

expression extended by the bindings
reated during the mat
hing of that
lause. If no mat
h

su

eeds, the result is ?. Pattern mat
hing is des
ribed in Se
tion 3.12.

3.11 Expression Type-Signatures

exp ! aexp :: [
ontext =>℄ atype

Expression type-signatures are used to type an expression expli
itly and may be used to

resolve ambiguous typings due to overloading (see Se
tion 4.3.4). The value of the expression

is just that of aexp. As with normal type signatures (see Se
tion 4.4.1), the de
lared type

may be more spe
i�
 than the prin
ipal typing derivable from aexp, but it is an error to give

a typing that is more general than, or not
omparable to, the prin
ipal typing. Also, every

type variable appearing in a signature is universally quanti�ed only over that signature.

This last
onstraint implies that signatures su
h as:

\ x -> ([x℄ :: [a℄)

are not valid, sin
e this de
lares [x℄ to be of type (8 a)[a℄, whi
h is not a valid polymorphi

type (it
ontains only ?, the empty list, and lists just
ontaining ?). In
ontrast, this is

valid:

(\ x -> [x℄) :: a -> [a℄

3.12 Pattern-Mat
hing

Patterns appear in lambda abstra
tions, fun
tion de�nitions, pattern bindings, list
ompre-

hensions, and
ase expressions. However, the �rst four of these ultimately translate into

ase expressions, so it suÆ
es to restri
t the de�nition of the semanti
s of pattern-mat
hing

to
ase expressions.

3.12 Pattern-Mat
hing 17

3.12.1 Patterns

Patterns have this syntax:

pat ! apat

j
on apat

1

: : : apat

k

(arity
on = k � 1)

j pat

1

onop pat

2

(in�x
onstru
tor)

j var + integer (su

essor pattern)

j [- ℄ integer

apat ! var [� apat ℄ (as pattern)

j
on (arity
on = 0)

j integer j
oat j
har j string (literals)

j _ (wild
ard)

j () (unit pattern)

j (pat) (parenthesised pattern)

j (pat

1

, : : : , pat

k

) (tuple patterns; k � 2)

j [pat

1

, : : : , pat

k

℄ (list patterns; k � 0)

j ~ apat (irrefutable pattern)

The arity of a
onstru
tor must mat
h the number of sub-patterns asso
iated with it; one

annot mat
h against a partially-applied
onstru
tor.

Patterns of the form var�pat are
alled as-patterns, and allow one to use var as a name

for the value being mat
hed by pat . For example,

ase e of

xs�(x:rest) -> if x==0 then rest else xs

is equivalent to:

ase e of

xs -> if x == 0 then rest else xs

where (x:rest) = xs

This transformation of a
ase expression is always valid, and is assumed done prior to the

pattern-mat
hing semanti
s given below.

Patterns of the form _ are wild
ards and are useful when some part of a pattern is not

referen
ed on the right-hand-side. It is as if an identi�er not used elsewhere were put in its

pla
e. For example,

ase e of

[x,_,_℄ -> if x==0 then True else False

is equivalent to:

ase e of

[x,y,z℄ -> if x==0 then True else False

where y and z are identi�ers not used elsewhere. This translation is also assumed prior to

the semanti
s given below.

18 3 EXPRESSIONS

In the pattern-mat
hing rules given below we distinguish two kinds of patterns: an

irrefutable pattern is either a variable, a wild
ard, or a pattern of form ~apat ; all other

patterns are refutable.

3.12.2 Informal semanti
s of pattern-mat
hing

Patterns are mat
hed against values. Attempting to mat
h a pattern
an have one of three

results: it may fail ; it may su

eed, returning a binding for ea
h variable in the pattern; or

it may diverge (i.e. return ?). Pattern-mat
hing pro
eeds from left to right, and outside in,

a

ording to these rules:

1. Mat
hing a value v against the irrefutable pattern var always su

eeds and binds var

to v . Similarly, mat
hing v against the irrefutable pattern ~apat always su

eeds.

The free variables in apat are bound to the appropriate values if mat
hing v against

apat would otherwise su

eed, and to ? if mat
hing v against apat fails or diverges.

(Binding does not imply evaluation.)

Operationally, this means that no mat
hing is done on an irrefutable pattern until one

of the variables in the pattern is used. At that point the entire pattern is mat
hed

against the value, and if the mat
h fails or diverges, so does the overall
omputation.

2. Mat
hing ? against a refutable pattern always diverges.

3. Mat
hing a non-? value
an o

ur against two kinds of refutable patterns:

(a) Mat
hing a non-? value against a
onstru
ted pattern fails if the outermost

onstru
tors are di�erent. If the
onstru
tors are the same, the result of the

mat
h is the result of mat
hing the sub-patterns left-to-right: if all mat
hes

su

eed, the overall mat
h su

eeds; the �rst to fail or diverge
auses the overall

mat
h to fail or diverge, respe
tively.

Constru
ted values
onsist of those
reated by pre�x or in�x
onstru
tors, tuple

or list patterns, and strings (whi
h are lists of
hara
ters). Also, literals (
hara
-

ters, positive and negative integers, and the unit value ()) are treated as nullary

onstru
tors.

(b) Mat
hing a non-? value n against a pattern of the form x+k (where x is a variable

and k is a positive integer literal) su

eeds if n � k , resulting in the binding of x

to n � k , and fails if n < k . For example, the Fibona

i fun
tion may be de�ned

as follows:

fib n =
ase n of

0 -> 1

1 -> 1

n+2 -> fib n + fib (n+1)

Sin
e n must be bound to a positive value, fib diverges for a negative argument,

and exa
tly one of the equations mat
hes any non-negative argument.

3.12 Pattern-Mat
hing 19

Aside from the obvious stati
 type
onstraints (for example, it is a stati
 error to mat
h

a
hara
ter against an integer), these stati

lass
onstraints hold: an integer literal pattern

an only be mat
hed against a value in the
lass Num; a
oating literal pattern
an only be

mat
hed against a value in the
lass Fra
tional; and a n+k pattern
an only be mat
hed

against a value in the
lass Integral.

Here are some simple examples:

1. If the pattern [1,2℄ is mat
hed against [0,?℄, then 1 fails to mat
h against 0, and

the result is a failed mat
h. But if [1,2℄ is mat
hed against [?,0℄, then attempting

to mat
h 1 against ?
auses the mat
h to diverge.

2. These examples demonstrate refutable vs. irrefutable mat
hing:

(\ ~(x,y) -> 0) ?) 0

(\ (x,y) -> 0) ?) ?

(\ ~[x℄ -> 0) [℄) 0

(\ ~[x℄ -> x) [℄) ?

(\ ~[x,~(a,b)℄ -> x) [0,?℄) 0

(\ ~[x, (a,b)℄ -> x) [0,?℄) ?

(\ (x:xs) -> x:x:xs) ?) ?

(\ ~(x:xs) -> x:x:xs) ?) ?:?:?

Top level patterns in lambda expressions and
ase expressions, and the set of top level

patterns in fun
tion or operator bindings, may have an asso
iated guard. A guard is a

boolean expression that is evaluated only after all of the arguments have been su

essfully

mat
hed, and it must be true for the overall pattern-mat
h to su

eed. The s
ope of the

guard is the same as the right-hand-side of the lambda expression,
ase expression
lause,

or fun
tion de�nition to whi
h it is atta
hed.

The guard semanti
s has an obvious in
uen
e on the stri
tness
hara
teristi
s of a

fun
tion or
ase expression. In parti
ular, an otherwise irrefutable pattern may be evaluated

due to the presen
e of a guard. For example, in

f ~(x,y,z) [a℄ | a==y = 1

both a and y will be evaluated.

3.12.3 Formal semanti
s of pattern-mat
hing

The semanti
s of all other
onstru
ts whi
h use pattern-mat
hing is de�ned by giving iden-

tities that relate them to
ase expressions.

The semanti
s of
ase expressions are given as a series of identities that they satisfy.

Figure 3 shows the identities: e, e

0

and e

i

are arbitrary expressions; g and g

i

are boolean-

valued expressions; p and p

i

are patterns; x and x

i

are variables; K and K

0

are
onstru
tors

(in
luding tuple
onstru
tors); and k is an integer literal.

20 3 EXPRESSIONS

ase e

0

of {p

1

| g

1

-> e

1

; : : : ; p

n

| g

n

-> e

n

}

=
ase e

0

of

p

1

| g

1

-> e

1

_ -> : : :
ase e

0

of

p

n

| g

n

-> e

n

_ -> error "Unexpe
ted
ase"

ase e

0

of {p | g -> e; _ -> e

0

}

=
ase e

0

of {p -> if g then e else e

0

; _ -> e

0

}

ase e

0

of {~p -> e; _ -> e

0

}

=
ase e

0

of

x

0

->
ase (
ase x

0

of p -> x

1

) of

x

1

-> : : :
ase (
ase x

n

of p -> x

n

) of

x

n

-> e

(when x

1

; : : : ; x

n

are all the variables in p, and

x

0

is a new variable not free in e)

ase e

0

of {x�p -> e; _ -> e

0

}

=
ase e

0

of {x ->
ase x of {p -> e ; _ -> e

0

}}

ase e

0

of {_ -> e; _ -> e

0

}

= e

ase e

0

of {Kp

1

: : : p

n

-> e; _ -> e

0

}

=
ase e

0

of

Kx

1

: : : x

n

->
ase x

1

of

p

1

-> : : :
ase x

n

of

p

n

-> e

_ -> e

0

: : :

_ -> e

0

_ -> e

0

(when x

1

; : : : ; x

n

are new variables not in p

1

; : : : ; p

n

or free in e

1

; : : : ; e

n

)

ase e

0

of {k -> e; _ -> e

0

}

= if (k == e

0

) then e else e

0

ase e

0

of {x+k -> e; _ -> e

0

}

= if (e

0

>= k) then (
ase (e

0

-k) of {x -> e}) else e

0

ase e

0

of {x -> e; _ -> e

0

}

=
ase e

0

of {x -> e}

ase e

0

of {x -> e}

= (\x -> e) e

0

ase (K

0

e

1

: : : e

m

) of {K x

1

: : : x

n

-> e; _ -> e

0

}

= e

0

(when K and K

0

are distin
t
onstru
tors of arity n and m respe
tively)

ase (K e

1

: : : e

n

) of {K x

1

: : : x

n

-> e; _ -> e

0

}

=
ase e

1

of { x

1

-> : : :
ase e

n

of { x

n

-> e } : : :}

(when K is a
onstru
tor of arity n)

Figure 3: Semanti
s of Case Expressions

3.12 Pattern-Mat
hing 21

Using all but the last two identities in Figure 3 in a left-to-right manner yields a trans-

lation into a subset of general
ase expressions,
alled simple
ase expressions. The �rst

identity mat
hes a general sour
e-language
ase expression, regardless of whether it a
tually

in
ludes guards|if no guards are written, then True is substituted for the g

i

. Subsequent

identities manipulate the resulting
ase expression into simpler and simpler forms. The

semanti
s of simple
ase expressions is given by the last two identities.

When used as a translation, the identities in Figure 3 will generate a very ineÆ
ient

program. This
an be �xed by using further
ase or where expressions, but doing so would

lutter the identities, whi
h are intended only to
onvey the semanti
s.

These identities all preserve the stati
 semanti
s. The third rule from last uses a lambda

rather than a where; this indi
ates that variables bound by
ase are monomorphi
ally typed

(Se
tion 4.1.3).

22 4 DECLARATIONS AND BINDINGS

4 De
larations and Bindings

In this se
tion, we des
ribe the syntax and informal semanti
s of Haskell de
larations.

module ! module modid [exports℄ where body

j body

body ! { [impde
ls ;℄ [�xde
ls ;℄ topde
ls }

j { impde
ls }

topde
ls ! topde
l

1

; : : : ; topde
l

n

(n � 1)

topde
l ! type [
ontext =>℄ simple = type

j data [
ontext =>℄ simple =
onstrs [deriving (ty
ls j (ty
lses))℄

j
lass [
ontext =>℄
lass [where {
de
ls }℄

j instan
e [
ontext =>℄ ty
ls inst [where { de
ls }℄

j default (type j (type

1

, : : : , type

n

)) (n � 0)

j de
l

de
ls ! de
l

1

; : : : ; de
l

n

(n � 1)

de
l ! vars :: [
ontext =>℄ type

j valdef

The de
larations in the synta
ti

ategory topde
ls are only allowed at the top level of

a Haskell module (see Se
tion 5), whereas de
ls may be used either at the top level or in

nested s
opes (i.e. those within a where expression).

For exposition, we divide the de
larations into three groups: user-de�ned datatypes,
on-

sisting of type and data de
larations (Se
tion 4.2); type
lasses and overloading,
onsisting

of
lass, instan
e, and default de
larations (Se
tion 4.3); and nested de
larations,
on-

sisting of value bindings and type signatures (Se
tion 4.4). The module de
laration, along

with import and in�x de
larations, is des
ribed in Se
tion 5.

Haskell has several primitive datatypes that are \hard-wired" (su
h as integers and

arrays), but most \built-in" datatypes are de�ned in the standard prelude with normal

Haskell
ode, using type and data de
larations (see Se
tion 4.2). These \built-in"

datatypes are des
ribed in detail in Se
tion 6.

4.1 Overview of Types and Classes

Haskell uses a traditional Hindley-Milner polymorphi
 type system to provide a stati

type semanti
s [5, 9℄, but the type system has been extended with type
lasses (or just

lasses) that provide a stru
tured way to introdu
e overloaded fun
tions. This is the major

te
hni
al innovation in the Haskell language.

A
lass de
laration (Se
tion 4.3.1) introdu
es a new type
lass and the overloaded

operations that must be supported by any type that is an instan
e of that
lass. An

instan
e de
laration (Se
tion 4.3.2) de
lares that a type is an instan
e of a
lass and

4.1 Overview of Types and Classes 23

in
ludes the de�nitions of the overloaded operations|
alled methods|instantiated on the

named type.

For example, suppose we wish to overload the operations (+) and negate on types Int

and Float. We introdu
e a new type
lass
alled Num:

lass Num a where -- simplified
lass de
laration for Num

(+) :: a -> a -> a

negate :: a -> a

This de
laration may be read \a type a is an instan
e of the
lass Num if there are (over-

loaded) operations (+) and negate, of the appropriate types, de�ned on it."

We may then de
lare Int and Float to be instan
es of this
lass:

instan
e Num Int where -- simplified instan
e of Num Int

x + y = addInt x y

negate x = negateInt x

instan
e Num Float where -- simplified instan
e of Num Float

x + y = addFloat x y

negate x = negateFloat x

where addInt, negateInt, addFloat, and negateFloat are assumed in this
ase to be

primitive fun
tions, but in general
ould be any user-de�ned fun
tion. The �rst de
laration

above may be read \Int is an instan
e of the
lass Num as witnessed by these de�nitions

(i.e. methods) for (+) and negate."

4.1.1 Syntax of Types

type ! atype

j type

1

-> type

2

j ty
on atype

1

: : : atype

k

(arity ty
on = k � 1)

atype ! tyvar

j ty
on (arity ty
on = 0)

j () (unit type)

j (type) (parenthesised type)

j (type

1

, : : : , type

k

) (tuple type; k � 2)

j [type ℄

tyvar ! avarid

ty
on ! a
onid

A type expression is built in the usual way from type variables, fun
tion types, type

onstru
tors, tuple types, and list types. Type variables are identi�ers beginning with a

lower-
ase letter and type
onstru
tors are identi�ers beginning with an upper-
ase letter.

A type is one of:

24 4 DECLARATIONS AND BINDINGS

1. A fun
tion type having form t

1

-> t

2

. Fun
tion arrows asso
iate to the right.

2. A
onstru
ted type having form T t

1

: : : t

k

, where T is a type
onstru
tor of arity k .

3. A tuple type having form (t

1

, : : : , t

k

) where k � 2 . It denotes the type of k -tuples

with the �rst
omponent of type t

1

, the se
ond
omponent of type t

2

, and so on (see

Se
tions 3.5 and 6.5).

4. A list type has the form [t℄. It denotes the type of lists with elements of type t (see

Se
tions 3.4 and 6.4).

5. The trivial type having form (). It denotes the \degenerate tuple" type, and has

exa
tly one value, also written () (see Se
tions 3.6 and 6.7).

6. A parenthesised type having form (t), identi
al to the type t .

Although the tuple, list, and trivial types have spe
ial syntax, they are not di�erent

from user-de�ned types with equivalent fun
tionality.

Expressions and types have a
onsistent syntax. If t

i

is the type of expression or pattern

e

i

, then the expressions \ e

1

-> e

2

, [e

1

℄, and (e

1

; e

2

) have the types t

1

-> t

2

, [t

1

℄, and

(t

1

; t

2

), respe
tively.

4.1.2 Syntax of Class Assertions and Contexts

ontext !
lass

j (
lass

1

, : : : ,
lass

n

) (n � 1)

lass ! ty
ls tyvar

ty
ls ! a
onid

tyvar ! avarid

A
lass assertion has form ty
ls tyvar , and indi
ates the membership of the parameterised

type tyvar in the
lass ty
ls . A
lass identi�er begins with a
apital letter.

A
ontext
onsists of one or more
lass assertions, and has the general form

(C

1

u

1

; : : : ; C

n

u

n

)

where C

1

; : : : ; C

n

are
lass identi�ers, and u

1

; : : : ; u

n

are type variables; the parentheses

may be omitted when n = 1 . In general, we use
 to denote a
ontext and we write
 => t

to indi
ate the type t restri
ted by the
ontext
 (where type variables in
 are s
oped only

over
 => t). For
onvenien
e, we write
 => t even if the
ontext
 is empty, although in

this
ase the
on
rete syntax
ontains no =>.

4.1 Overview of Types and Classes 25

4.1.3 Semanti
s of Types and Classes

In this subse
tion, we provide informal details of the type system. (Wadler and Blott [17℄

dis
uss type
lasses further.)

A type is a monotype if it
ontains no type variables, and is monomorphi
 if it
ontains

type variables but is not polymorphi
 (in Milner's original terminology, it is monomorphi

if it
ontains no generi
 type variables).

A phrase of the form e ::
 => t is
alled a typing, and is valid if in the
urrent envi-

ronment it is a well-typing. Typings are related by a generalisation order (spe
i�ed below);

the most general well-typing is
alled the prin
ipal typing.

Haskell's extended Hindley-Milner type system
an infer the prin
ipal typing of all

expressions, in
luding the proper use of overloaded operations (although
ertain ambiguous

overloadings
ould arise, as des
ribed in Se
tion 4.3.4). Therefore, expli
it typings (
alled

type signatures) are optional (see Se
tions 3.11 and 4.4.1).

A well-typing e ::
 => t depends on the type environment that gives typings for the

free variables in e. An instantiation of a well-typing is a typing that results from substituting

types for some of the free type variables; the validity of an instantiation also depends on

a
lass environment that de
lares whi
h types are members of what
lass (a type be
omes

a member of a
lass only via the presen
e of a (possibly derived) instan
e de
laration).

1

=> t

1

is a valid instantiation of the typing

2

=> t

2

if and only if there is a substitution

S su
h that:

� t

1

is identi
al to S (t

2

).

� Whenever

1

holds in the
lass environment, S (

2

) also holds.

This notion of instantiation
aptures the generalisation order on types mentioned earlier.

The main point about
ontexts above is that, given the typing x ::
 => t , the presen
e

of C u in the
ontext
 expresses the
onstraint that u may be instantiated as t

0

within

the type expression t only if t

0

is a member of the
lass C . For example,
ontexts appear

in type and data de
larations, where they have the typi
al form

type
 => T u

1

... u

k

= ...

data
 => T u

1

... u

k

= ...

The
ontext portion of ea
h of these de
larations de
lares that a type (T t

1

: : : t

k

) is only

valid where
[t

1

=u

1

; : : : ; t

k

=u

k

℄ holds.

As an example,
onsider:

type (Num a) => Point a = (a, a)

origin :: Point Integer

origin = (0, 0)

s
ale :: (Num a) => a -> Point a -> Point a

s
ale w (x,y) = (w*x, w*y)

26 4 DECLARATIONS AND BINDINGS

The typing for origin is valid be
ause Num Integer holds, and the typing for s
ale is

valid be
ause Point a is in the s
ope of the
ontext Num a. On the other hand,

s
ale :: a -> Point a -> Point a

is not a valid typing, be
ause Point a is not in the s
ope of a
ontext asserting Num a.

4.2 User-De�ned Datatypes

In this se
tion, we des
ribe type synonyms (type de
larations) and algebrai
 datatypes

(data de
larations). These de
larations may only appear at the top level of a module.

In the
on
rete syntax of these de
larations there is an optional
ontext, with syntax

\
ontext =>", related to overloading and type
lasses. In this se
tion, we give syntax for

but ignore semanti
s of
ontexts, returning to them in Se
tion 4.3.

4.2.1 Algebrai
 Data Type De
larations

topde
l ! data [
ontext =>℄ simple =
onstrs [deriving (ty
ls j (ty
lses))℄

simple ! ty
on tyvar

1

: : : tyvar

k

(arity ty
on = k � 0)

onstrs !
onstr

1

| : : : |
onstr

n

(n � 1)

onstr !
on atype

1

: : : atype

k

(arity
on = k � 0)

j type

1

onop type

2

(in�x
onop)

ty
lses ! ty
ls

1

, : : : , ty
ls

n

(n � 0)

The pre
eden
e for
onstr is the same as that for expressions|normal
onstru
tor appli-

ation has higher pre
eden
e than in�x
onstru
tor appli
ation (thus a : Foo a parses as

a : (Foo a)).

An algebrai
 datatype de
laration introdu
es a new type and
onstru
tors over that

type and has the form:

data T u

1

: : : u

k

= K

1

t

11

: : : t

1k

1

| � � � | K

n

t

n1

: : : t

nk

n

de�ning a new type
onstru
tor T with
onstituent data
onstru
tors K

1

; : : : ; K

n

whose

typings are:

K

i

:: t

i1

-> � � � ->t

ik

i

->(T u

1

: : : u

k

)

The type variables u

1

through u

k

must be distin
t and are s
oped only over the right-hand-

side of the de
laration; it is a stati
 error for any other type variable to appear on the

right-hand-side.

The visibility of a datatype's
onstru
tors (i.e. the \abstra
tness" of the datatype) out-

side of the module in whi
h the datatype is de�ned is
ontrolled by the form of the datatype's

name in the export list as des
ribed in Se
tion 5.6.

The optional deriving part of a data de
laration has to do with derived instan
es, and

is des
ribed in Se
tion 4.3.3.

4.3 Type Classes and Overloading 27

4.2.2 Type Synonym De
larations

topde
l ! type [
ontext =>℄ simple = type

simple ! ty
on tyvar

1

: : : tyvar

k

(arity ty
on = k � 0)

A type synonym de
laration introdu
es a new type that is equivalent to an old type and

has the form

type T u

1

: : : u

k

= t

whi
h introdu
es a new type
onstru
tor, T . The type (T t

1

: : : t

k

) is equivalent to the

type t [t

1

=u

1

; : : : ; t

k

=u

k

℄. The type variables u

1

through u

k

must be distin
t and are s
oped

only over t ; it is a stati
 error for any other type variable to appear in t .

Although re
ursive and mutually re
ursive datatypes are allowed, this is not so for type

synonyms, unless an algebrai
 datatype intervenes. For example,

type Re
 a = [Cir
 a℄

data Cir
 a = Tag [Re
 a℄

is allowed, whereas

type Re
 a = [Cir
 a℄ -- ILLEGAL

type Cir
 a = [Re
 a℄ --

is not. Similarly, type Re
 a = [Re
 a℄ is not allowed.

4.3 Type Classes and Overloading

4.3.1 Class De
larations

topde
l !
lass [
ontext =>℄
lass [where {
de
ls }℄

de
ls !
de
l

1

; : : : ;
de
l

n

(n � 1)

de
l ! vars :: type

j valdef

lass ! ty
ls tyvar

ty
ls ! a
onid

tyvar ! avarid

vars ! var

1

, : : : , var

n

(n � 1)

A
lass de
laration introdu
es a new
lass and the operations on it. A
lass de
laration

has the form:

lass
 => C u where { v

1

:: t

1

; : : : ; v

n

:: t

n

;

valdef

1

; : : : ; valdef

m

}

This introdu
es a new
lass name C ; the type variable u is unique to, and only s
oped

within, the immediate
lass de
laration. The
ontext
 spe
i�es the super
lasses of C , as

28 4 DECLARATIONS AND BINDINGS

des
ribed below. The de
laration also introdu
es new operations v

1

; : : : ; v

n

, whose s
ope

extends outside the
lass de
laration, with typings:

v

i

:: C u => t

i

Note the impli
it
ontext in the typings for ea
h v

i

. Two
lasses in s
ope at the same time

may not share any of the same operations.

Default methods for any of the v

i

may be in
luded in the
lass de
laration as a normal

valdef ; no other de�nitions are permitted. The default method for v

i

is used if no binding

for it is given in a parti
ular instan
e de
laration (see Se
tion 4.3.2).

Figure 4 shows some standard Haskell
lasses, in
luding the use of super
lasses; note

the
lass in
lusion diagram on the right. For example, Eq is a super
lass of Ord, and thus

in any
ontext Ord a is equivalent to (Eq a, Ord a).

A
lass de
laration with no where part may be useful for
ombining a
olle
tion of

lasses into a larger one that inherits all of the operations in the original ones. For example,

lass (Ord a, Text a, Binary a) => Data a

In su
h a
ase, if a type is an instan
e of all super
lasses, it is not automati
ally an instan
e

of the sub
lass, even though the sub
lass has no immediate operations. The instan
e

de
laration must be given expli
itly, and it must have an empty where part as well.

The super
lass relation must not be
y
li
; i.e. it must form a dire
ted a
y
li
 graph.

4.3.2 Instan
e De
larations

topde
l ! instan
e [
ontext =>℄ ty
ls inst [where { de
ls }℄

inst ! ty
on (arity ty
on = 0)

j (ty
on tyvar

1

: : : tyvar

k

) (arity ty
on = k > 0)

j (tyvar

1

, : : : , tyvar

k

) k � 2

j ()

j [tyvar ℄

j tyvar

1

-> tyvar

2

ty
ls ! a
onid

An instan
e de
laration introdu
es an instan
e of a
lass. Let

lass
 => C u where { v

1

:: t

1

; : : : ; v

n

:: t

n

}

be a
lass de
laration. The general form of the
orresponding instan
e de
laration is:

instan
e

0

=> C (T u

1

: : : u

k

) where { d }

where k � 0 and T is not a type synonym. The
ontext

0

must imply the
ontext

[(T u

1

: : : u

k

)=u℄, and d may
ontain bindings (i.e. methods) only for v

1

through v

n

.

4.3 Type Classes and Overloading 29

lass Eq a where

(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)

lass (Eq a) => Ord a where

(<), (<=), (>=), (>) :: a -> a -> Bool

max, min :: a -> a -> a

x < y = x <= y && x /= y

x >= y = y <= x

x > y = y < x

max x y | x >= y = x

| y >= x = y

min x y | x <= y = x

| y <= x = y

lass Text a where

showsPre
 :: Int -> a -> String -> String

readsPre
 :: Int -> String -> [(a,String)℄

showList :: [a℄ -> String -> String -- Eq Text Binary

readList :: String -> [([a℄,String)℄ -- |

-- Ord

showList = ... -- see Appendix A.7 -- |

readList = ... -- see Appendix A.7 -- Ix

-- |

lass Binary a where -- Enum

showBin :: a -> Bin -> Bin --

readBin :: Bin -> (a,Bin) -- (Cf. Figures 7-9)

lass (Ord a) => Ix a where

range :: (a,a) -> [a℄

index :: (a,a) -> a -> Int

inRange :: (a,a) -> a -> Bool

lass (Ix a) => Enum a where

enumFrom :: a -> [a℄ -- [n..℄

enumFromThen :: a -> a -> [a℄ -- [n,n'..℄

enumFromTo :: a -> a -> [a℄ -- [n..m℄

enumFromThenTo :: a -> a -> a -> [a℄ -- [n,n'..m℄

enumFromTo n m = takeWhile ((>=) m) (enumFrom n)

enumFromThenTo n n' m = takeWhile

((if n' >= n then (>=) else (<=)) m)

(enumFromThen n n')

Figure 4: Standard Classes and Asso
iated Fun
tions

30 4 DECLARATIONS AND BINDINGS

No
ontexts may appear in d , sin
e they are implied: any signature de
laration in d will

have the form v :: t , abbreviating v ::

0

=> t . Ea
h v

i

has typing:

v

i

::

0

=> (t

i

[(T u

1

: : : u

k

)=u℄)

If no method is given for some v

i

then the default method in the
lass de
laration is

used (if present); if su
h a default does not exist then v

i

is impli
itly bound to the
ompletely

unde�ned fun
tion (of the appropriate type) and no stati
 error results.

The
onstraint on

0

implies that if a datatype T is de�ned by:

data
 => T a = ...

then an instan
e of T over some
lass C must in
lude the
ontext, as in:

instan
e
 => C (T a) where ...

An instan
e de
laration that makes the type T to be an instan
e of
lass C is
alled

a C-T instan
e de
laration and is subje
t to these stati
 restri
tions:

� A C-T instan
e de
laration may only appear either in the module in whi
h C is

de
lared or in the module in whi
h T is de
lared, and only where both C and T are

in s
ope.

� A type may not be de
lared as an instan
e of a parti
ular
lass more than on
e in the

same s
ope.

Examples of instan
e de
larations may be found in the next se
tion on derived in-

stan
es.

4.3.3 Derived Instan
es

As mentioned in Se
tion 4.2.1, data de
larations
ontain an optional deriving form. If

the form is in
luded, then derived instan
e de
larations are automati
ally generated for the

datatype in ea
h of the named
lasses and all of their super
lasses.

Derived instan
es provide
onvenient
ommonly-used operations for user-de�ned data-

types. For example, derived instan
es for datatypes in the
lass Eq de�ne the operations ==

and /=, freeing the programmer from the need to de�ne them.

The only
lasses for whi
h derived instan
es are allowed are Eq, Ord, Ix, Enum, Text,

and Binary, all de�ned in Figure 4. The pre
ise details of how the derived instan
es are

generated for ea
h of these
lasses are provided in Appendix D, in
luding a spe
i�
ation of

when su
h derived instan
es are possible (whi
h is important for the following dis
ussion).

If it is not possible to derive an instan
e de
laration over a
lass named in a deriving

form, then a stati
 error results. For example, not all datatypes
an properly support

4.3 Type Classes and Overloading 31

operations in Enum. It is also a stati
 error to expli
itly give an instan
e de
laration for

one that is also derived. These rules also apply to the super
lasses of the
lass in question.

On the other hand, if the deriving form is omitted from a data de
laration, then

instan
e de
larations are derived for the datatype in as many of the six
lasses mentioned

above as is possible (see Appendix D); that is, no stati
 error will result if the instan
e

de
larations
annot be generated.

If no derived instan
e de
larations for a datatype are wanted, then the empty deriving

form deriving () must be given in the data de
laration for that type.

4.3.4 Defaults for Overloaded Operations

topde
l ! default (type j (type

1

, : : : , type

n

)) (n � 0)

A problem inherent with overloading is the possibility of ambiguous typing. For example,

using the read and show fun
tions de�ned in Appendix D, and supposing that just Int and

Bool are members of Text, then the expression

show x where x = read "..." -- ILLEGAL

is ambiguous|the typings for show and read,

show :: (Text a) => a -> String

read :: (Text a) => String -> a

ould be satis�ed by instantiating a as either Int in both
ases, or Bool. Su
h expressions

in Haskell are
onsidered ill-typed, a stati
 error.

We say that an expression e is ambiguously overloaded if in its typing e ::
 => t ,

ontains a type variable a that does not o

ur in t and a is not bound in the type environment

(if a is part of the type of a bound lambda variable, for example, it will be bound in the

type environment).

For example, the earlier expression involving show and read is ambiguously overloaded

sin
e its typing is (Text a) => String, whereas in the de�nition of show itself:

show x = showsPre
 0 x ""

no expression is ambiguous; showsPre
 0 x "" has the typing (Text a) => String, but

it is unambiguous be
ause a refers to the type of the bound variable x.

Overloading ambiguity, although rare,
an only be
ir
umvented by input from the user.

One way is through the use of expression type-signatures as des
ribed in Se
tion 3.11. For

example, for the ambiguous expression given earlier, one
ould write:

show (x::Bool) where x = read "..."

whi
h disambiguates the typing.

Ambiguities in the
lass Num are most
ommon, so Haskell provides a se
ond way to

resolve them|with a default de
laration:

default (t

1

, : : : , t

n

)

32 4 DECLARATIONS AND BINDINGS

where n � 0 (the parentheses may be omitted when n = 1), and ea
h t

i

must be a monotype

for whi
h Num t

i

holds. In situations where an ambiguous typing is dis
overed, an ambiguous

type variable is defaultable if at least one of its
lasses is a numeri

lass and if all of its

lasses are either numeri

lasses or standard
lasses. (Figures 7{9, pages 53{55, show

the numeri

lasses, and Figure 4, page 29, shows the standard
lasses.) Ea
h defaultable

variable is repla
ed by the �rst type in the default list that is an instan
e of all the ambiguous

variable's
lasses. It is a stati
 error if no su
h type is found.

Only one default de
laration is permitted per module, and its e�e
t is limited to that

module. If no default de
laration is given in a module then it defaults to:

default (Int, Double)

The empty default de
laration default ()must be given to turn o� all defaults in a module.

4.4 Nested De
larations

The following de
larations may be used in any de
laration list, in
luding the top level of a

module.

4.4.1 Type Signatures

de
l ! vars :: [
ontext =>℄ type

vars ! var

1

, : : : , var

n

(n � 1)

A type signature spe
i�es types for variables, possibly with respe
t to a
ontext. A type

signature has the form:

x

1

; : : : ; x

n

::
 => t

whi
h is equivalent to independently asserting:

x

i

::
 => t

for ea
h i from 1 to n. Ea
h x

i

must have a value binding in the same de
laration list that

ontains the type signature; i.e. it is illegal to give a type signature for a variable bound in

an outer s
ope. Also, every type variable appearing in a signature is universally quanti�ed

only over that signature. This last
onstraint implies that signatures su
h as:

f x = ys where ys :: [a℄ -- ILLEGAL

ys = [x℄ --

are not valid, sin
e this de
lares ys to be of type (8 a) [a℄, whi
h is not a valid polymorphi

type (it
ontains only ?, the empty list, and lists just
ontaining ?). In
ontrast:

f x = ys where ys = [x℄

f :: a -> [a℄

is valid. The s
ope of a type variable is limited to the type signature that
ontains it.

4.4 Nested De
larations 33

A type signature for x may be more spe
i�
 than the prin
ipal typing derivable from

the value binding of x (see Se
tion 4.1.3), but it is an error to give a typing that is more

general than, or in
omparable to, the prin
ipal typing. If a more spe
i�
 typing is given

then all o

urren
es of the variable must be used at the more spe
i�
 typing or at a more

spe
i�
 typing still.

For example, if we de�ne

sqr x = x*x

then the prin
ipal typing is sqr :: (Num a) => a -> a, whi
h allows appli
ations su
h as

sqr 5 or sqr 0.1. It is also legal to de
lare a more spe
i�
 typing, su
h as

sqr :: Int -> Int

but now appli
ations su
h as sqr 0.1 are illegal. Typings su
h as

sqr :: (Num a, Num b) => a -> b -- ILLEGAL

sqr :: a -> a --

are illegal, as they are more general than the prin
ipal typing.

4.4.2 Fun
tion and Pattern Bindings

de
l ! valdef

valdef ! lhs = exp

j lhs gdfun

lhs ! pat

j var apat

1

: : : apat

k

(k � 1)

j apat

1

varop apat

2

j (apat

1

varop apat

2

) apat

3

: : : apat

k

(k � 3)

gdfun ! gd = exp [gdfun℄

gd ! | exp

We distinguish two
ases within this syntax: a pattern binding o

urs when lhs is pat ;

otherwise, it is
alled a fun
tion binding. Either binding may appear at the top-level of a

module or within a where
lause.

Fun
tion bindings. A fun
tion binding binds a variable to a fun
tion value. Its general

form is:

x p

11

: : : p

1k

[g

1

℄ = e

1

: : :

x p

m1

: : : p

mk

[g

m

℄ = e

m

34 4 DECLARATIONS AND BINDINGS

All of the equations making up one fun
tion de�nition must appear together and must have

the same number of patterns. If only the guard
hanges from the immediately pre
eding

equation then the fun
tion name and patterns may be omitted. For example,

f (x:xs) | x==0 = 0

| x<0 = -1

| x>0 = 1

is an abbreviation for

f (x:xs) | x==0 = 0

f (x:xs) | x<0 = -1

f (x:xs) | x>0 = 1

Alternative syntax is provided for binding fun
tional values to in�x operators. For

example, these two fun
tion de�nitions are equivalent:

plus x y z = x+y+z

(x �plus� y) z = x+y+z

Translation: The general binding form for fun
tions is semanti
ally equivalent to the

equation (i.e. simple pattern binding):

x = \ x

1

x

2

::: x

k

->
ase (x

1

, :::, x

k

) of (p

11

; : : : ; p

1k

) [g

1

℄ -> e

1

: : :

(p

m1

; : : : ; p

mk

) [g

m

℄ -> e

m

where the x

i

are new identi�ers.

Pattern bindings. A pattern binding binds variables to values. A simple pattern binding

has form p = e. In both a where
lause and at the top level of a program, the pattern

p is mat
hed \lazily" as an irrefutable pattern by default (as if there were an impli
it ~ in

front of it). See the translation in Se
tion 3.9.

The general form of a pattern binding is:

p | g

1

= e

1

| g

2

= e

2

:::

| g

m

= e

m

Note: the simple form p = e is equivalent to p | True = e.

Translation: The pattern binding above is semanti
ally equivalent to this simple

pattern binding:

p = if g

1

then e

1

else

if g

2

then e

2

else

:::

if g

m

then e

m

else error ""

4.4 Nested De
larations 35

Stati
 semanti
s of fun
tion and pattern bindings. The stati
 semanti
s of the

fun
tion and pattern bindings of a where expression (in
luding that of the top-level of a

program that has been translated into a where expression as des
ribed in Se
tion 5) is as

follows.

In general the stati
 semanti
s is given by the normal Hindley-Milner inferen
e rules, ex-

ept that a dependen
y analysis transformation is �rst performed to enhan
e polymorphism.

Exhaustive appli
ation of the following rules
apture this dependen
y analysis:

2

(1) The order of de
larations in where
lauses is irrelevant.

(2) e where {d

1

; d

2

} = (e where {d

2

}) where {d

1

}

(when no identi�er bound in d

2

appears free in d

1

)

Apart from one important ex
eption to be
overed below, the extension of the Hindley-

Milner type system to type
lasses allows variables bound in a where to be both polymorphi

and overloaded. This
ontrasts with a variable bound by a lambda abstra
tion, whose type

must be monomorphi
 and hen
e may not be overloaded (Se
tion 3.1). (This extends to

type
lasses a well-known restri
tion imposed by the Hindley-Milner type system.) Two

ases must be distinguished:

� Variables bound dire
tly to lambda abstra
tions are typed exa
tly as des
ribed above.

This in
ludes all fun
tion bindings and also all pattern bindings taking the form

v = \p

1

: : : p

n

-> e, where v is a variable. The latter two forms are equivalent, so

are both typed in the same way.

� Variables not bound dire
tly to a lambda abstra
tion

3

may be polymorphi
 and over-

loaded, but must also obey the rule: variables not bound dire
tly to lambda abstra
tions

must not be used at more than one distin
t overloading. An immediate
onsequen
e is

that overloaded variables not bound dire
tly to lambda abstra
tions
annot be exported,

be
ause, on
e exported, there is no way to
he
k the required
ondition.

The single-overloading rule
an be de�ned as: the type of a variable not bound dire
tly

to a lambda abstra
tion is monomorphi
 in any type variables
onstrained by a
ontext.

4

All

non-overloaded bindings are fully polymorphi
 in the usual way, and overloaded variables

not bound dire
tly to lambda abstra
tions are polymorphi
 in type variables not
onstrained

by a
ontext.

This de�nition gives an example of the e�e
t of the rule:

f x = (y,y) where y = fa
torial 1000

The type inferred for f is Num b => a -> (b,b), not (Num b,Num
) => a -> (b,
); the

2

Exhaustive appli
ation of these rules
auses a transformation similar to that in Peyton Jones' book [12℄,

ex
ept that where
lauses are used uniformly, instead of a
ombination of \let" and \letre
"
lauses.

3

This in
ludes de�nitions su
h as (f,g) = (\x.x,\y.True). Here, f and g do not
ount as being bound

dire
tly to lambda abstra
tions, be
ause the left-hand side of the de�nition is not a simple variable.

4

Noti
e the use of monomorphi
, rather than monotyped (see Se
tion 4.1.3). It is not ne
essary that the

type be �xed at
ompile time, merely that the variable is only used at a single overloading.

36 4 DECLARATIONS AND BINDINGS

two
omponents of the pair returned
an only be used at the same overloading. This avoids

the unpleasant possibility that fa
torial 1000 might be
omputed twi
e, on
e at ea
h

overloading.

This rule is restri
tive only where a truly overloaded
onstant is required (usually at the

top level); for example,

module F(fa
1000) where

fa
1000 = fa
torial 1000

The limitation may be over
ome in two main ways. fa
1000 may be given a monotype su
h

as Integer by using a type signature, in whi
h
ase ea
h use of fa
1000 must be repla
ed

by (fromInteger fa
1000); alternatively, the de�nition may be
hanged into a fun
tion

de�nition:

module F(fa
1000) where

fa
1000 () = fa
torial 1000

in whi
h
ase uses of fa
1000 must be repla
ed by (fa
1000 ()). Both alternatives
or-

re
tly indi
ate that some re
omputation may take pla
e.

37

5 Modules

A module de�nes a
olle
tion of values, data types, type synonyms,
lasses, et
. (see Se
-

tion 4), and exports some of these resour
es, making them available to other modules. We

use the term entity to refer to the values, types, and
lasses de�ned in and perhaps exported

from a module.

A Haskell program is a
olle
tion of modules, one of whi
h must be
alled Main and

must export the value main. The value of the program is the value of the identi�er main in

module Main, and main must have type Dialogue (see Se
tion 7).

Modules may referen
e other modules via expli
it import de
larations, ea
h giving the

name of a module to be imported, spe
ifying its entities to be imported, and optionally

renaming some or all of them. Modules may be mutually re
ursive.

The name-spa
e for modules is
at, with ea
h module being asso
iated with a unique

module name (whi
h are Haskell identi�ers beginning with a
apital letter; i.e. a
onid).

There are two distinguished modules, PreludeCore and Prelude, both dis
ussed in Se
-

tion 5.4.

5.1 Overview

5.1.1 Interfa
es and Implementations

A module
onsists of an interfa
e and an implementation of that interfa
e.

The interfa
e of a module provides
omplete information about the stati
 semanti
s of

that module, in
luding type signatures,
lass de�nitions, and type de
larations for the var-

ious entities made available by the module. This information is
omplete in this sense: If

a module M imports modules M

1

; : : : ;M

n

, then only the interfa
es of M

1

; : : : ;M

n

need be

examined in order to perform stati

he
king on the implementation of M. No implementa-

tions of M

1

; : : : ;M

n

need to exist, nor need any further interfa
es be
onsulted. Interfa
es

are dis
ussed in Se
tion 5.3.

An implementation \�lls in" the information about a module missing from the interfa
e.

For example, for ea
h value given a type signature in the interfa
e the implementation either

imports a module that de�nes the value or de�nes the value itself. Implementations are

dis
ussed in Se
tion 5.2.

5.1.2 Original Names

It may be that a parti
ular entity is imported into a module by more than one route|for

example, be
ause it is exported by two modules both of whi
h are imported by a third mod-

ule. It is important that benign name-
lashes of this form are allowed, but that a

idental

name-
lashes are dete
ted and reported as errors. This is done as follows.

Ea
h entity (
lass, type
onstru
tor, value, et
.) has an original name that is a pair

onsisting of the name of the module in whi
h it was originally de
lared, and the name it

38 5 MODULES

was given in that de
laration. The original name is
arried with the entity wherever it is

exported. Two entities are the same if and only if they have the same original name.

Renaming does not a�e
t the original name; it is a purely synta
ti
 operation that

a�e
ts only the name by whi
h the entity is
urrently known. For example, if a
lass is

renamed and a type is de
lared to be an instan
e of the newly-named
lass, then it is also

an instan
e of the original
lass|there is just one
lass, whi
h happens to be known by

di�erent names in di�erent parts of the program. Also, �xity is a property of the original

name of an identi�er or operator and is not a�e
ted by renaming; the new name has the

same �xity as the old one.

5.1.3 Closure

The implementation together with the interfa
es of the modules it imports must be stati-

ally
losed a

ording to this rule: every value, type, or
lass referred to in the text of an

implementation together with the interfa
es that it imports, must be de
lared in the imple-

mentation or in one of the imported interfa
es.

It is an error for a module to export a
olle
tion of entities that
annot possibly be
ome

losed. For example, if a module A de
lares both the type T and a value t of type T, it may

not export t without also exporting T.

However, the
losure
ondition applies on import, not on export. For example, if another

module B imported T from module A, and de
lared another value s of type T, it may export

s without exporting T|but any module importing B must also import the type T by some

other route, for example by also importing A.

5.1.4 The Compilation System

The task of
he
king
onsisten
y between interfa
es and implementations must be done by

the
ompilation system.

Haskell does not spe
ify any parti
ular asso
iation between implementations and in-

terfa
es on the one hand, and �les on the other; nor does it spe
ify how implementations

and interfa
es are produ
ed. These matters are determined by the
ompilation system, and

many variations are possible, depending on the programming environment. For example, a

ompilation system
ould insist that ea
h implementation and ea
h interfa
e reside alone

in a �le, and that the module name is the same as that of the �le, with the implementation

and interfa
e distinguished by a suÆx.

Similarly, a
ompilation system may require the programmer to write the interfa
e, or

it may derive the interfa
e from examination of the implementation, or some hybrid of the

two. Haskell is de�ned so that, given the interfa
es of all imported modules, it is always

possible to perform a
omplete stati

he
k on the implementation, and, if it is well-typed,

to derive its unique interfa
e automati
ally. However, given a set of mutually re
ursive

implementations, the
ompilation system may have to examine several modules at on
e to

derive the interfa
es, whi
h will still be unique with one ex
eption: be
ause of the shorthand

5.2 Module Implementations 39

for exporting all entities from an imported module, the set of exports may not be unique.

Any set satisfying the
onsisten
y
onstraints is a valid solution for a well-typed Haskell

program, but if an implementation automati
ally derives the interfa
e it must derive the

smallest set of exports.

For optimisation a
ross module boundaries, a
ompilation system may need more infor-

mation than is provided by the standard interfa
e as de�ned in this report.

5.2 Module Implementations

A module implementation de�nes a mutually re
ursive s
ope
ontaining de
larations for

value bindings, data types, type synonyms,
lasses, et
. (see Se
tion 4).

module ! module modid [exports℄ where body

j body

body ! { [impde
ls ;℄ [�xde
ls ;℄ topde
ls }

j { impde
ls }

modid ! a
onid

impde
ls ! impde
l

1

; : : : ; impde
l

n

(n � 1)

topde
ls ! topde
l

1

; : : : ; topde
l

n

(n � 1)

A module implementation begins with a header: the keyword module, the module name,

and a list of entities (en
losed in round parentheses) to be exported. The header is followed

by an optional list of import de
larations that spe
ify modules to be imported, optionally

restri
ting and renaming the imported bindings. This is followed by an optional list of

�xity de
larations and the module body. The module body is simply a list of top-level

de
larations (topde
ls), as des
ribed in Se
tion 4.

An abbreviated form of module is permitted, whi
h
onsists only of the module body.

If this is used, the header is assumed to be module Main where. It is inadvisable for a

ompilation system to permit an abbreviated module to appear in the same �le as some

unabbreviated modules.

5.2.1 Export Lists

exports ! (export

1

, : : : , export

n

) (n � 1)

export ! varid

j ty
on

j ty
on (..)

j ty
on (
onid

1

, : : : ,
onid

n

) (n � 1)

j ty
ls (..)

j ty
ls (varid

1

, : : : , varid

n

) (n � 0)

j modid ..

40 5 MODULES

An export list identi�es the entities to be exported by a module de
laration. A module

implementation may only export an entity that it de
lares, or that it imports from some

other module. If the export list is omitted, all values, types and
lasses de�ned in the

module are exported, but not those that are imported.

Entities in an export list may be named as follows:

1. Ordinary values, whether de
lared in the implementation body or imported, may be

named by giving the name of the value as a varid. Operators should be en
losed in

parentheses to turn them into varid's.

2. A type synonym T de
lared by a type de
laration may be named by simply giving

the name of the type.

3. An algebrai
 data type T with
onstru
torsK

1

; : : : ;K

n

de
lared by a data de
laration

may be named in one of three ways:

� The form T names the type but not the
onstru
tors. The ability to export a

type without its
onstru
tors allows the
onstru
tion of abstra
t data types (see

Se
tion 5.6).

� The form T(K

1

, : : : ,K

n

), where all and only the
onstru
tors are listed without

dupli
ations, names the type and all its
onstru
tors.

� The abbreviated form T(..) also names the type and all its
onstru
tors.

Data
onstru
tors may not be named in export lists in any other way.

4. A
lass C with operations f

1

; : : : ; f

n

de
lared in a
lass de
laration may be named

in one of two ways, both of whi
h name the
lass together with all its operations:

� The form C(f

1

, : : : ,f

n

), where all and only the operations in that
lass are

listed without dupli
ations.

� The abbreviated form C(..).

Operators in a
lass may not be named in export lists in any other way.

5. The set of all entities brought into s
ope (after renaming) from a module m by one

or more import de
larations may be named by the form m.., whi
h is equivalent to

listing all of the entities imported from the module. For example,

module Queue(Sta
k.., enqueue, dequeue) where

import Sta
k

...

Here the module Queue uses the module name Sta
k in its export list to abbreviate

all the entities imported from Sta
k. It is a stati
 error to have
ir
ular dependen
ies

between imports/exports using this naming
onvention. For example, the following is

not allowed:

5.2 Module Implementations 41

module X(Y..) -- ILLEGAL

import Y --

x = 1 --

module Y(X..) --

import X --

y = 1 --

5.2.2 Import De
larations

impde
l ! import modid [impspe
℄ [renaming renamings℄

impspe
 ! (import

1

, : : : , import

n

) (n � 0)

j hiding (import

1

, : : : , import

n

) (n � 1)

import ! varid

j ty
on

j ty
on (..)

j ty
on (
onid

1

, : : : ,
onid

n

) (n � 1)

j ty
ls (..)

j ty
ls (varid

1

, : : : , varid

n

) (n � 0)

renamings ! (renaming

1

, : : : , renaming

n

) (n � 1)

renaming ! name

1

to name

2

name ! varid j
onid

The entities exported by a module may be brought into s
ope in another module with

an import de
laration at the beginning of the module. The import de
laration names

the module to be imported, optionally spe
i�es the entities to be imported, and optionally

provides renamings for imported entities. A single module may be imported by more than

one import de
laration.

Exa
tly whi
h entities are to be imported
an be spe
i�ed in one of three ways:

1. The set of entities to be imported
an be spe
i�ed expli
itly by listing them in paren-

theses. Items in the list have the same form as those in export lists, ex
ept that the

modid abbreviation is not permitted.

The list must name a subset of the entities exported by the imported module. The

list may be empty, in whi
h
ase nothing is imported; this is espe
ially useful in the

ase of the module Prelude (see Se
tion 5.4.3).

2. Spe
i�
 entities
an be ex
luded by using the form hiding(import

1

,:::,import

n

),

whi
h spe
i�es that all entities exported by the named module should be imported

apart from those named in the list.

3. Finally, if impspe
 is omitted then all the entities exported by the spe
i�ed module

are imported.

Some or all of the imported entities may be renamed, thus allowing them to be known

by a new name in the importing s
ope (see Se
tion 5.1.2). This is done using the renaming

42 5 MODULES

keyword, with a renaming of the form oldname to newname. All renaming is subje
t to

the
onstraint that ea
h name in a s
ope must refer to exa
tly one entity; however, a single

entity may be given more than one name.

5.3 Module Interfa
es

Every module has an interfa
e
ontaining all the information needed to do stati

he
ks

on any importing module. All stati

he
ks on a module implementation
an be done by

inspe
ting its text and the interfa
es of the modules it imports.

interfa
e ! interfa
e modid where ibody

ibody ! { [iimpde
ls ;℄ [�xes ;℄ itopde
ls }

j { iimpde
ls }

iimpde
ls ! iimpde
l

1

; : : : ; iimpde
l

n

(n � 1)

iimpde
l ! import modid (import

1

, : : : , import

n

)

[renaming renamings℄ (n � 1)

itopde
ls ! itopde
l

1

; : : : ; itopde
l

n

(n � 1)

itopde
l ! type [
ontext =>℄ simple = type

j data [
ontext =>℄ simple [=
onstrs℄ [deriving (ty
ls j (ty
lses))℄

j
lass [
ontext =>℄
lass [where { i
de
ls }℄

j instan
e [
ontext =>℄ ty
ls inst

j vars :: [
ontext =>℄ type

i
de
ls ! i
de
l

1

; : : : ; i
de
l

n

(n � 1)

i
de
l ! vars :: type

The syntax of interfa
e is similar to that of module, ex
ept:

� There is no export list: everything in the interfa
e is exported.

� import de
larations have a slightly di�erent purpose from those in implementations

(see Se
tion 5.3.2). The list of entities to be imported is always spe
i�ed expli
itly.

� data de
larations appear without their
onstru
tors if these are not exported.

� There is no implementation part to instan
e de
larations.

� Value de
larations do not appear at all; for exported values, type signatures take their

pla
e.

5.3.1 Consisten
y

The interfa
e and implementation of a module must obey
ertain
onstraints. (In the

following, the phrase \in the implementation" refers to something either de
lared within

the implementation or imported by it.)

5.3 Module Interfa
es 43

1. Every entity given a de
laration in an interfa
e must either have an import de
laration

for the entity in the interfa
e (the import spe
i�es the module that de�nes it) or have a

de�nition of the entity in the implementation. Furthermore, if an interfa
e A imports

an entity X from module B (perhaps renaming it), then the interfa
e for B must de�ne

X but not import it.

2. A
lass, type synonym, algebrai
 data type, or value appears in the interfa
e exa
tly

when its name appears in the implementation's export list or, if the export list is

omitted, when it is de
lared in the implementation.

3. A type signature appears in the interfa
e for every value that the implementation

exports. This type signature must be the same as that in the implementation (see

Se
tion 4.1.3), where the latter is obtained from the expli
it type signature in the im-

plementation (when present) or is the most general type inferred from the de
laration

of the value.

4. A type de
laration in an interfa
e must be identi
al to that in the implementation.

5. A
lass de
laration in an interfa
e must be identi
al to that in the implementation,

ex
ept that default-method de
larations are omitted.

6. If the
onstru
tors of a data type are not to be exported, then the data de
laration

in the interfa
e di�ers from that in the implementation by omitting everything after

(and in
luding) the = sign. If the data de
laration in the implementation uses the

derivingme
hanism to derive instan
e de
larations for the type, a separate instan
e

de
laration must appear in the interfa
e for ea
h
lass of whi
h the type is made an in-

stan
e of. However, the information that
ertain instan
es are derived is hidden when

the
onstru
tors are hidden, sin
e in this
ase the type is abstra
t (see Se
tion 5.6).

7. If the
onstru
tors of a data de
laration are to be exported, then the data de
laration

in the interfa
e is identi
al to that in the implementation in
luding the deriving part.

5

8. If a C-T instan
e is de
lared in a module or imported by it, then the instan
e de
la-

ration appears in the interfa
e (omitting the where part) if either C is exported or T

is exported. Instan
e de
larations are not named expli
itly in export or import lists.

This rule ensures that, if C and T are both in s
ope, then the (unique) C-T instan
e

de
laration will also be in s
ope.

6

No expli
it instan
e de
laration should appear in the interfa
e for instan
es that are

spe
i�ed by the deriving part of a data de
laration in the interfa
e.

9. A �xity de
laration appears in an interfa
e exa
tly when (a) a type signature for the

value is also given in the interfa
e (either by itself or as part of a
lass de
laration)

and (b) the identi
al �xity de
laration appears either in the implementation or in an

imported interfa
e.

5

It is important to retain the information about whi
h instan
es are derived and whi
h are not, be
ause

the importing module \knows" more about derived instan
es.

6

The reverse also applies. For example, suppose that a new type T is de
lared and made an instan
e

of an imported
lass C. The instan
e de
laration will be exported along with T , and so the
losure rule

(Se
tion 5.1.3) will require that C is also in s
ope in every importing s
ope.

44 5 MODULES

This example illustrates most of these
onstraints; �rst, the interfa
e:

interfa
e A where

infixr 4 �sameShape�

data BinTree a = Empty | Bran
h a (BinTree a) (BinTree a)

lass Tree a where

sameShape :: a -> a -> Bool

instan
e Tree (BinTree a)

sum :: Num a => BinTree a -> a

Now the implementation:

module A(BinTree(..), Tree(..), sum) where

infixr 4 �sameShape�

-- �sameShape� is an operation of
lass C below

data BinTree a = Empty | Bran
h a (BinTree a) (BinTree a)

lass Tree a where

sameShape :: a -> a -> Bool

t1 �sameShape� t2 = False -- Default method

instan
e Tree (BinTree a) where

Empty �sameShape� Empty = True

(Bran
h _ t1 t2) �sameShape� (Bran
h _ t1' t2')

= (t1 �sameShape� t1') && (t2 �sameShape� t2')

t1 �sameShape� t2 = False

sum Empty = 0

sum (Bran
h n t1 t2) = n + sum t1 + sum t2

5.3.2 Imports and Original Names

The original-name information is
arried in the interfa
e �le using import de
larations in

a spe
ial way.

Suppose that a module A exports an entity x; the interfa
e for A will
ontain stati

information about x. If x was originally de�ned in A, then this is all that appears. But,

suppose that x was imported by A from some other module B and that x was originally

de�ned in module C with name y; this de
laration must appear in the interfa
e for A:

import C(y) renaming (y to x)

No referen
e to B remains in the interfa
e. The import de
laration in the interfa
e serves

only to
onvey to the importing module the original name of x, and does not imply that

module B's interfa
e must be
onsulted when reading module A's interfa
e. Multiple imports

from a single original module may optionally be grouped in a single import de
laration in

the interfa
e.

A module may export a value whose typing involves a type and/or
lass that is not

exported. (Any importing module would have to import the type or
lass by some other

5.4 Standard Prelude 45

route.) Nevertheless, it is still required that the interfa
e
ontain the import de
laration

required to give the original name of the type or
lass.

In summary, for every entity e1 mentioned in the interfa
e of a module M whose original

name is e2 in module N, M's interfa
e must
ontain the import de
laration

import N(e2) renaming (e2 to e1)

The word \mentioned" in
ludes mention in the type signature of an exported value, as

dis
ussed above.

5.4 Standard Prelude

Many of the features ofHaskell are de�ned inHaskell itself, as a large library of standard

data types,
lasses and fun
tions,
alled the \standard prelude." In Haskell, the stan-

dard prelude is spe
i�ed as two distin
t modules (in the te
hni
al sense of this
hapter),

PreludeCore and Prelude.

PreludeCore and Prelude di�er from other modules in that their interfa
es, and the

semanti
s of the entities de�ned by those interfa
es, are part of the Haskell language

de�nition. This means, for example, that a
ompiler may optimise
alls to fun
tions in the

standard prelude, be
ause it knows their semanti
s as well as their interfa
e.

Ea
h of these modules are stru
tured into sub-modules. To avoid name-
lashes with

these sub-modules, user-de�ned module names must not begin with the pre�x Prelude.

5.4.1 The PreludeCore Module

The PreludeCore module
ontains all the algebrai
 data types, type synonyms,
lasses and

instan
e de
larations spe
i�ed by the standard prelude.

PreludeCore is always impli
itly imported, so it is not possible to import only part of

it or to rename any of the entities that it de�nes.

The semanti
s of the entities de�ned by PreludeCore is spe
i�ed by an implemen-

tation written in Haskell, in Appendix A.2. A Haskell system need not implement

PreludeCore in this way. The interfa
e for PreludeCore may be inferred from the imple-

mentation in Appendix A.2.

Some data types (su
h as Int) and fun
tions (su
h as addition of Ints)
annot be

spe
i�ed dire
tly in Haskell. This is expressed in the PreludeCore implementation by

importing these built-in types and values from PreludeBuiltin. The semanti
s of the

built-in data types and fun
tions is given as English text in Appendix A.1.

The implementation for PreludeCore is in
omplete in its treatment of tuples: there

should be an in�nite family of instan
e de
larations for tuples, but the implementation only

gives a s
heme.

The alert reader may noti
e that the implementation of PreludeCore given in Ap-

pendix A.2 uses some fun
tions de�ned in Prelude (see next se
tion). There is no
on
i
t,

PreludeCore and Prelude are mutually re
ursive.

46 5 MODULES

5.4.2 The Prelude Module

The Prelude module
ontains all the value de
larations in the standard prelude.

The Prelude module is imported automati
ally if and only if it is not imported with an

expli
it import de
laration. This provision for expli
it import allows values de�ned in the

standard prelude to be renamed or not imported at all.

The semanti
s of the entities in Prelude is spe
i�ed by an implementation of Prelude

written in Haskell, given in Appendix A. As for PreludeCore, a Haskell system may

implement the Prelude module as it pleases, provided it maintains the semanti
s in Ap-

pendix A. The interfa
e
an be inferred from this implementation.

5.4.3 Shadowing Prelude Names and Non-Standard Preludes

The rules about the standard prelude have been
ast so that it is possible to use standard

prelude names for non-standard purposes; however, every module that does so will have an

import de
laration that makes this non-standard usage expli
it. For example:

module A where

import Prelude hiding (map)

map f x = x f

Module A rede�nes map, but it must indi
ate this by importing Prelude without map.

Furthermore, A exports map, but every module that imports map from A must also hide map

from Prelude just as A does. Thus there is little danger of a

identally shadowing standard

prelude names.

It is possible to
onstru
t and use a di�erent Prelude module:

module B where

import Prelude()

import MyPrelude

...

B imports nothing from Prelude, but the expli
it import Prelude de
laration prevents the

automati
 import of Prelude. import MyPrelude brings the non-standard prelude into

s
ope. As before, the standard prelude names are hidden expli
itly.

5.5 Example 47

5.5 Example

As an example, here are two small modules:

module A(Tree(..), depth) where

data Tree a = Leaf a | Bran
h (Tree a) (Tree a)

depth (Leaf a) = 0

depth (Bran
h xt yt) = (depth xt �max� depth yt) + 1

module B(leaves) where

import A

leaves (Leaf a) = [a℄

leaves (Bran
h xt yt) = leaves xt ++ leaves yt

Module A must export Tree be
ause it exports depth, and Tree
ould not be made visible

in any other way. However, B is not required to export Tree, sin
e a module importing B

ould import A in order to satisfy the
losure
onstraints.

Modules may be used to
ombine the resour
es of other modules. For example, one

might use renaming to make trees available to Fren
h speakers:

module C(Arbre(..), fond, feuilles) where

import A renaming (Tree to Arbre, Leaf to Feuille, Bran
h to Bran
he,

depth to fond)

import B renaming (leaves to feuilles)

5.6 Abstra
t Data Types

The ability to export a data type without its
onstru
tors allows the
onstru
tion of abstra
t

data types (ADTs). For example, an ADT for sta
ks
ould be de�ned as:

module Sta
k(StkType, push, pop, empty) where

data StkType a = EmptyStk | Stk a (StkType a)

push x s = Stk x s

pop (Stk _ s) = s

empty = EmptyStk

Modules importing Sta
k
annot
onstru
t values of type StkType be
ause they do not

have a

ess to the
onstru
tors of the type.

It is also possible to build an ADT on top of an existing type by using a data de
laration

with a single
onstru
tor with only one �eld. For example, sta
ks
an be de�ned with lists:

module Sta
k(StkType, push, pop, empty) where

data StkType a = Stk [a℄

push x (Stk s) = Stk (x:s)

pop (Stk (x:s)) = Stk s

empty = Stk [℄

Note 1. Every ADT must be a module (but a Haskell
ompilation system may allow

multiple modules in a single �le).

48 5 MODULES

Note 2. Using a single-
onstru
tor single-�eld data de
laration to
reate an isomorphi

type introdu
es an unwanted extra element to the new type, namely (Stk ?), with the

risk of an a

ompanying small ineÆ
ien
y in the implementation.

5.7 Fixity De
larations

�xde
ls ! �x

1

; : : : ; �x

n

(n � 1)

�x ! infixl [digit ℄ ops

j infixr [digit ℄ ops

j infix [digit ℄ ops

ops ! op

1

, : : : , op

n

(n � 1)

op ! varop j
onop

A �xity de
laration gives the �xity and binding pre
eden
e of a set of operators. Fixity

de
larations must appear only at the start of a module

7

and may only be given for identi�ers

de�ned in that module. Fixity de
larations
annot subsequently be overridden, and an

identi�er
an only have one �xity de�nition.

There are three kinds of �xity, non-, left- and right-asso
iativity (infix, infixl, and

infixr, respe
tively), and ten pre
eden
e levels, 0 through 9 (level 0 binds least tightly,

and level 9 binds most tightly). If the digit is omitted, level 9 is assumed. Any operator

la
king a �xity de
laration is assumed to be infixl 9.

Fixity de
larations allow parentheses to be dropped in these expressions when the asso-

iated
onditions are satis�ed (in this table infix stands for any infix, infixl, or infixr

de
laration):

(x op

1

y) op

2

z infix d

1

op

1

, infix d

2

op

2

, d

1

> d

2

(x op

1

y) op

2

z infixl d

1

op

1

, infixl d

2

op

2

, d

1

= d

2

x op

1

(y op

2

z) infix d

1

op

1

, infix d

2

op

2

, d

1

< d

2

x op

1

(y op

2

z) infixr d

1

op

1

, infixr d

2

op

2

, d

1

= d

2

The phrase \x op

1

y op

2

z", where we have infixl d

1

op

1

, infixr d

2

op

2

, and d

1

= d

2

,

is ambiguous and generates a parsing error.

Fixity is a property of the original name of an identi�er or operator (see Se
tion 5.1.2).

Fixity is not a�e
ted by renaming; the new name has the same �xity as the old one.

7

This is to avoid parsing problems that arise when �xity de
larations appear lexi
ally after the operators

to whi
h they refer.

49

data Bool = False | True

(&&), (||) :: Bool -> Bool -> Bool

True && x = x

False && x = False

True || x = True

False || x = x

not :: Bool -> Bool

not True = False

not False = True

otherwise :: Bool

otherwise = True

Figure 5: Standard fun
tions on booleans

6 Basi
 Types

6.1 Booleans

The boolean type Bool is an enumeration; Figure 5 shows its de�nition and standard

fun
tions &&, ||, not, and otherwise.

6.2 Chara
ters and Strings

The
hara
ter type Char is an enumeration, and
onsists of 256 values, of whi
h the �rst

128 are the ASCII
hara
ter set. The lexi
al syntax for
hara
ters is de�ned in Se
tion 2.5;

hara
ter literals are nullary
onstru
tors in the datatype Char. The standard prelude

provides an instan
e de
laration for Char in
lass Enum and two fun
tions relating
hara
ters

to Ints in the range [0; 255℄:

ord :: Char -> Int

hr :: Int -> Char

An ASCII-based implementation must treat
ertain pairs of
hara
ters as equivalent

(re
e
ted in the behaviour of == and in pattern-mat
hing). In parti
ular, (1) numeri

es
ape
hara
ters, ASCII es
ape
hara
ters, and
ontrol
hara
ters should be
onsidered

equivalent to the degree implied by the ASCII standard, and (2) these pairs of
hara
ters

are equivalent: \a and \BEL, \b and \BS, \f and \FF, \r and \CR, \t and \HT, \v and \VT,

and \n and \LF.

A string is a list of
hara
ters:

type String = [Char℄

50 6 BASIC TYPES

Strings may be abbreviated using the lexi
al syntax des
ribed in Se
tion 2.5. For example,

"A string" abbreviates

[�A�,� �,�s�,�t�,�r�, �i�,�n�,�g�℄

6.3 Fun
tions

Fun
tions are de�ned via lambda abstra
tions and fun
tion de�nitions. Besides appli
ation,

an in�x
omposition operator is de�ned:

(.) :: (b ->
) -> (a -> b) -> a ->

(f . g) x = f (g x)

The fun
tion until applies a fun
tion to an initial value zero or more times until the result

satis�es a given predi
ate:

until :: (a -> Bool) -> (a -> a) -> a -> a

until p f x | p x = x

| otherwise = until p f (f x)

6.4 Lists

Lists are des
ribed in Se
tion 3.4. See the standard prelude (Appendix A) for the de�nitions

of the standard list fun
tions. Arithmeti
 sequen
es and list
omprehensions, two
onvenient

syntaxes for spe
ial kinds of lists, are des
ribed in Se
tions 3.7 and 3.8, respe
tively.

6.5 Tuples

Tuples are de�ned in Se
tion 3.5. Six fun
tions, named zip, zip3, : : :, zip7, are provided

by the standard prelude. These produ
e lists of n-tuples from n lists, for 2 � n � 7. The

resulting lists are as long as the shortest argument list; ex
ess elements of other argument

lists are ignored.

6.6 Binary Datatype

The Bin datatype is a primitive abstra
t datatype in
luding the value nullBin (the empty

or nullary binary value), and the predi
ate isNullBin (whi
h returns True when applied to

nullBin and False when applied to all other values of type Bin). Also, derived instan
es of

the Binary
lass generate de�nitions for showBin and readBin, as des
ribed in Se
tion 4.3.3

and Appendix D. The Bin datatype is used primarily for eÆ
ient and transparent I/O, as

des
ribed in Se
tion 7.

6.7 Unit Datatype

The unit datatype () has one member, the nullary
onstru
tor () (and thus an overloading

of syntax)|see also Se
tion 3.6.

6.8 Numbers 51

#

#

#

#

#

#

#

#

#

#

#

#

�

�

S

S

S

S

S

S

S

S

S

S

S

S

RealFloat

Integral FloatingRealFra

Fra
tionalReal

NumOrd

Eq

Figure 6: Numeri

lass in
lusions (
f. Figure 4, page 29)

6.8 Numbers

6.8.1 Introdu
tion

Haskell provides several kinds of numbers; the numeri
 types and the operations upon

them have been heavily in
uen
ed by Common Lisp [14℄ and S
heme [13℄. Numeri
 fun
tion

names and operators are usually overloaded, using several type
lasses with an in
lusion

relation shown in Figure 6 (
f. Figure 4, page 29). (Some
lasses are immediate sub
lasses

of two other
lasses; there are pairs of
lasses with a nontrivial interse
tion.) The
lass Num

of numeri
 types is a sub
lass of Eq, sin
e all numbers may be
ompared for equality; its

sub
lass Real is also a sub
lass of Ord, sin
e the other
omparison operations apply to all but

omplex numbers. The
lass Integral
ontains both �xed- and arbitrary-pre
ision integers;

the
lass Fra
tional
ontains all nonintegral types; and the
lass Floating
ontains all

oating-point types, both real and
omplex.

Table 1 lists the standard numeri
 types. The type Int is a �xed-pre
ision type,
overing

at least the range [�2

29

+1; 2

29

�1℄. The range
hosen by an implementation must either be

symmetri
 about zero or
ontain one more negative value than positive (to a

ommodate

twos-
omplement representation) and should be large enough to serve as array indi
es.

The
onstants minInt and maxInt (Figure 8, page 54) de�ne the limits of Int in ea
h

implementation. Float is a
oating-point type, also implementation-de�ned; it is desirable

that this type be at least equal in range and pre
ision to the IEEE single-pre
ision type.

Similarly, Double should
over IEEE double-pre
ision. An implementation may provide

other numeri
 types, su
h as additional pre
isions of integer and
oating-point. The results

of ex
eptional
onditions (su
h as over
ow or under
ow) on the �xed-pre
ision numeri

types are unde�ned; an implementation may
hoose error (?, semanti
ally), a trun
ated

52 6 BASIC TYPES

Typing Class Des
ription

Integer Integral Arbitrary-pre
ision integers

Int Integral Fixed-pre
ision integers

(Integral a) => Ratio a RealFra
 Rational numbers

Float RealFloat Real
oating-point, single pre
ision

Double RealFloat Real
oating-point, double pre
ision

(RealFloat a) => Complex a Floating Complex
oating-point

Table 1: Standard numeri
 types

value, or a spe
ial value su
h as in�nity, inde�nite, et
.

The interfa
e text (Se
tion 5.3) asso
iated with the standard numeri

lasses, types, and

operations is shown in Figures 7{9.

6.8.2 Numeri
 Literals

The syntax of numeri
 literals is given in Se
tion 2.4. An integer literal represents the ap-

pli
ation of the fun
tion fromInteger to the appropriate value of type Integer. Similarly,

a
oating literal stands for an appli
ation of fromRational to a value of type Rational

(that is, Ratio Integer). Given the typings:

fromInteger :: (Num a) => Integer -> a

fromRational :: (Fra
tional a) => Rational -> a

integer and
oating literals have the typings (Num a) => a and (Fra
tional a) => a,

respe
tively. Numeri
 literals are de�ned in this indire
t way so that they may be interpreted

as values of any appropriate numeri
 type. For example, fromInteger for
omplex numbers

is de�ned as follows:

fromInteger n = fromInteger n :+ 0

See Se
tion 4.3.4 for a dis
ussion of overloading ambiguity.

6.8.3 Constru
ted Numbers

There are two kinds of numeri
 types formed by data
onstru
tors: namely, Ratio and

Complex. For ea
h Integral type t, there is a type Ratio t of rational pairs with
omponents

of type t. (The type name Rational is a synonym for Ratio Integer.) Similarly, for ea
h

real
oating-point type t, Complex t is a type of
omplex numbers with real and imaginary

omponents of type t.

The operator (%) forms the ratio of two integral numbers. The fun
tions numerator and

denominator extra
t the
omponents of a ratio; these are in redu
ed form with a positive

denominator.

6.8 Numbers 53

lass (Eq a) => Num a where

(+), (-), (*) :: a -> a -> a

negate :: a -> a

abs, signum :: a -> a

fromInteger :: Integer -> a

x - y = x + negate y

lass (Num a, Ord a) => Real a where

toRational :: a -> Rational

lass (Real a) => Integral a where

div, rem, mod :: a -> a -> a

divRem :: a -> a -> (a,a)

even, odd :: a -> Bool

toInteger :: a -> Integer

x `div` y = q where (q,r) = divRem x y

x `rem` y = r where (q,r) = divRem x y

x `mod` y = if signum x == - (signum y) then r + y else r

where r = x `rem` y

even x = x `rem` 2 == 0

odd = not . even

lass (Num a) => Fra
tional a where

(/) :: a -> a -> a

fromRational :: Rational -> a

lass (Fra
tional a) => Floating a where

pi :: a

exp, log, sqrt :: a -> a

(**), logBase :: a -> a -> a

sin,
os, tan :: a -> a

asin, a
os, atan :: a -> a

sinh,
osh, tanh :: a -> a

asinh, a
osh, atanh :: a -> a

x ** y = exp (log x * y)

logBase x y = log y / log x

sqrt x = x ** 0.5

tan x = sin x /
os x

tanh x = sinh x /
osh x

lass (Real a, Fra
tional a) => RealFra
 a where

properFra
tion :: a -> (Integer,a)

approxRational :: a -> a -> Rational

Figure 7: Numeri

lasses and related operations

54 6 BASIC TYPES

lass (RealFra
 a, Floating a) => RealFloat a where

floatRadix :: a -> Integer

floatDigits :: a -> Int

floatRange :: a -> (Int,Int)

de
odeFloat :: a -> (Integer,Int)

en
odeFloat :: Integer -> Int -> a

exponent :: a -> Int

signifi
and :: a -> a

s
aleFloat :: Int -> a -> a

exponent x = if m == 0 then 0 else n + floatDigits x

where (m,n) = de
odeFloat x

signifi
and x = en
odeFloat m (- (floatDigits x))

where (m,_) = de
odeFloat x

s
aleFloat k x = en
odeFloat m (n+k)

where (m,n) = de
odeFloat x

instan
e Integral Int

instan
e Integral Integer

minInt, maxInt :: Int

fromIntegral :: (Integral a, Num b) => a -> b

g
d, l
m :: (Integral a) => a -> a-> a

(^) :: (Num a, Integral b) => a -> b -> a

(^^) :: (Fra
tional a, Integral b) => a -> b -> a

data (Integral a) => Ratio a

type Rational = Ratio Integer

instan
e (Integral a) => RealFra
 (Ratio a)

(%) :: (Integral a) => a -> a -> Ratio a

numerator, denominator :: (Integral a) => Ratio a -> a

instan
e RealFloat Float

instan
e RealFloat Double

fromRealFra
 :: (RealFra
 a, Fra
tional b) => a -> b

trun
ate, round :: (RealFra
 a, Integral b) => a -> b

eiling, floor :: (RealFra
 a, Integral b) => a -> b

atan2 :: (RealFloat a) => a -> a -> a

Figure 8: Numeri

lasses and related operations (
ontinued)

6.8 Numbers 55

data (RealFloat a) => Complex a = a :+ a deriving (Eq, Binary, Text)

instan
e (RealFloat a) => Floating (Complex a)

realPart, imagPart :: (RealFloat a) => Complex a -> a

onjugate :: (RealFloat a) => Complex a -> Complex a

mkPolar :: (RealFloat a) => a -> a -> Complex a

is :: (RealFloat a) => a -> Complex a

polar :: (RealFloat a) => Complex a -> (a,a)

magnitude, phase :: (RealFloat a) => Complex a -> a

Figure 9: Numeri

lasses and related operations (
ontinued)

Complex numbers are an algebrai
 type:

data (RealFloat a) => Floating (Complex a) = a :+ a

The
onstru
tor (:+) forms a
omplex number from its real and imaginary re
tangular

omponents. A
omplex number may also be formed from polar
omponents of magnitude

and phase by the fun
tion mkPolar. The fun
tion
is produ
es a
omplex number from an

angle t :

is t =
os t :+ sin t

Put another way,
is t is a
omplex value with magnitude 1 and phase t (modulo 2�).

The fun
tion polar takes a
omplex number and returns a (magnitude, phase) pair

in
anoni
al form: The magnitude is nonnegative, and the phase, in the range (��; �℄; if

the magnitude is zero, then so is the phase. Several
omponent-extra
tion fun
tions are

provided:

realPart (x:+y) = x

imagPart (x:+y) = y

magnitude z = r where (r,t) = polar z

phase z = t where (r,t) = polar z

Also de�ned on
omplex numbers is the
onjugate fun
tion:

onjugate (x:+y) = x:+(-y)

6.8.4 Arithmeti
 and Number-Theoreti
 Operations

The in�x operations (+), (*), (-) and the unary fun
tion negate (whi
h
an also be written

as a pre�x minus sign; see se
tion 3.2) apply to all numbers. The operations div, rem, and

mod apply only to integral numbers, while the operation (/) applies only to fra
tional ones.

The div and rem operations satisfy the law:

(x �div� y)*y + (x �rem� y) == x

56 6 BASIC TYPES

The result of x �div� y has the same sign as x * y and is trun
ated toward zero. The

modulo fun
tion di�ers from the remainder fun
tion when the signs of the dividend and

divisor di�er, the remainder always having the sign of the dividend, and the modulo having

the sign of the divisor. For example,

-13 �rem� 4 == -1

-13 �mod� 4 == 3

13 �rem� -4 == 1

13 �mod� -4 == -3

The divRem operation takes a dividend and a divisor as arguments and returns a (quotient,

remainder) pair:

divRem x y = (x �div� y, x �rem� y)

Also available on integers are the even and odd predi
ates:

even x = x �rem� 2 == 0

odd = not . even

Finally, there are the greatest
ommon divisor and least
ommon multiple fun
tions: g
d

x y is the greatest integer that divides both x and y. l
m x y is the smallest positive integer

that both x and y divide.

6.8.5 Exponentiation and Logarithms

The one-argument exponential fun
tion exp and the logarithm fun
tion log a
t on
oating-

point numbers and use base e. logBase a x returns the logarithm of x in base a. sqrt

returns the prin
ipal square root of a
oating-point number. There are three two-argument

exponentiation operations: (^) raises any number to a nonnegative integer power, (^^)

raises a fra
tional number to any integer power, and (**) takes two
oating-point argu-

ments. The value of x^0 or x^^0 is 1 for any x, in
luding zero; 0**y is unde�ned.

6.8.6 Magnitude and Sign

A number has a magnitude and a sign. The fun
tions abs and signum apply to any number

and satisfy the law:

abs x * signum x == x

For real numbers, these fun
tions are de�ned by:

abs x | x >= 0 = x

| x < 0 = -x

signum x | x > 0 = 1

| x == 0 = 0

| x < 0 = -1

6.8 Numbers 57

For
omplex numbers, the de�nitions are di�erent:

abs z = magnitude z :+ 0

signum z�(x:+y) = x/r :+ y/r where r = magnitude z

That is, abs z is a number with the magnitude of z, but oriented in the positive real

dire
tion, whereas signum z has the phase of z, but unit magnitude. (abs for a
omplex

number di�ers from magnitude only in type. See Se
tion 6.8.3.)

6.8.7 Trigonometri
 Fun
tions

The
ir
ular and hyperboli
 sine,
osine, and tangent fun
tions and their inverses are pro-

vided for
oating-point numbers. A version of ar
tangent taking two real
oating-point

arguments is also provided: For real
oating x and y, atan2 y x di�ers from atan (y/x)

in that its range is (��; �℄ rather than (��=2; �=2) (be
ause the signs of the arguments

provide quadrant information), and that it is de�ned when x is zero.

The pre
ise de�nition of the above fun
tions is as in Common Lisp [14℄, whi
h in turn

follows Pen�eld's proposal for APL [11℄. See these referen
es for dis
ussions of bran
h
uts,

dis
ontinuities, and implementation.

6.8.8 Coer
ions and Component Extra
tion

The
eiling, floor, trun
ate, and round fun
tions ea
h take a real fra
tional argument

and return an integral result.
eiling x returns the least integer not less than x, and

floor x, the greatest integer not greater than x. trun
ate x yields the integer nearest x

between 0 and x, in
lusive. round x returns the nearest integer to x, the even integer if x

is equidistant between two integers.

The fun
tion properFra
tion takes a real fra
tional number x and returns a pair
om-

prising x as a proper fra
tion: an Integer with the same sign as x and a fra
tion with

the same type and sign as x and with absolute value less than 1. The
eiling, floor,

trun
ate, and round fun
tions
an be de�ned in terms of this one.

Two fun
tions
onvert numbers to type Rational: toRational returns the rational

equivalent of its real argument with full pre
ision; approxRational takes two real fra
-

tional arguments and returns an approximation to the �rst within the toleran
e given by

the se
ond. Subje
t to the toleran
e
onstraint, the result has the smallest denominator

possible.

The operations of
lass RealFloat allow eÆ
ient, ma
hine-independent a

ess to the

omponents of a
oating-point number. The fun
tions floatRadix, floatDigits, and

floatRange give the parameters of a
oating-point type: the radix of the representation,

the number of digits of this radix in the signi�
and, and the lowest and highest values the

exponent may assume, respe
tively. The fun
tion de
odeFloat applied to a real
oating-

point number returns the signi�
and expressed as an Integer and an appropriately s
aled

exponent (an Int). If de
odeFloat x yields (m,n), then x is equal in value to mb

n

,

where b is the
oating-point radix, and furthermore, either m and n are both zero or

58 6 BASIC TYPES

else b

d�1

� m < b

d

, where d is the value of floatDigits x. en
odeFloat performs the

inverse of this transformation. The fun
tions signifi
and and exponent together provide

the same information as de
odeFloat, but rather than an Integer, signifi
and x yields

a value of the same type as x, s
aled to lie in the open interval (�1 ; 1). exponent 0 is zero.

s
aleFloat multiplies a
oating-point number by an integer power of the radix. These

identities hold:

toRational x == if e < 0 then m % b^(-e) else m*b^e % 1

where b = floatRadix x

(m,e) = de
odeFloat x

x == en
odeFloat m e where (m,e) = de
odeFloat x

Also available are the following
oer
ion fun
tions:

fromIntegral :: (Integral a, Num b) => a -> b

fromRealFra
 :: (RealFra
 a, Fra
tional b) => a -> b

6.9 Arrays

Haskell provides indexable arrays, whi
h may be thought of as fun
tions whose domains

are isomorphi
 to
ontiguous subsets of the integers. Fun
tions restri
ted in this way
an

be implemented eÆ
iently; in parti
ular, a programmer may reasonably expe
t rapid a

ess

to the
omponents. To ensure the possibility of su
h an implementation, arrays are treated

as data, not as general fun
tions.

Types that are instan
es of
lass Ix (see Se
tion 4.3.2) may be indi
es of arrays; a

one-dimensional array might have index type Int, a two-dimensional array (Int,Char)

et
.

6.9.1 Array Constru
tion

If a is an index type and b is any type, the type of arrays with indi
es in a and elements in

b is written Array a b. An array may be
reated by the fun
tion array:

array :: (Ix a) => (a,a) -> [Asso
 a b℄ -> Array a b

data Asso
 a b = a := b

The �rst argument of array is a pair of bounds, ea
h of the index type of the array. These

bounds are the lowest and highest indi
es in the array, in that order. For example, a one-

origin ve
tor of length 10 has bounds (1,10), and a one-origin 10 by 10 matrix has bounds

((1,1),(10,10)).

The se
ond argument of array is a list of asso
iations of the form index := value.

Typi
ally, this list will be expressed as a
omprehension. An asso
iation i := x de�nes

the value of the array at index i to be x. The array is unde�ned if any index in the list is

out of bounds. If any two asso
iations in the list have the same index, the value at that

index is unde�ned. Be
ause the indi
es must be
he
ked for these errors, array is stri
t in

the bounds argument and in the indi
es of the asso
iation list, but nonstri
t in the values.

Thus, re
urren
es su
h as the following are possible:

6.9 Arrays 59

-- S
aling an array of numbers by a given number:

s
ale :: (Num a, Ix b) => a -> Array b a -> Array b a

s
ale x a = array b [i := a!i * x | i <- range b℄

where b = bounds a

-- Inverting an array that holds a permutation of its indi
es

invPerm :: (Ix a) => Array a a -> Array a a

invPerm a = array b [a!i := i | i <- range b℄

where b = bounds a

-- The inner produ
t of two ve
tors

inner :: (Ix a, Num b) => Array a b -> Array a b -> b

inner v w = if b == bounds w

then sum [v!i * w!i | i <- range b℄

else error "in
onformable arrays for inner produ
t"

where b = bounds v

Figure 10: Array examples

a = array (1,100) ((1 := 1) : [i := i * a!(i-1) | i <- [2..100℄℄)

Not every index within the bounds of the array need appear in the asso
iation list, but the

values asso
iated with indi
es that do not appear will be unde�ned. Figure 10 shows some

examples that use the Array
onstru
tor.

(!) denotes array subs
ripting; the bounds fun
tion applied to an array returns its

bounds:

(!) :: (Ix a) => Array a b -> a -> b

bounds :: (Ix a) => Array a b -> (a,a)

The fun
tions indi
es, elems, and asso
s, when applied to an array, return lists of the

indi
es, elements, or asso
iations, respe
tively, in index order:

indi
es:: (Ix a) => Array a b -> [a℄

indi
es = range . bounds

elems:: (Ix a) => Array a b -> [b℄

elems a = [a!i | i <- indi
es a℄

asso
s: (Ix a) => Array a b -> [Asso
 a b℄

asso
s a = [i := a!i | i <- indi
es a℄

An array may be
onstru
ted from a pair of bounds and a list of values in index order using

the fun
tion listArray:

listArray:: (Ix a) => (a,a) -> [b℄ -> Array a b

listArray bnds xs = Array bnds (zipWith (:=) (range bnds) xs)

60 6 BASIC TYPES

6.9.2 A

umulated Arrays

Another array
reation fun
tion, a

umArray, relaxes the restri
tion that a given index may

appear at most on
e in the asso
iation list, using an a

umulating fun
tion whi
h
ombines

the values of asso
iations with the same index [10, 16℄:

a

umArray::(Ix a) => (b->
->b) -> b -> (a,a) -> [Asso
 a
℄ -> Array a b

The �rst argument of a

umArray is the a

umulating fun
tion; the se
ond is an initial

value; the remaining two arguments are a bounds pair and an asso
iation list, as for the

array fun
tion. For example, given a list of values of some index type, hist produ
es a

histogram of the number of o

urren
es of ea
h index within a spe
i�ed range:

hist :: (Ix a, Num b) => (a,a) -> [a℄ -> Array a b

hist bnds is = a

umArray (+) 0 bnds [i := 1 | i<-is, inRange bnds i℄

If the a

umulating fun
tion is stri
t, then a

umArray is stri
t in the values, as well as the

indi
es, in the asso
iation list. Thus, unlike ordinary arrays, a

umulated arrays should not

in general be re
ursive.

6.9.3 In
remental Array Updates

(//) :: (Ix a) => Array a b -> Asso
 a b -> Array a b

a

um :: (Ix a) => (b ->
 -> b) -> Array a b -> [Asso
 a
℄ -> Array a b

The operator (//) takes an array and an Asso
 pair and returns an array identi
al to

the left argument ex
ept for one element spe
i�ed by the right argument. a

um f takes

an array and an asso
iation list and a

umulates pairs from the list into the array with the

a

umulating fun
tion f . Thus a

umArray
an be de�ned using a

um:

a

umArray f z b = a

um f (array b [i := z | i <- range b℄)

6.9.4 Derived Arrays

The two fun
tions amap and ixmap derive new arrays from existing ones; they may be

thought of as providing fun
tion
omposition on the left and right, respe
tively, with the

mapping that the original array embodies:

amap :: (Ix a) => (b ->
) -> Array a b -> Array a

amap f a = array b [i := f (a!i) | i <- range b℄

where b = bounds a

ixmap :: (Ix a,Ix a') => (a',a') -> (a'->a) -> Array a b -> Array a' b

ixmap bnds f a = array bnds [i := a ! f i | i <- range bnds℄

amap is the array analogue of the map fun
tion on lists, while ixmap allows for transforma-

tions on array indi
es. Figure 11 shows some examples.

6.10 Errors 61

-- A re
tangular subarray

subArray :: (Ix a) => (a,a) -> Array a b -> Array a b

subArray bnds = ixmap bnds (\i->i)

-- A row of a matrix

row :: (Ix a, Ix b) => a -> Array (a,b)
 -> Array b

row i x = ixmap (l',u') (\j->(i,j)) x where ((l,l'),(u,u')) = bounds x

-- Diagonal of a square matrix

diag :: (Ix a) => Array (a,a) b -> Array a b

diag x = ixmap (l,u) (\i->(i,i)) x

where ((l,l'),(u,u')) | l == l' && u == u' = bounds x

-- Proje
tion of first
omponents of an array of pairs

firstArray :: (Ix a) => Array a (b,
) -> Array a b

firstArray = amap (\(x,y)->x)

Figure 11: Derived array examples

6.10 Errors

All errors in Haskell are semanti
ally equivalent to ?. error:: String -> a takes a

string argument and returns ?. An appli
ation of error terminates evaluation of the

program and displays the string as appropriate.

62 7 INPUT/OUTPUT

7 Input/Output

Haskell's I/O system is based on the view that a program
ommuni
ates to the outside

world via streams of messages: a program issues a stream of requests to the operating system

and in return re
eives a stream of responses. Sin
e a stream in Haskell is only a lazy list,

a Haskell program has the type:

type Dialogue = [Response℄ -> [Request℄

The datatypes Response and Request are de�ned below. Intuitively, [Response℄ is an

ordered list of responses and [Request℄ is an ordered list of requests; the nth response is

the operating system's reply to the nth request.

With this view of I/O, there is no need for any spe
ial-purpose syntax or
onstru
ts for

I/O; the I/O system is de�ned entirely in terms of how the operating system responds to

a program with the above type|i.e. what response it issues for ea
h request. An abstra
t

spe
i�
ation of this behaviour is de�ned by giving a de�nition of the operating system as

a fun
tion that takes as input an initial state and a
olle
tion of Haskell programs, ea
h

with the above type. This spe
i�
ation appears in Appendix C, using standard Haskell

syntax augmented with a single non-deterministi
 merge operator.

One
an de�ne a
ontinuation-based version of I/O in terms of a stream-based version.

Su
h a de�nition is provided in Se
tion 7.5. The spe
i�
 I/O requests available in ea
h

style are identi
al; what di�ers is the way they are expressed. This means that programs

in either style may be
ombined with a well-de�ned semanti
s. In both
ases arbitrary I/O

requests within
onventional operating systems may be indu
ed while retaining referential

transparen
y within a Haskell program.

The required requests for a valid implementation are:

63

data Request =

-- file system requests:

ReadFile Name

| WriteFile Name String

| AppendFile Name String

| ReadBinFile Name

| WriteBinFile Name Bin

| AppendBinFile Name Bin

| DeleteFile Name

| StatusFile Name

--
hannel system requests:

| ReadChan Name

| AppendChan Name String

| ReadBinChan Name

| AppendBinChan Name Bin

| StatusChan Name

-- environment requests:

| E
ho Bool

| GetArgs

| GetEnv Name

| SetEnv Name String

type Name = String

stdin = "stdin"

stdout = "stdout"

stderr = "stderr"

stde
ho = "stde
ho"

Con
eptually the above requests
an be organised into three groups: those relating to the

�le system
omponent of the operating system (the �rst eight), those relating to the
hannel

system (the next �ve), and those relating to the environment (the last four).

The �le system is fairly
onventional: a mapping of �le names to
ontents. The
han-

nel system
onsists of a
olle
tion of
hannels, examples of whi
h in
lude standard input

(stdin), standard output (stdout), standard error (stderr), and standard e
ho (stde
ho)

hannels. A
hannel is a one-way
ommuni
ation medium|it either
onsumes values from

the program (via AppendChan or AppendBinChan) or produ
es values for the program (by

responding to ReadChan or ReadBinChan). Channels
ommuni
ate to and from agents (a

on
ept made more pre
ise in Appendix C). Examples of agents in
lude line printers, disk

ontrollers, networks, and human beings. As an example of the latter, the user is normally

the
onsumer of standard output and the produ
er of standard input. Channels
annot be

deleted, nor is there a notion of
reating a
hannel.

64 7 INPUT/OUTPUT

Apart from these required requests, several optional requests are des
ribed in Ap-

pendix C.1. Although not required for a valid Haskell implementation, they may be

useful in parti
ular implementations.

Requests to the �le system are in general order-dependent; if i > j then the response

to the ith request may depend on the jth request. In the
ase of the
hannel system the

nature of the dependen
ies is di
tated by the agents. In all
ases external e�e
ts may also

be felt \between" internal e�e
ts.

Responses are de�ned by:

data Response = Su

ess

| Str String

| Bn Bin

| Failure IOError

data IOError = WriteError String

| ReadError String

| Sear
hError String

| FormatError String

| OtherError String

The response to a request is either Su

ess, when no value is returned; Str s [Bn b℄, when

a string [binary℄ value s [b℄ is returned; or Failure e, indi
ating failure with I/O error e.

The nature of a failure is de�ned by the IOError datatype, whi
h
aptures the most

ommon kinds of errors. The String
omponents of these errors are implementation depen-

dent, and may be used to re�ne the des
ription of the error (for example, for ReadError, the

string might be "file lo
ked", "a

ess rights violation", et
.). An implementation

is free to extend IOError as required.

7.1 I/O Modes

The I/O requests ReadFile, WriteFile, AppendFile, ReadChan, and AppendChan all work

with text values|i.e. strings. Any value whose type is an instan
e of the
lass Text may be

written to a �le (or
ommuni
ated on a
hannel) by using the appropriate output request

if it is �rst
onverted to a string, using shows (see Se
tion 4.3.3). Similarly, reads
an be

used with the appropriate input request to read su
h a value from a �le (or a
hannel). This

is text mode I/O.

For both eÆ
ien
y and transparen
y, Haskell also supports a
orresponding set of

binary I/O requests|ReadBinFile, WriteBinFile, AppendBinFile, ReadBinChan, and

AppendBinChan. showBin and readBin are using analogously to shows and reads (see

Se
tion 4.3.3) for values whose types are instan
es of the
lass Binary (see Se
tion 6.6).

Binary mode I/O ensures transparen
y within an implementation|i.e. \what is read

is what was written." Implementations on
onventional ma
hines will probably be able to

7.1 I/O Modes 65

realise binary mode more eÆ
iently than text mode. On the other hand, the Bin datatype

itself is implementation dependent, and thus binary mode should not be used as a method

to ensure transparen
y between implementations.

In the remainder of this se
tion, various aspe
ts of text mode will be dis
ussed, in
luding

the behaviour of standard
hannels su
h as stdin and stdout.

7.1.1 Transparent Chara
ter Set

The transparent
hara
ter set is de�ned by:

the 52 upper
ase and lower
ase alphabeti

hara
ters

the 10 de
imal digits

the 32 graphi

hara
ters:

! " # $ % & � () * + , - . / : ; < = > ? � [\ ℄ ^ _ � { | } ~

the spa
e
hara
ter

(This is identi
al to the any synta
ti

ategory de�ned in Se
tion 2.2, with tab ex
luded.)

A transparent line is a list of no more than 254 transparent
hara
ters followed by a

\n
hara
ter (i.e. no more than 255
hara
ters in total). A transparent string is the �nite

on
atenation of zero or more transparent lines.

Haskell's text mode for �les is transparent whenever the string being used is transpar-

ent. An implementation must ensure that a transparent string written to a �le in text mode

is identi
al to the string read ba
k from the same �le in text mode (assuming there were no

intervening external e�e
ts).

The transparent
hara
ter set is restri
ted be
ause of the in
onsistent treatment of text

�les by operating systems. For example, some systems translate the newline
hara
ter

\n into CR/LF, and others into just CR or just LF|so none of these
hara
ters
an be in

the transparent
hara
ter set. Similarly, some systems trun
ate lines ex
eeding a
ertain

length, others do not. Haskell's transparent string is intended to provide a useful degree

of portability of text �le manipulating programs. Of
ourse, an implementation is free to

guarantee a higher degree of transparen
y than that de�ned here (su
h as longer lines or

more
hara
ter types).

Besides this de�nition of text mode transparen
y, the standard input and output
han-

nels
arry with them notions of standard presentation and a

eptan
e, as de�ned below.

7.1.2 Presentation

Standard text mode presentation guarantees a minimum kind of presentable output on stan-

dard output devi
es; thus it is only de�ned for AppendChan using the
hannels stdout,

stderr, and stde
ho. Abstra
tly, these
hannels are assumed to be atta
hed to a sequen
e

of re
tangular grids of
hara
ters
alled pages; ea
h page
onsists of a number of lines and

olumns, with the �rst line presented at the \top" and the �rst
olumn presented to the

\left." The width of a
olumn is assumed to be
onstant. (On a paper printing devi
e,

66 7 INPUT/OUTPUT

we expe
t an abstra
t page to
orrespond to a physi
al page; on a terminal display, it will

orrespond to whatever abstra
tion is presented by the terminal, but at a minimum the

terminal should support display of at least one full page.)

Chara
ters obtained from AppendChan requests are written sequentially into these pages

starting at the top left hand
orner of the �rst page. The
hara
ters are written in order

horizontally a
ross the page until a newline
hara
ter (\n) is pro
essed, at whi
h point the

subsequent
hara
ters are written starting in
olumn one of line two, and so on. If a form

feed
hara
ter (\f) is pro
essed, writing starts at the top left hand
orner of the se
ond

page, and so on.

Maximum line length and page length for the output
hannels stdout, stde
ho, and

stderr may be obtained via the StatusChan request as des
ribed in Se
tion 7.3. These

are implementation-dependent
onstants, but must be at least 40
hara
ters and 20 lines,

respe
tively. AppendChan may indu
e a FormatError if either of these limits is ex
eeded.

Presentation of the transparent
hara
ter set may be in any readable font. Presentation

of \n and \f is as de�ned above. Presentation of any other
hara
ter is not de�ned|

presentation of su
h a
hara
ter may invalidate standard presentation of all subsequent

hara
ters. An implementation, of
ourse, may guarantee other forms of useful presentation

beyond what is spe
i�ed here.

To fa
ilitate pro
essing of text to and from standard input/output
hannels, the auxiliary

fun
tions shown in Figure 12 are provided in the standard prelude.

7.1.3 A

eptan
e

Standard text mode a

eptan
e guarantees a minimum kind of
hara
ter input from standard

input devi
es; thus it is only de�ned for ReadChan using the
hannel stdin. Abstra
tly,

stdin is assumed to be atta
hed to a keyboard. The only requirement of the keyboard is

that it have keys to support the transparent
hara
ter set plus the newline (\n)
hara
ter.

7.1.4 E
hoing

The
hannel stde
ho is assumed
onne
ted to the display asso
iated with the devi
e to

whi
h stdin is
onne
ted. It may be possible for stdout and stde
ho to be
onne
ted to

the same devi
e, but this is not required. It may be possible in some operating systems to

redire
t stdout to a �le while still displaying information to the user on stde
ho.

The E
ho request (des
ribed in Se
tion 7.4)
ontrols e
hoing of stdin on stde
ho. When

e
hoing is enabled,
hara
ters typed at the terminal
onne
ted to stdin are e
hoed onto

stde
ho, with optional implementation-spe
i�
 line-editing fun
tions available. The list of

hara
ters returned by a read request to stdin should be the result of this pro
essing. As

an entire line may be erased by the user, a program will not see any of the line until a \n

hara
ter is typed.

A display may re
eive data from four di�erent sour
es: e
hoing from stdin, and expli
it

output to stde
ho, stdout, and stderr. The result is an interleaving of these
hara
ter

7.1 I/O Modes 67

span, break :: (a -> Bool) -> [a℄ -> ([a℄,[a℄)

span p xs = (takeWhile p xs, dropWhile p xs)

break p = span (not . p)

lines :: String -> [String℄

lines "" = [℄

lines s = l : (if null s' then [℄ else lines (tail s'))

where (l, s') = break ((==) '\n') s

words :: String -> [String℄

words s =
ase dropWhile isSpa
e s of

"" -> [℄

s' -> w : words s''

where (w, s'') = break isSpa
e s'

unlines :: [String℄ -> String

unlines ls =
on
at (map (\l -> l ++ "\n") ls)

unwords :: [String℄ -> String

unwords [℄ = ""

unwords [w℄ = w

unwords (w:ws) = w ++
on
at (map ((:) ' ') ws)

Figure 12: Auxiliary Fun
tions for Text Pro
essing of Standard Output

68 7 INPUT/OUTPUT

streams, but it is not an arbitrary one, be
ause of two
onstraints: (1) expli
it output (via

AppendChan) must appear as the
on
atenation of the individual streams; i.e. they
annot

be interleaved (this is
onsistent with the hyperstri
t nature of AppendChan), and (2) if

e
hoing is on,
hara
ters from stdin that a program depends on for some I/O request must

appear on the display before that I/O o

urs. These
onstraints permit a user to type

ahead, but prevent a system from printing a reply before e
hoing the user's request.

7.2 File System Requests

In this se
tion, ea
h request is des
ribed using the stream model|the
orresponding be-

haviour using the
ontinuation model should be obvious. Optional requests, not required

of a valid Haskell implementation, are des
ribed in Appendix C.1.

�

ReadFile name

ReadBinFile name

Returns the
ontents of �le name treated as a text [binary℄ �le. If su

essful, the

response will be of the form Str s [Bn b℄, where s [b℄ is a string [binary℄ value. If

the �le is not found, the response Failure (Sear
hError string) is indu
ed; if

it is unreadable for some other reason, the Failure (ReadError string) error is

indu
ed.

�

WriteFile name string

WriteBinFile name bin

Writes string [bin℄ to �le name. If the �le does not exist, it is
reated. If it already

exists, it is overwritten. A su

essful response has form Su

ess; the only failure

possible has the form Failure (WriteError string).

Both of these requests are \hyperstri
t" in their se
ond argument: no response is

returned until the entire list of values is
ompletely evaluated.

�

AppendFile name string

AppendBinFile name bin

Identi
al to WriteFile [WriteBinFile℄, ex
ept that (1) the string [bin℄ argument is

appended to the
urrent
ontents of the �le named name; (2) if the I/O mode does not

mat
h the previous mode with whi
h name was written, the behaviour is not spe
i�ed;

and (3) if the �le does not exist, the response Failure (Sear
hError string) is in-

du
ed. All other errors have form Failure (WriteError string), and both requests

are hyperstri
t in their se
ond argument.

7.3 Channel System Requests 69

�

DeleteFile name

Deletes �le name, with su

essful response Su

ess. If the �le does not exist, the

response Failure (Sear
hError string) is indu
ed. If it
annot be deleted for some

other reason, a response of the form Failure (WriteError string) is indu
ed.

�

StatusFile name

Indu
es Failure (Sear
hError string) if an obje
t name does not exist, otherwise

indu
es Str status where status is a string
ontaining, in this order: (1) either �t�,

�b�, �d�, or �u� depending on whether the obje
t is a text �le, binary �le, dire
tory,

or something else, respe
tively (if text and binary �les
annot be distinguished, �f�

indi
ates either text or binary �le); (2) �r� if the obje
t is readable by this program,

�-� if not; and (3) �w� if the obje
t is writable by this program, �-� if not. For example

"dr-" denotes a dire
tory that
an be read but not written. An implementation is

free to append more status information to this string.

Note 1. A proper implementation of ReadFile or ReadBinFilemay have to make
opies

of �les in order to preserve referential transparen
y|a su

essful read of a �le returns a

lazy list whose
ontents should be preserved, despite future writes to or deletions of that

�le, even if the lazy list has not yet been
ompletely evaluated.

Note 2. Given the two juxtaposed requests:

[..., WriteFile name
ontents1, ReadFile name, ... ℄

with the
orresponding responses:

[..., Su

ess, Str
ontents2, ... ℄

then
ontents1 ==
ontents2 if
ontents1 is a transparent string, assuming that there

were no external e�e
ts. A similar result would hold if the binary versions were used.

7.3 Channel System Requests

Channels are inherently di�erent from �les|they
ontain ephemeral streams of data as

opposed to persistent stationary values. The most
ommon
hannels are standard input

(stdin), standard output (stdout), standard error (stderr), and standard e
ho (stde
ho);

these four are the only required
hannels in a valid implementation.

�

ReadChan name

70 7 INPUT/OUTPUT

ReadBinChan name

Opens
hannel name for input. A su

essful response returns the
ontents of the

hannel as a lazy stream of
hara
ters [a binary value℄. If the
hannel does not exist

the response Failure (Sear
hError string) is indu
ed; all other errors have form

Failure (ReadError string).

Unlike �les, on
e a ReadChan or ReadBinChan request has been issued for a parti
ular

hannel, it
annot be issued again for the same
hannel in that program. This re
e
ts

the ephemeral nature of its
ontents and prevents a serious spa
e leak.

�

AppendChan name string

AppendBinChan name bin

Writes string [bin℄ to
hannel name. The semanti
s is as for AppendFile, ex
ept:

(1) the se
ond argument is appended to whatever was previously written (if any-

thing); (2) if AppendChan and AppendBinChan are both issued to the same
hannel,

the resulting behaviour is not spe
i�ed; (3) if the
hannel does not exist, the re-

sponse Failure (Sear
hError string) is indu
ed; and (4) if the maximum line

or page length of stdout, stderr, or stde
ho is ex
eeded, the response Failure

(FormatError string) is indu
ed (see Se
tion 7.1.2). All other errors have form

Failure (WriteError string). Both requests are hyperstri
t in their se
ond argu-

ment.

�

StatusChan name

Indu
es Failure (Sear
hError string) if
hannel name does not exist, otherwise

indu
es Str status where status is a string
ontaining implementation-dependent

information about the named
hannel. The only information required of a valid im-

plementation is that for the output
hannels stdout, stde
ho, and stderr: the be-

ginning of the status string must
ontain two integers separated by a spa
e, the �rst

integer indi
ating the maximum line length (in
hara
ters) allowed on the
hannel,

the se
ond indi
ating the maximum page length (in lines) allowed (see Se
tion 7.1.2).

A zero length implies that there is no bound.

7.4 Environment Requests

�

E
ho bool

E
ho True enables e
hoing of stdin on stde
ho; E
ho False disables it (see Se
-

tion 7.1.4). Either Su

ess or Failure (OtherError string) is indu
ed.

7.5 Continuation-based I/O 71

The e
ho mode
an only be set on
e by a parti
ular program, and it must be done

before any I/O involving stdin. If no E
ho request is made, the default is True

(i.e. e
hoing enabled).

�

GetArgs

Indu
es the response Str str, where str is a
on
atenation of the program's
om-

mand line arguments separated by \n's.

�

GetEnv name

Returns the value of environment variable name. If su

essful, the response will be

of the form Str s, where s is a string. If the environment variable does not exist, a

Sear
hError is indu
ed.

�

SetEnv name string

Sets environment variable name to value string, with response Su

ess. If the envi-

ronment variable does not exist, it is
reated.

7.5 Continuation-based I/O

Haskell supports an alternative style of I/O
alled
ontinuation-based I/O. Under this

model, a Haskell program still has type [Response℄->[Request℄, but instead of the user

manipulating the requests and responses dire
tly, a
olle
tion of transa
tions de�ned in a

ontinuation style,
aptures the e�e
t of ea
h request/response pair.

Transa
tions are fun
tions. For ea
h request Req there
orresponds a transa
tion req, as

shown in Figure 13. For example, ReadFile indu
es either a failure response Failure msg

or su

ess response Str
ontents. In
ontrast the transa
tion readFile would be used in

ontinuation-based I/O, as for example,

readFile name (\ msg -> errorTransa
tion)

(\
ontents -> su

essTransa
tion)

where the se
ond and third arguments are the failure
ontinuation and su

ess
ontinuation,

respe
tively. If the transa
tion fails then the error
ontinuation is applied to the error

message; if it su

eeds then the su

ess
ontinuation is applied to the
ontents of the �le.

The following type synonyms and auxiliary fun
tions are de�ned for
ontinuation-based

I/O:

72 7 INPUT/OUTPUT

type Dialogue = [Response℄ -> [Request℄

type Su

Cont = Dialogue

type StrCont = String -> Dialogue

type BinCont = Bin -> Dialogue

type FailCont = IOError -> Dialogue

strDispat
h fail su

 (resp:resps) =

ase resp of Str val -> su

 val resps

Failure msg -> fail msg resps

binDispat
h fail su

 (resp:resps) =

ase resp of Bn val -> su

 val resps

Failure msg -> fail msg resps

su

Dispat
h fail su

 (resp:resps) =

ase resp of Su

ess -> su

 resps

Failure msg -> fail msg resps

abort :: FailCont

abort err = done

exit :: FailCont

exit err = appendChan stdout msg abort done

where msg =
ase err of ReadError s -> s

WriteError s -> s

Sear
hError s -> s

FormatError s -> s

OtherError s -> s

let :: a -> (a -> b) -> b

let x k = k x

print :: (Text a) => a -> Dialogue

print x = appendChan stdout (show x) abort done

prints :: (Text a) => a -> String -> Dialogue

prints x s = appendChan stdout (shows x s) abort done

intera
t :: (String -> String) -> Dialogue

intera
t f = readChan stdin abort

(\x -> appendChan stdout (f x) abort done)

7.5 Continuation-based I/O 73

done :: Dialogue

readFile :: Name -> FailCont -> StrCont -> Dialogue

writeFile :: Name -> String -> FailCont -> Su

Cont -> Dialogue

appendFile :: Name -> String -> FailCont -> Su

Cont -> Dialogue

readBinFile :: Name -> FailCont -> BinCont -> Dialogue

writeBinFile :: Name -> Bin -> FailCont -> Su

Cont -> Dialogue

appendBinFile :: Name -> Bin -> FailCont -> Su

Cont -> Dialogue

deleteFile :: Name -> FailCont -> Su

Cont -> Dialogue

statusFile :: Name -> FailCont -> StrCont -> Dialogue

readChan :: Name -> FailCont -> StrCont -> Dialogue

appendChan :: Name -> String -> FailCont -> Su

Cont -> Dialogue

readBinChan :: Name -> FailCont -> BinCont -> Dialogue

appendBinChan :: Name -> Bin -> FailCont -> Su

Cont -> Dialogue

statusChan :: Name -> FailCont -> StrCont -> Dialogue

e
ho :: Bool -> FailCont -> Su

Cont -> Dialogue

getArgs :: FailCont -> StrCont -> Dialogue

getEnv :: Name -> FailCont -> StrCont -> Dialogue

setEnv :: Name -> String -> FailCont -> Su

Cont -> Dialogue

done resps = [℄

readFile name fail su

 resps = --similarly for readBinFile

(ReadFile name) : strDispat
h fail su

 resps

writeFile name
ontents fail su

 resps = --similarly for writeBinFile

(WriteFile name
ontents) : su

Dispat
h fail su

 resps

appendFile name
ontents fail su

 resps = --similarly for appendBinFile

(AppendFile name
ontents) : su

Dispat
h fail su

 resps

deleteFile name fail su

 resps =

(DeleteFile name) : su

Dispat
h fail su

 resps

statusFile name fail su

 resps = --similarly for statusChan

(StatusFile name) : strDispat
h fail su

 resps

readChan name fail su

 resps = --similarly for readBinChan

(ReadChan name) : strDispat
h fail su

 resps

appendChan name
ontents fail su

 resps = --similarly for appendBinChan

(AppendChan name
ontents) : su

Dispat
h fail su

 resps

e
ho bool fail su

 resps =

(E
ho bool) : su

Dispat
h fail su

 resps

getArgs fail su

 resps =

GetArgs : strDispat
h fail su

 resps

getEnv name fail su

 resps =

(GetEnv name) : strDispat
h fail su

 resps

setEnv name
ontents fail su

 resps =

(SetEnv name
ontents) : su

Dispat
h fail su

 resps

Figure 13: Transa
tions of
ontinuation-based I/O.

74 7 INPUT/OUTPUT

7.6 A Small Example

Both of the following programs prompt the user for the name of a �le, and then look up and

display the
ontents of the �le on standard-output. The �lename as typed by the user is

also e
hoed. The �rst program uses the stream-based style (note the irrefutable patterns):

main ~(Su

ess : ~((Str userInput) : ~(Su

ess : ~(r4 : _)))) =

[AppendChan stdout "please type a filename\n",

ReadChan stdin,

AppendChan stdout name,

ReadFile name,

AppendChan stdout (
ase r4 of Str
ontents ->
ontents

Failure ioerror -> "
an't open file")

℄ where (name : _) = lines userInput

The se
ond program uses the
ontinuation-based style:

main = appendChan stdout "please type a filename\n" abort (

readChan stdin abort (\ userInput ->

let (lines userInput) (\ (name : _) ->

appendChan stdout name abort (

readFile name (\ ioerror -> appendChan stdout

"
an't open file" abort done)

(\
ontents ->

appendChan stdout
ontents abort done)))))

Many more examples and a general dis
ussion of both forms of I/O may be found in a

report by Hudak and Sundaresh [6℄.

75

A Standard Prelude

In this appendix the entire Haskell prelude is given. It is organised into a root module

and eight sub-modules.

76 A STANDARD PRELUDE

A.1 Prelude PreludeBuiltin

A.2 Prelude PreludeCore 77

A.2 Prelude PreludeCore

-- Standard types,
lasses, and instan
es

module PreludeCore (

Eq((=), (/=)),

Ord((<), (<=), (>=), (>), max, min),

Num((+), (-), (*), negate, abs, signum, fromInteger),

Integral(divRem, div, rem, mod, even, odd, toInteger),

Fra
tional((/), fromRational),

Floating(pi, exp, log, sqrt, (**), logBase,

sin,
os, tan, asin, a
os, atan,

sinh,
osh, tanh, asinh, a
osh, atanh),

Real(toRational),

RealFra
(properFra
tion, approxRational),

RealFloat(floatRadix, floatDigits, floatRange,

en
odeFloat, de
odeFloat, exponent, signifi
and, s
aleFloat),

Ix(range, index, inRange),

Enum(enumFrom, enumFromThen, enumFromTo, enumFromThenTo),

Text(readsPre
, showsPre
, readList, showList),

Binary(readBin, showBin),

-- List type: [_℄((:), [℄)

-- Tuple types: (_,_), (_,_,_), et
.

-- Trivial type: ()

Bool(True, False),

Char, Int, Integer, Float, Double, Bin,

Ratio, Complex((:+)), Asso
((:=)), Array,

String, Rational) where

import PreludeBuiltin

import PreludeText(Text(readsPre
, showsPre
, readList, showList))

import PreludeRatio(Ratio, Rational)

import PreludeComplex

import PreludeArray(Asso
(:=), Array)

import PreludeIO(Name, Request, Response, IOError,

Dialogue, Su

Cont, StrCont, BinCont, FailCont)

infixr 8 **

infixl 7 *

infix 7 /, `div`, `rem`, `mod`

infixl 6 +, -

infixr 3 :

infix 2 ==, /=, <, <=, >=, >

78 A STANDARD PRELUDE

-- Equality and Ordered
lasses

lass Eq a where

(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)

lass (Eq a) => Ord a where

(<), (<=), (>=), (>):: a -> a -> Bool

max, min :: a -> a -> Bool

x < y = x <= y && x /= y

x >= y = y <= x

x > y = y < x

max x y | x >= y = x

| y >= x = y

min x y | x <= y = x

| y <= x = y

-- Numeri

lasses

lass (Eq a) => Num a where

(+), (-), (*) :: a -> a -> a

negate :: a -> a

abs, signum :: a -> a

fromInteger :: Integer -> a

x - y = x + negate y

lass (Num a, Ord a) => Real a where

toRational :: a -> Rational

lass (Real a) => Integral a where

div, rem, mod :: a -> a -> a

divRem :: a -> a -> (a,a)

even, odd :: a -> Bool

toInteger :: a -> Integer

x `div` y = q where (q,r) = divRem x y

x `rem` y = r where (q,r) = divRem x y

x `mod` y = if signum x == - (signum y) then r + y else r

where r = x `rem` y

even x = x `rem` 2 == 0

odd = not . even

A.2 Prelude PreludeCore 79

lass (Num a) => Fra
tional a where

(/) :: a -> a -> a

fromRational :: Rational -> a

lass (Fra
tional a) => Floating a where

pi :: a

exp, log, sqrt :: a -> a

(**), logBase :: a -> a -> a

sin,
os, tan :: a -> a

asin, a
os, atan :: a -> a

sinh,
osh, tanh :: a -> a

asinh, a
osh, atanh :: a -> a

x ** y = exp (log x * y)

logBase x y = log y / log x

sqrt x = x ** 0.5

tan x = sin x /
os x

tanh x = sinh x /
osh x

lass (Real a, Fra
tional a) => RealFra
 a where

properFra
tion :: a -> (Integer,a)

approxRational :: a -> a -> Rational

lass (RealFra
 a, Floating a) => RealFloat a where

floatRadix :: a -> Integer

floatDigits :: a -> Int

floatRange :: a -> (Int,Int)

de
odeFloat :: a -> (Integer,Int)

en
odeFloat :: Integer -> Int -> a

exponent :: a -> Int

signifi
and :: a -> a

s
aleFloat :: Int -> a -> a

exponent x = if m == 0 then 0 else n + floatDigits x

where (m,n) = de
odeFloat x

signifi
and x = en
odeFloat m (- (floatDigits x))

where (m,_) = de
odeFloat x

s
aleFloat k x = en
odeFloat m (n+k)

where (m,n) = de
odeFloat x

80 A STANDARD PRELUDE

-- Index and Enumeration
lasses

lass (Ord a) => Ix a where

range :: (a,a) -> [a℄

index :: (a,a) -> a -> Int

inRange :: (a,a) -> a -> Bool

lass (Ix a) => Enum a where

enumFrom :: a -> [a℄ -- [n..℄

enumFromThen :: a -> a -> [a℄ -- [n,n'..℄

enumFromTo :: a -> a -> [a℄ -- [n..m℄

enumFromThenTo :: a -> a -> a -> [a℄ -- [n,n'..m℄

enumFromTo n m = takeWhile ((>=) m) (enumFrom n)

enumFromThenTo n n' m

= takeWhile ((if n' >= n then (>=) else (<=)) m)

(enumFromThen n n')

-- Binary
lass

lass Binary a where

readBin :: Bin -> (a,Bin)

showBin :: a -> Bin -> Bin

-- Boolean type

data Bool = False | True

-- Chara
ter type

instan
e Eq Char where

 ==
' = ord
 == ord
'

instan
e Ord Char where

 <=
' = ord
 <= ord
'

instan
e Ix Char where

range (
,
') = [
..
'℄

index (
,
')
i = ord
i - ord

inRange (
,
')
i = ord
 <= i && i <= ord
'

where i = ord
i

A.2 Prelude PreludeCore 81

instan
e Enum Char where

enumFrom
 = map
hr [ord
 ..℄

enumFromThen

' = map
hr [ord
, ord
' ..℄

type String = [Char℄

-- Standard Integral types

instan
e Eq Int where

(==) = primEqInt

instan
e Eq Integer where

(==) = primEqInteger

instan
e Ord Int where

(<=) = primLeInt

instan
e Ord Integer where

(<=) = primLeInteger

instan
e Num Int where

(+) = primPlusInt

negate = primNegInt

(*) = primMulInt

abs = absReal

signum = signumReal

fromInteger = primIntegerToInt

instan
e Num Integer where

(+) = primPlusInteger

negate = primNegInteger

(*) = primMulInteger

abs = absReal

signum = signumReal

fromInteger x = x

absReal x | x >= 0 = x

| otherwise = - x

signumReal x | x == 0 = 0

| x > 0 = 1

| otherwise = -1

82 A STANDARD PRELUDE

instan
e Real Int where

toRational x = toInteger x % 1

instan
e Real Integer where

toRational x = x % 1

instan
e Integral Int where

divRem = primDivRemInt

toInteger = primIntToInteger

instan
e Integral Integer where

divRem = primDivRemInteger

toInteger x = x

instan
e Ix Int where

range (m,n) = [m..n℄

index (m,n) i = i - m

inRange (m,n) i = m <= i && i <= n

instan
e Ix Integer where

range (m,n) = [m..n℄

index (m,n) i = fromInteger (i - m)

inRange (m,n) i = m <= i && i <= n

instan
e Enum Int where

enumFrom n = enumFromBy n 1

enumFromThen n m = enumFromBy n (m - n)

instan
e Enum Integer where

enumFrom n = enumFromBy n 1

enumFromThen n m = enumFromBy n (m - n)

enumFromBy n k = n : enumFromBy (n+k) k

-- Standard Floating types

instan
e Eq Float where

(==) = primEqFloat

instan
e Eq Double where

(==) = primEqDouble

instan
e Ord Float where

(<=) = primLeFloat

A.2 Prelude PreludeCore 83

instan
e Ord Double where

(<=) = primLeDouble

instan
e Num Float where

(+) = primPlusFloat

negate = primNegFloat

(*) = primMulFloat

abs = absReal

signum = signumReal

fromInteger n = en
odeFloat n 0

instan
e Num Double where

(+) = primPlusDouble

negate = primNegDouble

(*) = primMulDouble

abs = absReal

signum = signumReal

fromInteger n = en
odeFloat n 0

instan
e Real Float where

toRational = floatingToRational

instan
e Real Double where

toRational = floatingToRational

floatingToRational x = (m%1)*(b%1)^^n

where (m,n) = de
odeFloat x

b = floatRadix x

instan
e Fra
tional Float where

(/) = primDivFloat

fromRational = rationalToFloating

instan
e Fra
tional Double where

(/) = primDivDouble

fromRational = rationalToFloating

rationalToFloating x = fromInteger (numerator x)

/ fromInteger (denominator x)

84 A STANDARD PRELUDE

instan
e Floating Float where

pi = primPiFloat

exp = primExpFloat

log = primLogFloat

sqrt = primSqrtFloat

sin = primSinFloat

os = primCosFloat

tan = primTanFloat

asin = primAsinFloat

a
os = primA
osFloat

atan = primAtanFloat

sinh = primSinhFloat

osh = primCoshFloat

tanh = primTanhFloat

asinh = primAsinhFloat

a
osh = primA
oshFloat

atanh = primAtanhFloat

instan
e Floating Double where

pi = primPiDouble

exp = primExpDouble

log = primLogDouble

sqrt = primSqrtDouble

sin = primSinDouble

os = primCosDouble

tan = primTanDouble

asin = primAsinDouble

a
os = primA
osDouble

atan = primAtanDouble

sinh = primSinhDouble

osh = primCoshDouble

tanh = primTanhDouble

asinh = primAsinhDouble

a
osh = primA
oshDouble

atanh = primAtanhDouble

instan
e RealFra
 Float where

properFra
tion = floatProperFra
tion

approxRational = floatApproxRational

instan
e RealFra
 Double where

properFra
tion = floatProperFra
tion

approxRational = floatApproxRational

A.2 Prelude PreludeCore 85

floatProperFra
tion x = if n >= 0

then (m * b^n, 0)

else (m', fromInteger k / fromInteger d)

where (m,n) = de
odeFloat x

b = floatRadix x

(m',k) = divRem m d

d = b^(-n)

floatApproxRational x eps =

ase withinEps of

r:r':_ | denominator r == denominator r' -> r'

r:_ -> r

where withinEps = dropWhile (\r -> abs (fromRational r - x) > eps)

(approximants p q)

(p,q) = if n < 0 then (m, b^(-n)) else (m*b^n, 1)

(m,n) = de
odeFloat x

b = toInteger (floatRadix x)

instan
e RealFloat Float where

floatRadix _ = primFloatRadix

floatDigits _ = primFloatDigits

floatRange _ = (primFloatMinExp,primFloatMaxExp)

de
odeFloat = primDe
odeFloat

en
odeFloat = primEn
odeFloat

instan
e RealFloat Double where

floatRadix _ = primDoubleRadix

floatDigits _ = primDoubleDigits

floatRange _ = (primDoubleMinExp,primDoubleMaxExp)

de
odeFloat = primDe
odeDouble

en
odeFloat = primEn
odeDouble

instan
e Ix Float where

range (x,y) = [x..y℄

index (x,y) i = floor (i - x)

inRange (x,y) i = x <= i && i <= y

instan
e Ix Double where

range (x,y) = [x..y℄

index (x,y) i = floor (i - x)

inRange (x,y) i = x <= i && i <= y

instan
e Enum Float where

enumFrom x = enumFromBy x 1

enumFromThen x y = enumFromBy x (y - x)

86 A STANDARD PRELUDE

instan
e Enum Double where

enumFrom x = enumFromBy x 1

enumFromThen x y = enumFromBy x (y - x)

A.3 Prelude PreludeRatio 87

A.3 Prelude PreludeRatio

88 A STANDARD PRELUDE

A.4 Prelude PreludeComplex

-- Complex Numbers

module PreludeComplex (Complex(:+)) where

infix 6 :+

data (RealFloat a) => Complex a = a :+ a deriving (Eq,Binary,Text)

instan
e (RealFloat a) => Num (Complex a) where

(x:+y) + (x':+y') = (x+x') :+ (y+y')

(x:+y) - (x':+y') = (x-x') :+ (y-y')

(x:+y) * (x':+y') = (x*x'-y*y') :+ (x*y'+y*x')

negate (x:+y) = negate x :+ negate y

abs z = magnitude z :+ 0

signum 0 = 0

signum z�(x:+y) = x/r :+ y/r where r = magnitude z

fromInteger n = fromInteger n :+ 0

instan
e (RealFloat a) => Fra
tional (Complex a) where

(x:+y) / (x':+y') = (x*x''+y*y'') / d :+ (y*x''-x*y'') / d

where x'' = s
aleFloat k x'

y'' = s
aleFloat k y'

k = - (max (exponent x') (exponent y'))

d = x'*x'' + y'*y''

fromRational a = fromRational a :+ 0

A.4 Prelude PreludeComplex 89

instan
e (RealFloat a) => Floating (Complex a) where

pi = pi :+ 0

exp (x:+y) = expx *
os y :+ expx * sin y

where expx = exp x

log z = log (magnitude z) :+ phase z

sqrt 0 = 0

sqrt z�(x:+y) = u :+ (if y < 0 then -v else v)

where (u,v) = if x < 0 then (v',u') else (u',v')

v' = abs y / (u'*2)

u' = sqrt ((magnitude z + abs x) / 2)

sin (x:+y) = sin x *
osh y :+
os x * sinh y

os (x:+y) =
os x *
osh y :+ sin x * sinh y

tan (x:+y) = (sinx*
oshy:+
osx*sinhy)/(
osx*
oshy:+sinx*sinhy)

where sinx = sin x

osx =
os x

sinhy = sinh y

oshy =
osh y

sinh (x:+y) =
os y * sinh x :+ sin y *
osh x

osh (x:+y) =
os y *
osh x :+ (- (sin y) * sinh x)

tanh (x:+y) = (
osy*sinhx:+siny*
oshx)/(
osy*
oshx:+(-siny*sinhx))

where siny = sin y

osy =
os y

sinhx = sinh x

oshx =
osh x

asin z�(x:+y) = y':+(-x')

where (x':+y') = log ((-y:+x) + sqrt (1 - z*z))

a
os z�(x:+y) = y'':+(-x'')

where (x'':+y'') = log (z + ((-y'):+x'))

(x':+y') = sqrt (1 - z*z)

atan z�(x:+y) = y':+(-x')

where

(x':+y') = log (((-y+1):+x) * sqrt (1/(1+z*z)))

asinh z = log (z + sqrt (1+z*z))

a
osh z = log (z + (z+1) * sqrt ((z-1)/(z+1)))

atanh z = log ((z+1) * sqrt (1 - 1/(z*z)))

90 A STANDARD PRELUDE

A.5 Prelude PreludeList

A.6 Prelude PreludeArray 91

A.6 Prelude PreludeArray

92 A STANDARD PRELUDE

A.7 Prelude PreludeText

module PreludeText (

Text(readsPre
,showsPre
,readList,showList),

ReadS, ShowS, reads, shows, show, read, lex,

showChar, showString, readParen, showParen) where

type ReadS a = String -> [(a,String)℄

type ShowS = String -> String

lass Text a where

readsPre
 :: Int -> ReadS a

showsPre
 :: Int -> a -> ShowS

readList :: ReadS [a℄

showList :: [a℄ -> ShowS

readList = readParen False

(\r -> [pr | ("[",s) <- [lex r℄, pr <- readl s℄)

where readl s = [([℄,t) | ("℄",t) <- [lex s℄℄ ++

[(x:xs,v) | (x,t) <- reads s,

(",",u) <- [lex t℄,

(xs,v) <- readl u ℄

showList xs = showChar '[' . showl xs

where showl [℄ = showChar '℄'

showl (x:xs) = shows x . showChar ',' . showl xs

reads :: (Text a) => ReadS a

reads = readsPre
 0

shows :: (Text a) => a -> ShowS

shows = showsPre
 0

read :: (Text a) => String -> a

read s = x

where [x℄ = [x | (x,t) <- reads s, ("","") <- [lex t℄℄

show :: (Text a) => a -> String

show x = shows x ""

showChar :: Char -> ShowS

showChar = (:)

showString :: String -> ShowS

showString = (++)

showParen :: Bool -> ShowS -> ShowS

showParen b p = if b then showChar '(' . p . showChar ')' else p

A.7 Prelude PreludeText 93

readParen :: Bool -> ReadS a -> ReadS a

readParen b g = if b then mandatory else optional

where optional r = g r ++ mandatory r

mandatory r = [(x,u) | ("(",s) <- [lex r℄,

(x,t) <- optional s,

(")",u) <- [lex t℄ ℄

lex :: String -> (String,String)

lex "" = ("","")

lex ('-':'>':s) = ("->",s)

lex ('-':s) = ("-",s)

lex r�(
:s) =

if isSpa
e
 then lex (dropWhile isSpa
e s)

else if isAlpha
 then span isIdChar r

else if isSingleSym
 then ([
℄,s)

else if isMultiSym
 then span isMultiSym r

else if isDigit
 then lexNum r

else if
 == '\'' then ('\'' :
h ++ "'", u)

where {(
h,t) = lexLitChar s; '\'':u = t}

else if
 == '"' then ('"':str, t)

where (str,t) = lexString s

else error "bad
hara
ter"

where

isIdChar
 = isAlphanum
 ||
 == '_' ||
 == '\''

isSingleSym
 =
 `in` ",;()[℄{}_"

isMultiSym
 =
 `in` "!�#$%&*+-./<=>?\\^|~"

lexNum r = (ds++f, t) where (ds,s) = span isDigit r

(f,t) = lexFra
Exp s

lexFra
Exp ('.':r) = ('.':ds++e, t)

where (ds,s) = lexDigits r

(e, t) = lexExp s

lexFra
Exp s = ("",s)

lexExp ('e':'-':r) = ("e-"++ds, s) where (ds,s) = lexDigits r

lexExp ('e':r) = ('e':ds, s) where (ds,s) = lexDigits r

lexExp s = ("",s)

lexDigits r�(d:_) | isDigit d = span isDigit r

lexString ('"':s) = ("\"", s)

lexString s = (
h++str, u)

where (
h,t) = lexLitChar s

(str,u) = lexString t

94 A STANDARD PRELUDE

lexLitChar :: String -> (String,String)

lexLitChar ('\\':s) = ('\\':es
, t)

where (es
,t) = lexEs
 s

lexEs
 (
:s) |
 `in` "abfnrtv\\\"'&" = ([
℄,s)

lexEs
 ('^':
:s) | isUpper
 = (['^',
℄, s)

lexEs
 ('N':'U':'L':s) = ("NUL", s)

lexEs
 ('S':'O':'H':s) = ("SOH", s)

lexEs
 ('S':'T':'X':s) = ("STX", s)

lexEs
 ('E':'T':'X':s) = ("ETX", s)

lexEs
 ('E':'O':'T':s) = ("EOT", s)

lexEs
 ('E':'N':'Q':s) = ("ENQ", s)

lexEs
 ('A':'C':'K':s) = ("ACK", s)

lexEs
 ('B':'E':'L':s) = ("BEL", s)

lexEs
 ('B':'S':s) = ("BS", s)

lexEs
 ('H':'T':s) = ("HT", s)

lexEs
 ('L':'F':s) = ("LF", s)

lexEs
 ('V':'T':s) = ("VT", s)

lexEs
 ('F':'F':s) = ("FF", s)

lexEs
 ('C':'R':s) = ("CR", s)

lexEs
 ('S':'O':s) = ("SO", s)

lexEs
 ('S':'I':s) = ("SI", s)

lexEs
 ('D':'L':'E':s) = ("DLE", s)

lexEs
 ('D':'C':'1':s) = ("DC1", s)

lexEs
 ('D':'C':'2':s) = ("DC2", s)

lexEs
 ('D':'C':'3':s) = ("DC3", s)

lexEs
 ('D':'C':'4':s) = ("DC4", s)

lexEs
 ('N':'A':'K':s) = ("NAK", s)

lexEs
 ('S':'Y':'N':s) = ("SYN", s)

lexEs
 ('E':'T':'B':s) = ("ETB", s)

lexEs
 ('C':'A':'N':s) = ("CAN", s)

lexEs
 ('E':'M':s) = ("EM", s)

lexEs
 ('S':'U':'B':s) = ("SUB", s)

lexEs
 ('E':'S':'C':s) = ("ESC", s)

lexEs
 ('F':'S':s) = ("FS", s)

lexEs
 ('G':'S':s) = ("GS", s)

lexEs
 ('R':'S':s) = ("RS", s)

lexEs
 ('U':'S':s) = ("US", s)

lexEs
 ('S':'P':s) = ("SP", s)

lexEs
 ('D':'E':'L':s) = ("DEL", s)

lexEs
 r�(d:s) | isDigit d = span isDigit r

lexEs
 ('o':s) = ('o':os, t)

where (os,t) = nonempty

(\
 ->
 >= '0' &&

 <= '7')

A.7 Prelude PreludeText 95

lexEs
 ('x':s) = ('x':xs, t)

where (xs,t) = nonempty

(\
 -> isDigit
 ||

 >= 'A' &&

 <= 'F')

lexEs
 r�(
:s) | isSpa
e
 = (sp++"\\", u)

where

(sp,t) = span isSpa
e s

('\\',u) = t

nonempty p r�(
:s) | p
 = span p r

lexLitChar (
:s) = ([
℄,s)

-- Trivial type

instan
e Text () where

readsPre
 p = readParen False

(\r -> [((),t) | ("(",s) <- [lex r℄,

(")",t) <- [lex s℄ ℄)

showsPre
 p () = showString "()"

-- Chara
ter type

instan
e Text Char where

readsPre
 p = readParen False

(\r -> [(
,t) | ('\'':s,t)<-[lex r℄,

(
,_) <-[readLitChar s℄℄)

showsPre
 p '\'' = showString "'\\''"

showsPre
 p
 = showChar '\'' . showLitChar
 . showChar '\''

readList = readParen False (\r -> [(
s,t) | ('"':s, t) <- [lex r℄,

pr <- readl s℄)

where readl s = [("",t) | '"':t <- [s℄ ℄ ++

[(
:
s,u) | (
 ,t) <- readLitChar s,

(
s,u) <- readl u ℄

showList
s = showChar '"' . showl
s

where showl "" = showChar '"'

showl ('\'':
s) = showString "\\'" . showl
s

showl (
:
s) = showLitChar
 . showl
s

96 A STANDARD PRELUDE

readLitChar :: ReadS Char

readLitChar s = if ignore
h then readLitChar t else [(
harVal
h, t)℄

where

(
h,t) = lexLitChar s

ignore "\\&" = True

ignore ('\\':
:_) | isSpa
e
 = True

ignore _ = False

harVal ('\\':es
) = es
Val es

harVal [
℄ =

es
Val "a" = '\a'

es
Val "b" = '\b'

es
Val "f" = '\f'

es
Val "n" = '\n'

es
Val "r" = '\r'

es
Val "t" = '\t'

es
Val "v" = '\v'

es
Val "\\" = '\\'

es
Val "\"" = '"'

es
Val "'" = '\''

es
Val ('^':[
℄) =
hr (ord
 - 64)

es
Val "NUL" = '\NUL'

es
Val "SOH" = '\SOH'

es
Val "STX" = '\STX'

es
Val "ETX" = '\ETX'

es
Val "EOT" = '\EOT'

es
Val "ENQ" = '\ENQ'

es
Val "ACK" = '\ACK'

es
Val "BEL" = '\BEL'

es
Val "BS" = '\BS'

es
Val "HT" = '\HT'

es
Val "LF" = '\LF'

es
Val "VT" = '\VT'

es
Val "FF" = '\FF'

es
Val "CR" = '\CR'

es
Val "SO" = '\SO'

es
Val "SI" = '\SI'

es
Val "DLE" = '\DLE'

es
Val "DC1" = '\DC1'

es
Val "DC2" = '\DC2'

es
Val "DC3" = '\DC3'

es
Val "DC4" = '\DC4'

A.7 Prelude PreludeText 97

es
Val "NAK" = '\NAK'

es
Val "SYN" = '\SYN'

es
Val "ETB" = '\ETB'

es
Val "CAN" = '\CAN'

es
Val "EM" = '\EM'

es
Val "SUB" = '\SUB'

es
Val "ESC" = '\ESC'

es
Val "FS" = '\FS'

es
Val "GS" = '\GS'

es
Val "RS" = '\RS'

es
Val "US" = '\US'

es
Val "SP" = '\SP'

es
Val "DEL" = '\DEL'

es
Val r�(d:s) | isDigit d =
hr n

where [(n,_)℄ = readDe
 r

es
Val ('o':s) =
hr n

where [(n,_)℄ = readO
t s

es
Val ('x':s) =
hr n

where [(n,_)℄ = readHex s

showLitChar :: Char -> ShowS

showLitChar '\\' = showString "\\\\"

showLitChar
 | isPrint
 = showChar

showLitChar '\a' = showString "\\a"

showLitChar '\b' = showString "\\b"

showLitChar '\f' = showString "\\f"

showLitChar '\n' = showString "\\n"

showLitChar '\r' = showString "\\r"

showLitChar '\t' = showString "\\t"

showLitChar '\v' = showString "\\v"

showLitChar
 = showChar '\\' . showInt (ord
) .
ont

where
ont s�(
:
s) | isDigit
 = "\\&" ++ s

ont s = s

readDe
, readO
t, readHex :: (Integral a) => ReadS a

readDe
 = readInt 10 isDigit (\d -> ord d - ord '0')

readO
t = readInt 8 (\
 ->
 >= 0 &&
 <= 7) (\d -> ord d - ord '0')

readHex = readInt 16 (\
 -> isDigit
 ||
 >= 'A' &&
 <= 'F')

(\d -> if isDigit d then ord d - ord '0'

else ord d - ord 'A' + 10)

98 A STANDARD PRELUDE

readInt :: (Integral a) => a -> (Char -> Bool) -> (Char -> a) -> ReadS a

readInt radix isDig digToInt s =

[(foldl (\n d -> n * radix + digToInt d) digToInt d, r)

| (d:ds,r) <- [span isDig s℄ ℄

showInt :: (Integral a) => a -> ShowS

showInt n = if n < 0 then showChar '-' . showInt' (-n) else showInt' n

where showInt' n r =
hr (ord '0' + d) :

if n' > 0 then showInt' n' r else r

where (n',d) = divRem n 10

-- Standard integral types

instan
e Text Int where

readsPre
 = readIntegral

showsPre
 = showIntegral

instan
e Text Integer where

readsPre
 = readIntegral

showsPre
 = showIntegral

readIntegral p = readParen False read'

where read' r = [(-n,t) | ("-",s) <- [lex r℄,

(n,t) <- [read'' s℄ ℄

read'' r = [(n,s) | (ds,s) <- [lex r℄,

(n,"") <- readDe
 ds℄

showIntegral p n = showParen (n < 0 && p > 6) (showInt n)

-- Standard floating-point types

instan
e Text Float where

readsPre
 = readFloating

showsPre
 = showFloating

instan
e Text Double where

readsPre
 = readFloating

showsPre
 = showFloating

A.7 Prelude PreludeText 99

readFloating p = readParen False read'

where read' r = [(-x,t) | ("-",s) <- [lex r℄,

(x,t) <- [read'' s℄ ℄

read'' r = [(fromRational x,t)

| (s,t) <- [lex r℄,

(x,"") <- readFix s ++ readS
i s℄

readFix r = [(x%1 + y%10^(length t), u)

| (x,'.':s) <- readDe
 r,

(t,u) <- [span isDigit s℄,

y <- [read t℄ ℄

readS
i r = [(x*(10^n%1),t)

| (x,'e':s) <- readFix r,

(n,t) <- readDe
 s ℄ ++

[(x*(1%10^n),t)

| (x,'e':'-':s) <- readFix r,

(n,t) <- readDe
 s ℄

showFloating p x =

if p >= 0 then show' x else showParen (p>6) (showChar '-'.show'(-x))

where

show' x = if e >= m || e < 0 then showS
i else showFix e

showS
i = showFix 1 . showChar 'e' . showInt e

showFix k = showString (fill (take k ds)) . showChar '.'

. showString (fill (drop k ds))

fill ds = if null ds then "0" else ds

ds = if sig == 0 then take m (repeat '0') else show sig

(m, sig, e) = if b == 10 then

(w, s, if s == 0 then 0 else n+w)

else

(
eiling ((fromInt w * log (fromInteger b))/log 10) + 1,

round ((s%1) * (b%1)^^n * 10^^(m-e)),

if s == 0 then 0 else floor (logBase 10 x))

(s, n) = de
odeFloat x

b = floatRadix x

w = floatDigits x

-- Lists

instan
e (Text a) => Text [a℄ where

readsPre
 p = readList

showsPre
 p = showList

100 A STANDARD PRELUDE

-- Tuples

instan
e (Text a, Text b) => Text (a,b) where

readsPre
 p = readParen False

(\r -> [((x,y), w) | ("(",s) <- [lex r℄,

(x,t) <- reads s,

(",",u) <- [lex t℄,

(y,v) <- reads u

(")",w) <- [lex v℄ ℄)

showsPre
 p (x,y) = showChar '(' . shows x . showChar ',' .

shows y . showChar ')'

-- et
etera

A.8 Prelude PreludeIO 101

A.8 Prelude PreludeIO

-- I/O fun
tions and definitions

module PreludeIO where

-- File and
hannel names:

type Name = String

stdin = "stdin"

stdout = "stdout"

stderr = "stderr"

stde
ho = "stde
ho"

-- Requests and responses:

data Request = -- file system requests:

ReadFile Name

| WriteFile Name String

| AppendFile Name String

| ReadBinFile Name

| WriteBinFile Name Bin

| AppendBinFile Name Bin

| DeleteFile Name

| StatusFile Name

--
hannel system requests:

| ReadChan Name

| AppendChan Name String

| ReadBinChan Name

| AppendBinChan Name Bin

| StatusChan Name

-- environment requests:

| E
ho Bool

| GetArgs

| GetEnv Name

| SetEnv Name String

data Response = Su

ess

| Str String

| Bn Bin

| Failure IOError

102 A STANDARD PRELUDE

data IOError = WriteError String

| ReadError String

| Sear
hError String

| FormatError String

| OtherError String

-- Continuation-based I/O:

type Dialogue = [Response℄ -> [Request℄

type Su

Cont = Dialogue

type StrCont = String -> Dialogue

type BinCont = Bin -> Dialogue

type FailCont = IOError -> Dialogue

done :: Dialogue

readFile :: Name -> FailCont -> StrCont -> Dialogue

writeFile :: Name -> String -> FailCont -> Su

Cont -> Dialogue

appendFile :: Name -> String -> FailCont -> Su

Cont -> Dialogue

readBinFile :: Name -> FailCont -> BinCont -> Dialogue

writeBinFile :: Name -> Bin -> FailCont -> Su

Cont -> Dialogue

appendBinFile :: Name -> Bin -> FailCont -> Su

Cont -> Dialogue

deleteFile :: Name -> FailCont -> Su

Cont -> Dialogue

statusFile :: Name -> FailCont -> StrCont -> Dialogue

readChan :: Name -> FailCont -> StrCont -> Dialogue

appendChan :: Name -> String -> FailCont -> Su

Cont -> Dialogue

readBinChan :: Name -> FailCont -> BinCont -> Dialogue

appendBinChan :: Name -> Bin -> FailCont -> Su

Cont -> Dialogue

e
ho :: Bool -> FailCont -> Su

Cont -> Dialogue

getArgs :: FailCont -> StrCont -> Dialogue

getEnv :: Name -> FailCont -> StrCont -> Dialogue

setEnv :: Name -> String -> FailCont -> Su

Cont -> Dialogue

done resps = [℄

readFile name fail su

 resps =

(ReadFile name) : strDispat
h fail su

 resps

writeFile name
ontents fail su

 resps =

(WriteFile name
ontents) : su

Dispat
h fail su

 resps

appendFile name
ontents fail su

 resps =

(AppendFile name
ontents) : su

Dispat
h fail su

 resps

A.8 Prelude PreludeIO 103

readBinFile name fail su

 resps =

(ReadBinFile name) : binDispat
h fail su

 resps

writeBinFile name
ontents fail su

 resps =

(WriteBinFile name
ontents) : su

Dispat
h fail su

 resps

appendBinFile name
ontents fail su

 resps =

(AppendBinFile name
ontents) : su

Dispat
h fail su

 resps

deleteFile name fail su

 resps =

(DeleteFile name) : su

Dispat
h fail su

 resps

statusFile name fail su

 resps =

(StatusFile name) : strDispat
h fail su

 resps

readChan name fail su

 resps =

(ReadChan name) : strDispat
h fail su

 resps

appendChan name
ontents fail su

 resps =

(AppendChan name
ontents) : su

Dispat
h fail su

 resps

readBinChan name fail su

 resps =

(ReadBinChan name) : binDispat
h fail su

 resps

appendBinChan name
ontents fail su

 resps =

(AppendBinChan name
ontents) : su

Dispat
h fail su

 resps

e
ho bool fail su

 resps =

(E
ho bool) : su

Dispat
h fail su

 resps

getArgs fail su

 resps =

GetArgs : strDispat
h fail su

 resps

getEnv name fail su

 resps =

(GetEnv name) : strDispat
h fail su

 resps

setEnv name val fail su

 resps =

(SetEnv name val) : su

Dispat
h fail su

 resps

strDispat
h fail su

 (resp:resps) =
ase resp of

Str val -> su

 val resps

Failure msg -> fail msg resps

104 A STANDARD PRELUDE

binDispat
h fail su

 (resp:resps) =
ase resp of

Bn val -> su

 val resps

Failure msg -> fail msg resps

su

Dispat
h fail su

 (resp:resps) =
ase resp of

Su

ess -> su

 resps

Failure msg -> fail msg resps

abort :: FailCont

abort msg = done

exit :: FailCont

exit err = appendChan stdout msg abort done

where msg =
ase err of ReadError s -> s

WriteError s -> s

Sear
hError s -> s

FormatError s -> s

OtherError s -> s

let :: a -> (a -> b) -> b

let x k = k x

print :: (Text a) => a -> Dialogue

print x = appendChan stdout (show x) abort done

prints :: (Text a) => a -> String -> Dialogue

prints x s = appendChan stdout (shows x s) abort done

intera
t :: (String -> String) -> Dialogue

intera
t f = readChan stdin abort

(\x -> appendChan stdout (f x) abort done)

105

B Syntax

B.1 Notational Conventions

These notational
onventions are used for presenting syntax:

[pattern℄ optional

fpatterng zero or more repetitions

(pattern) grouping

pat

1

j pat

2

hoi
e

pat

fpat

0

g

di�eren
e|elements generated by pat

ex
ept those generated by pat

0

fibona

i terminal syntax in typewriter font

BNF-like syntax is used throughout, with produ
tions having form:

nonterm ! alt

1

j alt

2

j : : : j alt

n

B.2 Lexi
al Syntax

program ! f lexeme j whitespa
e g

lexeme ! varid j
onid j varop j
onop j literal j spe
ial j reservedop j reservedid

literal ! integer j
oat j
har j string

spe
ial ! (j) j , j ; j [j ℄ j _ j { j }

whitespa
e ! whitestu� fwhitestu� g

whitestu� ! newline j spa
e j tab j vertab j formfeed j
omment j n
omment

newline ! a newline (system dependent)

spa
e ! a spa
e

tab ! a horizontal tab

vertab ! a verti
al tab

formfeed ! a form feed

omment ! -- fanyg newline

n
omment ! {- fwhitespa
e j any

f{- j -}g

g -}

any ! graphi
 j spa
e j tab

graphi
 ! large j small j digit

j ! j " j # j $ j % j & j � j (j) j * j +

j , j - j . j / j : j ; j < j = j > j ? j �

j [j \ j ℄ j ^ j _ j � j { j | j } j ~

small ! a j b j : : : j z

large ! A j B j : : : j Z

digit ! 0 j 1 j : : : j 9

106 B SYNTAX

avarid ! (small fsmall j large j digit j � j _g)

freservedidg

varid ! avarid j (avarop)

a
onid ! large fsmall j large j digit j � j _g

onid ! a
onid j (a
onop)

reservedid !
ase j
lass j data j default j deriving j else j hiding

j if j import j infix j infixl j infixr j instan
e j interfa
e

j module j of j renaming j then j to j type j where

avarop ! (symbol fsymbol j :g)

freservedopg

j -

varop ! avarop j �avarid�

a
onop ! (: fsymbol j :g)

freservedopg

onop ! a
onop j �a
onid�

symbol ! ! j # j $ j % j & j * j + j . j / j < j = j > j ? j � j \ j ^ j | j ~

reservedop ! .. j :: j => j = j � j \ j | j ~

var ! varid (variables)

on !
onid (
onstru
tors)

tyvar ! avarid (type variables)

ty
on ! a
onid (type
onstru
tors)

ty
ls ! a
onid (type
lasses)

modid ! a
onid (modules)

integer ! digitfdigitg

oat ! integer.integer [e[-℄integer ℄

har ! � (graphi

f� j \g

j spa
e j es
ape

f\&g

) �

string ! " fgraphi

f" j \g

j spa
e j es
ape j gapg "

es
ape ! \ (
hares
 j as
ii j integer j o o
titfo
titg j x hexitfhexitg)

hares
 ! a j b j f j n j r j t j v j \ j " j � j &

as
ii ! ^
ntrl j NUL j SOH j STX j ETX j EOT j ENQ j ACK

j BEL j BS j HT j LF j VT j FF j CR j SO j SI j DLE

j DC1 j DC2 j DC3 j DC4 j NAK j SYN j ETB j CAN

j EM j SUB j ESC j FS j GS j RS j US j SP j DEL

ntrl ! large j � j [j \ j ℄ j ^ j _

gap ! \ ftab j spa
eg newline ftab j spa
eg \

hexit ! digit j A j B j C j D j E j F j a j b j
 j d j e j f

o
tit ! 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7

B.3 Layout

De�nitions: The indentation of a lexeme is the
olumn number indi
ating the start of that

lexeme; the indentation of a line is the indentation of its left-most lexeme. To determine

the
olumn number, assume a �xed-width font with this tab
onvention: tab stops are 8

B.4 Context-Free Syntax 107

hara
ters apart, and a tab
hara
ter
auses the insertion of enough spa
es to align the

urrent position with the next tab stop.

In the syntax given in the other parts of the report, de
laration lists are always pre
eded

by the keyword where or of, and are en
losed within
urly bra
es ({ }) with the individual

de
larations separated by semi
olons (;). For example, the syntax of a where expression is:

exp where { de
l

1

; de
l

2

; : : : ; de
l

n

}

Haskell permits the omission of the bra
es and semi
olons by using layout to
onvey

the same information. This allows both layout-sensitive and -insensitive styles of
oding,

whi
h
an be freely mixed within one program. Be
ause layout is not required, Haskell

programs may be me
hani
ally produ
ed by other programs.

The layout (or \o�-side") rule takes e�e
t whenever the open bra
e is omitted after the

keyword where or of. When this happens, the indentation of the next lexeme (whether or

not on a new line) is remembered and the omitted open bra
e is inserted (the whitespa
e

pre
eding the lexeme may in
lude
omments). For ea
h subsequent line, if it
ontains only

whitespa
e or is indented more, then the previous item is
ontinued (nothing is inserted);

if it is indented the same amount, then a new item begins (a semi
olon is inserted); and if

it is indented less, then the de
laration list ends (a
lose bra
e is inserted). A
lose bra
e is

also inserted whenever the synta
ti

ategory
ontaining the de
laration list ends (i.e. if an

illegal lexeme is en
ountered at a point where a
lose bra
e would be legal, a
lose bra
e is

inserted). The layout rule will mat
h only those open bra
es that it has inserted; an open

bra
e that the user has inserted must be mat
hed by a
lose bra
e inserted by the user.

Given these rules, a single newline may a
tually terminate several de
laration lists. Also,

these rules permit:

f x = exp1 where a = 1; b = 2

g y = exp2

making a, b and g all part of the same de
laration list.

To fa
ilitate the use of layout at the top level of a module (several modules may reside

in one �le), the keyword module and the end-of-�le token are assumed to o

ur in
olumn

0 (whereas normally the �rst
olumn is 1). Otherwise, all top-level de
larations would have

to be indented.

B.4 Context-Free Syntax

module ! module modid [exports℄ where body

j body

body ! { [impde
ls ;℄ [�xde
ls ;℄ topde
ls }

j { impde
ls }

modid ! a
onid

impde
ls ! impde
l

1

; : : : ; impde
l

n

(n � 1)

108 B SYNTAX

exports ! (export

1

, : : : , export

n

) (n � 1)

export ! varid

j ty
on

j ty
on (..)

j ty
on (
onid

1

, : : : ,
onid

n

) (n � 1)

j ty
ls (..)

j ty
ls (varid

1

, : : : , varid

n

) (n � 0)

j modid ..

impde
l ! import modid [impspe
℄ [renaming renamings℄

impspe
 ! (import

1

, : : : , import

n

) (n � 0)

j hiding (import

1

, : : : , import

n

) (n � 1)

import ! varid

j ty
on

j ty
on (..)

j ty
on (
onid

1

, : : : ,
onid

n

) (n � 1)

j ty
ls (..)

j ty
ls (varid

1

, : : : , varid

n

) (n � 0)

renamings ! (renaming

1

, : : : , renaming

n

) (n � 1)

renaming ! name

1

to name

2

name ! varid j
onid

�xde
ls ! �x

1

; : : : ; �x

n

(n � 1)

�x ! infixl [digit ℄ ops

j infixr [digit ℄ ops

j infix [digit ℄ ops

ops ! op

1

, : : : , op

n

(n � 1)

op ! varop j
onop

topde
ls ! topde
l

1

; : : : ; topde
l

n

(n � 1)

topde
l ! type [
ontext =>℄ simple = type

j data [
ontext =>℄ simple =
onstrs [deriving (ty
ls j (ty
lses))℄

j
lass [
ontext =>℄
lass [where {
de
ls }℄

j instan
e [
ontext =>℄ ty
ls inst [where { de
ls }℄

j default (type j (type

1

, : : : , type

n

)) (n � 0)

j de
l

de
ls ! de
l

1

; : : : ; de
l

n

(n � 1)

de
l ! vars :: [
ontext =>℄ type

j valdef

type ! atype

j type

1

-> type

2

j ty
on atype

1

: : : atype

k

(arity ty
on = k � 1)

B.4 Context-Free Syntax 109

atype ! tyvar

j ty
on (arity ty
on = 0)

j () (unit type)

j (type) (parenthesised type)

j (type

1

, : : : , type

k

) (tuple type; k � 2)

j [type ℄

ontext !
lass

j (
lass

1

, : : : ,
lass

n

) (n � 1)

lass ! ty
ls tyvar

de
ls !
de
l

1

; : : : ;
de
l

n

(n � 1)

de
l ! vars :: type

j valdef

vars ! var

1

, : : : , var

n

(n � 1)

simple ! ty
on tyvar

1

: : : tyvar

k

(arity ty
on = k � 0)

onstrs !
onstr

1

| : : : |
onstr

n

(n � 1)

onstr !
on atype

1

: : : atype

k

(arity
on = k � 0)

j type

1

onop type

2

(in�x
onop)

ty
lses ! ty
ls

1

, : : : , ty
ls

n

(n � 0)

inst ! ty
on (arity ty
on = 0)

j (ty
on tyvar

1

: : : tyvar

k

) (arity ty
on = k > 0)

j (tyvar

1

, : : : , tyvar

k

) k � 2

j ()

j [tyvar ℄

j tyvar

1

-> tyvar

2

valdef ! lhs = exp

j lhs gdfun

lhs ! pat

j var apat

1

: : : apat

k

(k � 1)

j apat

1

varop apat

2

j (apat

1

varop apat

2

) apat

3

: : : apat

k

(k � 3)

gdfun ! gd = exp [gdfun℄

gd ! | exp

exp ! aexp

110 B SYNTAX

j exp aexp (fun
tion appli
ation)

j exp

1

op exp

2

(operator appli
ation)

j - aexp (pre�x -)

j \ apat

1

: : : apat

n

[gd ℄ -> exp (lambda abstra
tion; n � 1)

j if exp

1

then exp

2

else exp

3

(
onditional)

j exp where { de
ls } (where expression)

j
ase exp of { alts } (
ase expression)

j exp :: [
ontext =>℄ atype (expression type signature)

aexp ! var (variable)

j
on (
onstru
tor)

j literal

j () (unit)

j (exp) (parenthesised expression)

j (exp

1

, : : : , exp

k

) (tuple; k � 2)

j [exp

1

, : : : , exp

k

℄ (list; k � 0)

j [exp

1

[, exp

2

℄ .. [exp

3

℄ ℄ (arithmeti
 sequen
e)

j [exp | [qual ℄ ℄ (list
omprehension)

qual ! qual

1

, qual

2

j pat <- exp

j exp

alts ! alt

1

; : : : ; alt

n

(n � 1)

alt ! pat [gd ℄ -> exp

pat ! apat

j
on apat

1

: : : apat

k

(arity
on = k � 1)

j pat

1

onop pat

2

(in�x
onstru
tor)

j var + integer (su

essor pattern)

j [- ℄ integer

apat ! var [� apat ℄ (as pattern)

j
on (arity
on = 0)

j integer j
oat j
har j string (literals)

j _ (wild
ard)

j (pat

1

, : : : , pat

k

) (tuple patterns; k � 2)

j [pat

1

, : : : , pat

k

℄ (list patterns; k � 0)

j (pat) (parenthesised pattern)

j () (unit pattern)

j ~ apat

ty
ls ! a
onid

tyvar ! avarid

ty
on ! a
onid

B.5 Interfa
e Syntax 111

B.5 Interfa
e Syntax

interfa
e ! interfa
e modid where ibody

ibody ! { [iimpde
ls ;℄ [�xes ;℄ itopde
ls }

j { iimpde
ls }

iimpde
ls ! iimpde
l

1

; : : : ; iimpde
l

n

(n � 1)

iimpde
l ! import modid (import

1

, : : : , import

n

)

[renaming renamings℄ (n � 1)

itopde
ls ! itopde
l

1

; : : : ; itopde
l

n

(n � 1)

itopde
l ! type [
ontext =>℄ simple = type

j data [
ontext =>℄ simple [=
onstrs℄ [deriving (ty
ls j (ty
lses))℄

j
lass [
ontext =>℄
lass [where { i
de
ls }℄

j instan
e [
ontext =>℄ ty
ls inst

j vars :: [
ontext =>℄ type

i
de
ls ! i
de
l

1

; : : : ; i
de
l

n

(n � 1)

i
de
l ! vars :: type

112 C INPUT/OUTPUT SEMANTICS

C Input/Output Semanti
s

The behaviour of a Haskell program performing I/O is given within the environment in

whi
h it is running. That environment will be des
ribed using standard Haskell
ode

augmented with a non-deterministi
 merge operator.

The state of the operating system (OS state) that is relevant to Haskell programs is

ompletely des
ribed by the �le system and the
hannel system. The
hannel system is split

into two subsystems, the input
hannel system and the output
hannel system.

type State = (FileSystem, ChannelSystem)

type FileSystem = Name -> Response

type ChannelSystem = (ICs, OCs)

type ICs = Name -> (Agent, Open)

type OCs = Name -> Response

type Agent = (FileSystem, OCs) -> Response

type Open = PId -> Bool

type PId = Int

type PList = [(PId,[Request->Response℄)℄

type Name = String

An agent maps a list of OS states to responses. Those responses will be used as the
ontents

of input
hannels, and thus
an depend on output
hannels, other input
hannels, �les, or

any
ombination thereof. For example, a valid implementation must allow the user to a
t

as agent between the standard output
hannel and standard input
hannel.

Ea
h running pro
ess (i.e. program) has a unique PId. Elements of PList are lists of

running programs.

os :: TagReqList -> State -> (TagRespList, State)

type TagRespList = [(PId,Response)℄

type TagReqList = [(PId,Request)℄

The operating system is modeled as a (non-deterministi
) fun
tion os. The os takes a

tagged request list and an initial state, and returns a tagged response list and a �nal state.

Given a list of programs pList, os must exhibit this behaviour:

(tagRespList, state') = os tagReqList state

tagReqList = merge [zip [pId,pId..℄ (pro
 (untag pId tagRespList))

| (pId, pro
) <- pList ℄

where merge is a non-deterministi
 merge of a list of lists, and untag is:

untag n [℄ = [℄

untag n ((m,resp):resps) = if n==m then resp:(untag n resps)

else untag n resps

This relationship
an be generalised to in
lude requests su
h as CreatePro
ess.

A valid implementation must ensure that the input
hannel system is de�ned at stdin

and the output
hannel system is de�ned at stdout, stderr, and stde
ho. If the agent

113

atta
hed to standard input is
alled user (i.e. i
s stdin has form (user, open)), then

user must depend at least on standard output. In other words, this
onstraint must hold:

user [..., (fs,(i
s,o
s)), ...℄ = ... user' (o
s stdout) ...

where user' is a stri
t, but otherwise arbitrary, fun
tion modelling the user. Its stri
tness

orresponds to the user's
onsumption of standard output whilst determining standard

input.

The rest of this se
tion spe
i�es the required behaviour of os in response to ea
h kind

of request. This semanti
s is relatively abstra
t and omits any referen
e to hardware errors

(e.g. \bad se
tor on disk") and system dependent errors (e.g. \a

ess rights violation").

Implementation-spe
i�
 requests (for example the environment requests) are not shown

here. We des
ribe only the text version of the requests: the binary version di�ers trivially.

os is de�ned by:

os :: TagReqList -> State -> (TagRespList,State)

os [℄ state = ([℄, state)

os ((n, ReadChan name):es) state�(fs,(i
s,o
s)) =

(alist',state') where

(agent,open) = i
s name

alist' = (n, (if open n

then fail

else (agent (fs,o
s)))) : alist

fail = Failure (OtherError "Channel already open\n")

(alist,state') = os es (fs, (update i
s name

(agent, update open n true),

o
s))

where the auxiliary fun
tion update is de�ned by:

update f x v x' = if x==x' then v else f x

If an attempt is made to read a non-existent
hannel, i
s returns an agent that gives

the appropriate error message when applied to its arguments. This de�nition is generalised

in the obvious way for the behaviour of ReadChannels. In parti
ular, a
k must be
reated

by non-deterministi
ally merging the result of applying ea
h agent to the stream of future

states.

114 C INPUT/OUTPUT SEMANTICS

os ((n, AppendChan name
ontents):es) state�(fs,(i
s,o
s)) =

(alist',state') where

alist' = a
k:alist

a
k =

(n,

ase (o
s name) of

Failure msg -> Failure (Sear
hError "Nonexistent Channel")

Str o
han -> Su

ess

Bn o
han -> Failure (FormatError "format error")

)

(alist,state') = os es (fs,(i
s,

ase (o
s name) of

Failure msg -> o
s

Str o
han -> update o
s name

(Str (o
han ++
ontents))

Bn o
han -> o
s

))

os ((n, ReadFile name):es) state�(fs,(i
s,o
s)) =

(alist',state') where

alist' = a
k : alist

a
k = (n,

ase (fs name) of

Failure msg -> Failure (Sear
hError "File not found")

Str string -> Str string

Bn binary -> Failure (FormatError "")

)

(alist,state') = os es state

os ((n, WriteFile name
ontents):es) state�(fs,(i
s,o
s)) =

(alist',state') where

alist' = (n, Su

ess):alist

(alist,state') = os es (update fs name (Str
ontents),

(i
s,o
s))

115

os ((n, AppendFile name
ontents):es) state�(fs,(i
s,o
s)) =

(alist',state') where

alist' = a
k:alist

a
k = (n,

ase (fs name) of

Failure msg -> Failure (Sear
hError "file not found")

Str s -> Su

ess

Bn b -> Failure (FormatError "")

)

(alist,state') = os es (newfs, (i
s,o
s)) where

newfs =
ase (fs name) of

Failure msg -> fs

Str s ->

update fs name (Str (s++
ontents))

Bn b -> fs

os ((n, DeleteFile name):es) state�(fs,(i
s,o
s)) =

(alist',state') where

alist' = a
k : alist

a
k = (n,

ase (fs name) of

Failure msg -> Failure (Sear
hError "file not found")

Str s -> Su

ess

Bn b -> Su

ess

)

(alist,state') = os es (
ase (fs name) of

Failure msg -> fs

Str s -> update fs name fail

Bn b -> update fs name fail,

(i
s,o
s))

fail = Failure (Sear
hError "file not found")

os ((n,StatusFile name):es) state�(fs,(i
s,o
s)) = (alist',state') where

alist' = a
k : alist

a
k = (n,

ase (fs name) of

Failure msg -> Failure (Sear
hError "File not found")

Str string -> Str "t"++(rw n fs name)

Bn binary -> Str "b"++(rw n fs name)

)

(alist, state') = os es state

where rw is a fun
tion that determines the read and write status of a �le for this parti
ular

pro
ess.

116 C INPUT/OUTPUT SEMANTICS

C.1 Optional Requests

These optional I/O requests may be useful in a Haskell implementation.

� ReadChannels [
name1, ...,
namek℄

ReadBinChannels [
name1, ...,
namek℄

Opens
name1 through
namek for input. A su

essful response has form Tag vals

[BinTag vals℄ where vals is a list of values tagged with the name of the
hannel.

These responses require an extension to the Response datatype:

data Response = ...

| Tag [(Name,Char)℄

| BinTag [(Name,Bin)℄

The tagged list of values is the non-deterministi
 merge of the values read from the

individual
hannels. If an element of this list has form (
namei,val), then it
ame

from
hannel
namei.

If any
namei does not exist then the response Failure (Sear
hError string) is

indu
ed; all other errors indu
e Failure (ReadError string).

� CreatePro
ess prog

Introdu
es a new program prog into the operating system. prog must have type

[Response℄ -> [Request℄. Either Su

ess and Failure (OtherError string) is

indu
ed.

� CreateDire
tory name string

DeleteDire
tory name

Create or delete dire
tory name. The string argument to CreateDire
tory is an

implementation-dependent spe
i�
ation of the initial state of the dire
tory.

� OpenFile name inout

OpenBinFile name inout

CloseFile file

ReadVal file

ReadBinVal file

WriteVal file
har

WriteBinVal file bin

These requests emulate traditional �le I/O in whi
h
hara
ters are read and written

one at a time.

data Response = ...

| Fil File

data File

type Bins = [Bin℄

OpenFile name inout [OpenBinFile name inout℄ opens the �le name in text [binary℄

mode with dire
tion inout (True for input, False for output). The response Fil file

C.1 Optional Requests 117

is indu
ed, where file has type File, a primitive type that represents a handle to a

�le. Subsequent use of that �le by other requests is via this handle.

CloseFile file
loses file. Failure (OtherError string) is indu
ed if file
an-

not be
losed.

ReadVal [ReadBinVal℄ file reads file, indu
ing the response Str val [Bins val℄

or Failure (ReadError string).

WriteVal file
har [WriteBinVal file bin℄ writes
har [bin℄ to file. The re-

sponse Su

ess or Failure (WriteError string) is indu
ed.

Failure (Sear
hError string) is indu
ed for ReadVal, ReadBinVal, WriteVal,

and WriteBinVal if file is not a text or binary �le, as appropriate.

118 D SPECIFICATION OF DERIVED INSTANCES

D Spe
i�
ation of Derived Instan
es

If T is an algebrai
 data type de
lared by:

data
 => T u

1

: : : u

k

= K

1

t

11

: : : t

1k

1

| � � � | K

n

t

n1

: : : t

nk

n

deriving (C

1

, : : : , C

m

)

(where m � 0 and the parentheses may be omitted if m = 1) then a derived instan
e de
-

laration is possible for a
lass C if and only if these
onditions hold:

1. C is one of Eq, Ord, Enum, Ix, Text, or Binary.

2. There is a
ontext

0

su
h that

0

) C t

ij

holds for ea
h of the
onstituent types t

ij

.

3. If C is either Ix or Enum, then further
onstraints must be satis�ed as des
ribed under

the paragraphs for Ix and Enum later in this se
tion.

4. There must be no expli
it instan
e de
laration elsewhere in the module whi
h makes

T u

1

: : : u

k

an instan
e of C or of any of C 's super
lasses.

If the deriving form is present (as in the above general data de
laration), an instan
e

de
laration is automati
ally generated for T u

1

: : : u

k

over ea
h
lass C

i

and ea
h of C

i

's

super
lasses. If the derived instan
e de
laration is impossible for any of the C

i

then a stati

error results. If no derived instan
es are required, the form deriving () must be used.

If the deriving form is omitted then instan
e de
larations are derived for the datatype

in as many of the six
lasses mentioned above as is possible; that is, no stati
 error
an

o

ur. Sin
e datatypes may be re
ursive, the implied in
lusion in these
lasses may also be

re
ursive, and the largest possible set of derived instan
es is generated. For example,

data T1 a = C1 (T2 a) | Nil1

data T2 a = C2 (T1 a) | Nil2

Be
ause the deriving form is omitted, we would expe
t derived instan
es for Eq (for ex-

ample). But T1 is in Eq only if T2 is, and T2 is in Eq only if T1 is. The largest solution has

both types in Eq, and thus both derived instan
es are generated.

Ea
h derived instan
e de
laration will have the form:

instan
e (
, C

0

1

u

0

1

, : : : , C

0

j

u

0

j

) => C

i

(T u

1

: : : u

k

) where { d }

where d is derived automati
ally depending on C

i

and the data type de
laration for T (as

will be des
ribed in the remainder of this se
tion), and u

0

1

through u

0

j

form a subset of

u

1

through u

k

. The
lass assertions C

0

u

0

are
onstraints on T 's type variables that are

inferred from the instan
e de
larations of the
onstituent types t

ij

. For example,
onsider:

data T1 a = C1 (T2 a) deriving Eq

data T2 a = C2 a deriving ()

119

And
onsider these three di�erent instan
es for T2 in Eq:

instan
e Eq (T2 a) where C2 x == C2 y = True

instan
e (Eq a) => Eq (T2 a) where C2 x == C2 y = x == y

instan
e (Ord a) => Eq (T2 a) where C2 x == C2 y = x > y

The
orresponding derived instan
es for T1 in Eq are:

instan
e Eq (T1 a) where C1 x == C1 y = x == y

instan
e (Eq a) => Eq (T1 a) where C1 x == C1 y = x == y

instan
e (Ord a) => Eq (T1 a) where C1 x == C1 y = x == y

When inferring the
ontext for the derived instan
es, type synonyms must be expanded

out �rst. The remaining details of the derived instan
es for ea
h of the six
lasses are now

given.

Derived instan
es of Eq and Ord. The operations automati
ally introdu
ed by de-

rived instan
es of Eq and Ord are (==), (/=), (<), (<=), (>), (>=), max, and min. The

latter six operators are de�ned so as to
ompare their arguments lexi
ographi
ally with

respe
t to the
onstru
tor set given, with earlier
onstru
tors in the data type de
laration

ounting as smaller than later ones. For example, for the Bool datatype, we have that

True > False == True.

Derived instan
es of Ix. The derived instan
e de
larations for the
lass Ix are only

possible for integers, enumerations (i.e. datatypes having only nullary
onstru
tors), and

single-
onstru
tor datatypes (in
luding tuples) whose
onstituent types are instan
es of Ix.

They introdu
e the overloaded fun
tions range, index, and inRange. The operation range

takes a (lower, upper) bound pair, and returns a list of all indi
es in this range, in as
ending

order. The operation inRange is a predi
ate taking a (lower, upper) bound pair and an

index and returning True if the index is
ontained within the spe
i�ed range. The operation

index takes a (lower, upper) bound pair and an index and returns an integer, the position

of the index within the range.

For an enumeration, the nullary
onstru
tors are assumed to be numbered left-to-right

with the indi
es 0 through n� 1. For example, given the datatype:

data Colour = Red | Orange | Yellow | Green | Blue | Indigo | Violet

we would have:

120 D SPECIFICATION OF DERIVED INSTANCES

range (Yellow,Blue) == [Yellow,Green,Blue℄

index (Yellow,Blue) Green == 1

inRange (Yellow,Blue) Red == False

For single-
onstru
tor datatypes, the derived instan
e de
larations are
reated as shown for

tuples in Figure 14.

Derived instan
es of Enum. Derived instan
e de
larations for the
lass Enum are only

possible for enumerations, using the same ordering assumptions made for Ix. They intro-

du
e the operations enumFrom, enumFromThen, enumFromTo, and enumFromThenTo, whi
h

are used to de�ne arithmeti
 sequen
es as des
ribed in Se
tion 3.7.

enumFrom n returns a list
orresponding to the
omplete enumeration of n's type starting

at the value n. Similarly, enumFromThen n n' is the enumeration starting at n, but with

se
ond element n', and with subsequent elements generated at a spa
ing equal to the

di�eren
e between n and n'. enumFromTo and enumFromThenTo are as de�ned by the default-

methods for Enum (see Figure 4, page 29).

Derived instan
es of Binary. The Binary
lass is used primarily for transparent I/O

(see Se
tion 7.1). The operations automati
ally introdu
ed by derived instan
es of Binary

are readBin and showBin. They
oer
e values to and from the primitive abstra
t type Bin

(see Se
tion 6.6). An implementation must be able to
reate derived instan
es of Binary

for any type t not
ontaining a fun
tion type.

showBin is analogous to shows, taking two arguments: the �rst is the value to be

oer
ed, and the se
ond is a Bin value to whi
h the result is to be
on
atenated. readBin is

analogous to reads, \parsing" its argument and returning a pair
onsisting of the
oer
ed

value and any remaining Bin value.

Derived versions of showBin and readBin must obey this property:

readBin (showBin v b) == (v,b)

for any Bin value b and value v whose type is an instan
e of the
lass Binary.

Derived instan
es of Text. The operations automati
ally introdu
ed by derived in-

stan
es of Text are showsPre
, readsPre
, showList and readList. They are used to

oer
e values into strings and parse strings into values.

The fun
tion showsPre
 d x r a

epts a pre
eden
e level d (a number from 0 to 10),

a value x, and a string r. It returns a string representing x
on
atenated to r. showsPre

satis�es the law:

showsPre
 d x r ++ s == showsPre
 d x (r ++ s)

121

lass (Ord a) => Ix a where

range :: (a,a) -> [a℄

index :: (a,a) -> a -> Int

inRange :: (a,a) -> a -> Bool

rangeSize :: (Ix a) => (a,a) -> Int

rangeSize (l,u) = index (l,u) u + 1

instan
e Ix Int where

range (l,u) = [l..u℄

index (l,u) i = i - l

inRange (l,u) i = i >= l && i <= u

instan
e Ix Integer where

range (l,u) = [l..u℄

index (l,u) i = fromInteger (i - l)

inRange (l,u) i = i >= l && i <= u

instan
e (Ix a, Ix b) => Ix (a,b) where

range ((l,l'),(u,u'))

= [(i,i') | i <- range (l,u), i' <- range (l',u')℄

index ((l,l'),(u,u')) (i,i')

= index (l,u) i * rangeSize (l',u') + index (l',u') i'

inRange ((l,l'),(u,u')) (i,i')

= inRange (l,u) i && inRange (l',u') i'

-- Instan
es for other tuples are obtained from this s
heme:

--

-- instan
e (Ix a1, Ix a2, ... , Ix ak) => Ix (a1,a2,...,ak) where

-- range ((l1,l2,...,lk),(u1,u2,...,uk)) =

-- [(i1,i2,...,in) | i1 <- range (l1,u1),

-- i2 <- range (l2,u2),

-- ...

-- ik <- range (lk,uk)℄

-- index ((l1,l2,...,lk),(u1,u2,...,uk)) (i1,i2,...,ik) =

-- index (l1,u1) i1 * rangeSize ((l2,...,lk),(u2,...,uk))

-- + index (l2,u2) i2 * rangeSize ((l3,...,lk),(u3,...,uk))

-- ...

-- + index (lk,uk) ik

-- inRange ((l1,u2,...lk),(u1,u2,...,uk)) (i1,i2,...,ik) =

-- inRange (l1,u1) i1 && inRange (l2,u2) i2 &&

-- ... && inRange (lk,uk) ik

Figure 14: Index
lasses and instan
es

122 D SPECIFICATION OF DERIVED INSTANCES

The representation will be en
losed in parentheses if the pre
eden
e of the top-level
on-

stru
tor operator in x is less than d. Thus, if d is 0 then the result is never surrounded in

parentheses; if d is 10 it is always surrounded in parentheses, unless it is an atomi
 expres-

sion. The extra parameter r is essential if tree-like stru
tures are to be printed in linear

time rather than time quadrati
 in the size of the tree.

The fun
tion readsPre
 d s a

epts a pre
eden
e level d (a number from 0 to 10) and

a string s, and returns a list of pairs (x,r) su
h that showsPre
 d x r == s. readsPre

is a parse fun
tion, returning a list of (parsed value, remaining string) pairs. If there is no

su

essful parse, the returned list is empty.

showList and readList allow lists of obje
ts to be represented using non-standard

denotations. This is espe
ially useful for strings (list s of Char).

For
onvenien
e, the standard prelude provides the following auxiliary fun
tions:

shows = showsPre
 0

reads = readsPre
 0

show x = shows x ""

read s = x where [(x,"")℄ = reads s

shows and reads use a default pre
eden
e of 0, and show and read assume that the result

is not being appended to an initial string.

The instan
es of Text for the standard types Int, Integer, Float, Double, Char, lists,

tuples, and rational and
omplex numbers are de�ned in the standard prelude (see Ap-

pendix A). For
hara
ters and strings, the
ontrol
hara
ters that have spe
ial represen-

tations (\n et
.) are shown as su
h by showsPre
; otherwise de
imal es
apes are used.

Floating-point numbers for whi
h �1 � log

10

jf j � sf(f) where

sf f = (floatDigits f * floatRadix f) `div` 10 + 1

are represented by showsPre
 in non-exponential format; otherwise they are in exponential

format with one digit before the de
imal point. Unne
essary trailing zeroes are suppressed

(but at least one digit must follow the de
imal point).

readsPre
 will parse any valid representation of the standard types apart from lists, for

whi
h only the bra
ketted form [. . . ℄ is a

epted. See Appendix A for full details.

D.1 Spe
i�
ation of showsPre

As des
ribed in Se
tion 4.3.3, showsPre
 has the typing

(Text a) => Int -> a -> String -> String

The �rst parameter is a pre
eden
e in the range 0 to 10, the se
ond is the value to be

onverted into a string, and the third is the string to append to the end of the result.

D.2 Spe
i�
ation of readsPre
 123

showsPre
 d (e1 `Con` e2) =

showParen (d > p) showStr where

p = `the pre
eden
e of Con'

lp = if `Con is left asso
iative' then p else p+1

rp = if `Con is right asso
iative' then p else p+1

n = `the original name of Con'

showStr = showsPre
 lp e1 .

showChar ' ' . showString
n . showChar ' ' .

showsPre
 rp e2

Figure 15: Spe
i�
ation of showsPre
 for In�x Constru
tors of arity 2

showsPre
 d (Con e1 ... en) =

showParen (d >= 10) showStr where

showStr = showString
n . showChar ' ' .

showsPre
 10 e1 . showChar ' ' .

...

showsPre
 10 en

n = `the original name of Con'

Figure 16: General Spe
i�
ation of showsPre
 for User-De�ned Constru
tors

For all
onstru
tors Con de�ned by some data de
laration su
h as:

data
 => T u

1

: : : u

k

= : : : | Con t

1

: : : t

n

| : : :

the
orresponding de�nition of showsPre
 for Con is shown in Figure 15 for binary in�x
on-

stru
tors and Figure 16 for all other
onstru
tors. See Appendix A for details of showParen,

showChar, et
.

D.2 Spe
i�
ation of readsPre

A lexeme is exa
tly as in Se
tion 2. lex :: String -> (String, String) parses a string

into two parts: (1) a string representing the �rst lexeme or "" if the input is "" or
onsists

entirely of white spa
e, and (2) the remainder of the input after the �rst lexeme is extra
ted.

Whitespa
e (again refer to Se
tion 2) is ignored ex
ept within strings. An error results if

124 D SPECIFICATION OF DERIVED INSTANCES

readsPre
 d r = readCon K1 k1 `the original name of K1' r ++

...

readCon Kn kn `the original name of Kn' r

readCon
on n
n = -- if
on is infix and n == 2

readParen (d > p) readVal

where

readVal r = [(u `
on` v, s2) |

(u,s0) <- readsPre
 lp r,

(tok,s1) <- [lex s0℄, tok ==
n,

(v,s2) <- readsPre
 rp s1℄

p = `the pre
eden
e of
on'

lp = if `
on is left asso
iative' then p else p+1

rp = if `
on is right asso
iative' then p else p+1

readCon
on n
n = -- if
on is not infix or n /= 2

readParen (d > 9) readVal

where

readVal r = [(
on t1 ... tn, sn) |

(t0,s0) <- [lex r℄, t0 ==
n,

(t1,s1) <- readsPre
 10 s0,

...

(tn,sn) <- readsPre
 10 s(n-1)℄

Figure 17: De�nition of readsPre
 for User-De�ned Types

no proper lexeme
an be parsed (su
h as in the
ase of an unre
ognised
ontrol
hara
ter).

A full de�nition is provided in Appendix A.7.

As des
ribed in Se
tion 4.3.3, readsPre
 has the typing

Text a => Int -> String -> [(a,String)℄

Its �rst parameter is a pre
eden
e in the range 0 to 10, its se
ond is the string to be parsed.

Figure 17 shows the spe
i�
ation of readsPre
 for user-de�ned datatypes of the form:

data
 => T u

1

: : : u

k

= K

1

t

11

: : : t

1k

1

| : : : | K

n

t

n1

: : : t

nk

n

D.3 An example 125

D.3 An example

As a
omplete example,
onsider a tree datatype:

data Tree a = Leaf a | Tree a :^: Tree a

Sin
e there is no deriving
lause, this is shorthand for:

data Tree a = Leaf a | Tree a :^: Tree a

instan
e (Eq a) => Eq (Tree a)

where ...

instan
e (Ord a) => Ord (Tree a)

where ...

instan
e (Text a) => Text (Tree a)

where ...

instan
e (Binary a) => Binary (Tree a)

where ...

Note the re
ursive
ontext; the
omponents of the datatype must themselves be instan
es

of the
lass. Instan
e de
larations for Ix and Enum are not present, as Tree is not an

enumeration or single-
onstru
tor datatype. Ex
ept for Binary, the
omplete instan
e

de
larations for Tree are shown in Figure 18, Note the impli
it use of default-method

de�nitions|for example, only <= is de�ned for Ord, with the other operations (<, >, >=,

max, and min) being de�ned by the defaults given in the
lass de
laration shown in Figure 4

(page 29).

126 D SPECIFICATION OF DERIVED INSTANCES

infix 4 :^:

data Tree a = Leaf a | Tree a :^: Tree a

instan
e (Eq a) => Eq (Tree a) where

Leaf m == Leaf n = m==n

u:^:v == x:^:y = u==x && v==y

_ == _ = False

instan
e (Ord a) => Ord (Tree a) where

Leaf m <= Leaf n = m<=n

Leaf m <= x:^:y = True

u:^:v <= Leaf n = False

u:^:v <= x:^:y = u<x || u==x && v<=y

instan
e (Text a) => Text (Tree a) where

showsPre
 d (Leaf m) = showParen (d >= 10) showStr where

showStr = showString "Leaf" . showChar ' ' . showsPre
 10 m

showsPre
 d (u :^: v) = showParen (d > 4) showStr where

showStr = showsPre
 5 u .

showChar ' ' . showString ":^:" . showChar ' ' .

showsPre
 5 v

readsPre
 d r = readParen (d > 4)

(\r -> [(u:^:v,w) |

(u,s) <- readsPre
 5 r,

(":^:",t) <- [lex s℄,

(v,w) <- readsPre
 5 t℄) r

++ readParen (d > 9)

(\r -> [(Leaf m,t) |

("Leaf",t) <- [lex r℄,

(m,t) <- readsPre
 10 t℄) r

Figure 18: Example of Derived Instan
es

REFERENCES 127

Referen
es

[1℄ J. Ba
kus. Can programming be liberated from the von Neumann style? A fun
tional

style and its algebra of programs. CACM, 21(8):613{641, August 1978.

[2℄ R.M. Burstall, D.B. Ma
Queen, and D.T. Sannella. HOPE: An experimental appli
a-

tive language. In The 1980 LISP Conferen
e, pages 136{143, Stanford University,

August 1980.

[3℄ H.K. Curry and R. Feys. Combinatory Logi
. North-Holland Pub. Co., Amsterdam,

1958.

[4℄ M. Gordon, R. Milner, L. Morris, M. Newey, and C. Wadsworth. A metalanguage

for intera
tive proof in LCF. In Pro
eedings of 5th ACM Symposium on Prin
iples of

Programming Languages, pages 119{130, 1978.

[5℄ R. Hindley. The prin
ipal type s
heme of an obje
t in
ombinatory logi
. Transa
tions

of the Ameri
an Mathemati
al So
iety, 146:29{60, De
ember 1969.

[6℄ P. Hudak and R. Sundaresh. On the expressiveness of purely fun
tional I/O systems.

Te
hni
al Report YALEU/DCS/RR665, Yale University, Department of Computer S
i-

en
e, De
ember 1988.

[7℄ P.J. Landin. The next 700 programming languages. CACM, 9(3):157{166, Mar
h 1966.

[8℄ J. M
Carthy. Re
ursive fun
tions of symboli
 expressions and their
omputation by

ma
hine, Part I. CACM, 3(4):184{195, April 1960.

[9℄ R.A. Milner. A theory of type polymorphism in programming. Journal of Computer

and System S
ien
es, 17(3):348{375, De
ember 1978.

[10℄ R.S. Nikhil. Id-Nouveau (version 88.0) referen
e manual. Te
hni
al report, MIT Lab-

oratory for Computer S
ien
e, Cambridge, Mass., Mar
h 1988.

[11℄ P. Pen�eld, Jr. Prin
ipal values and bran
h
uts in
omplex APL. In APL '81 Con-

feren
e Pro
eedings, pages 248{256, San Fran
is
o, September 1981.

[12℄ S. Peyton Jones. The Implementation of Fun
tional Programming Languages. Prenti
e-

Hall International, Englewood Cli�s, New Jersey, 1987.

[13℄ J. Rees and W. Clinger (eds.). The revised

3

report on the algorithmi
 language S
heme.

SIGPLAN Noti
es, 21(12):37{79, De
ember 1986.

[14℄ G.L. Steele Jr. Common Lisp: The Language. Digital Press, Burlington, Mass., 1984.

[15℄ D.A. Turner. Miranda: a non-stri
t fun
tional language with polymorphi
 types. In

Fun
tional Programming Languages and Computer Ar
hite
ture, volume 201 of Le
ture

Notes in Computer S
ien
e, pages 1{16, Nan
y, Fran
e, September 1985. Springer-

Verlag.

128 REFERENCES

[16℄ P. Wadler. A new array operation. In J.H. Fasel and R.M. Keller, editors, Graph Re-

du
tion, volume 279 of Le
ture Notes in Computer S
ien
e, pages 328{335, Heidelberg,

1987. Springer-Verlag.

[17℄ P. Wadler and S. Blott. How to make ad ho
 polymorphism less ad ho
. In Pro
eedings of

16th ACM Symposium on Prin
iples of Programming Languages, pages 60{76, Austin,

Texas, January 1989.

Index

%, 52, 54

&&, 49

(...), 13

*, 53, 55

**, 53, 56

+, 53, 55

-, 53, 55

- (pre�x), 11

., 50

/, 53, 55

//, 60

/=, 119

:+, 55

::, 16

:=, 58

<, 29, 119

<=, 29, 119

==, 29, 119

>, 29, 119

>=, 29, 119

||ASCII, 6, 9, 49

AppendBinChan, 63, 70

AppendBinFile, 63, 68

AppendChan, 63, 70

AppendFile, 63, 68

Array, 58

Asso
, 58

Bin, 50

BinCont, 72

Binary

derived instan
es of, 30, 120

Binary, 29

Bn, 64

Bool, 49

C-T instan
e de
laration, 30

Char, 49

Complex, 52, 55

||Curry, Haskell B., ii

DeleteFile, 63, 69

Dialogue, 62, 72

Double, 51, 54

E
ho, 70

Enum

derived instan
es of, 30, 120

Enum, 29

Eq

derived instan
es of, 30, 119

Eq, 29, 51

FailCont, 72

Failure, 64

False, 49

Float, 51, 54

||Floating, 55

Floating, 51, 53, 55

FormatError, 64

Fra
tional, 51, 53

GetArgs, 63, 71

GetEnv, 63, 71

Haskell, ii, 1

Haskell kernel, 2

||Hindley-Milner, 2, 22, 35

IOError, 64

Int, 51, 54

Integer, 54

Integral, 51, 53

Ix

derived instan
es of, 30, 119

Ix, 29, 58, 121

Main, 37

Name, 63

Num, 53

Ord

derived instan
es of, 30, 119

Ord, 29, 51

OtherError, 64

Prelude, 45

PreludeBuiltin, 45

PreludeCore, 45

Ratio, 52, 54

Rational, 52, 54

ReadBinChan, 63, 70

ReadBinFile, 63, 68

ReadChan, 63, 70

ReadError, 64

129

130 INDEX

ReadFile, 63, 68

Real, 51, 53

RealFloat, 54

RealFra
, 53, 54

Request, 62, 63

Response, 62, 64

Sear
hError, 64

SetEnv, 63, 71

StatusChan, 63, 70

StatusFile, 63, 69

Str, 64

StrCont, 72

String, 50

Su

Cont, 72

Su

ess, 64

Text

derived instan
es of, 30, 120

Text, 29

True, 49

WriteBinFile, 63, 68

WriteError, 64

WriteFile, 63, 68

[... ℄, 12

\ ... -> ..., 11

\=, 29

^, 54, 56

^^, 54, 56

_, 17

abort, 72, 104

abs, 53, 56

||abstra
t data types, 1, 47

a

um, 60

a

umArray, 60

a
os, 53

a
osh, 53

||agent, 63

||algebrai
 data types, 26

amap, 60

appendBinChan, 73, 102

appendBinFile, 73, 102

appendChan, 73, 102

appendFile, 73, 102

||appli
ation, 11

approxRational, 53, 57

||ar
tangent, 57

||arithmeti
, 55

||arithmeti
 sequen
e, 13

array, 58

||arrays, 1, 58

a

umulated, 60

derived, 60

||as-pattern, 17

asin, 53

asinh, 53

asso
s, 59

atan, 53, 57

atan2, 54, 57

atanh, 53

binDispat
h, 72

||binary datatype, 50

||bindings, 22

||booleans, 49

bounds, 59

break, 67

ase ... of ..., 16

||
ase expression, 16

simple, 21

eiling, 54, 57

||
hannel system requests, 69

||
hannels, 63

||
hara
ters, 49

literal syntax, 9

hr, 49

is, 55

lass, 27

||
lass assertions, 24

||
lass de
larations, 27

||
lasses, 22

||
oer
ions, 57

||
omments, 7

||
ompilation system, 38

||
onditional expression, 12

onjugate, 55

||
onstru
ted type, 24

||
ontexts, 24

os, 53

osh, 53

||
osine, 57

data, 26

||data abstra
tion, 1

INDEX 131

||datatype, 26

||de
larations, 22

within
lass de
larations, 27

within instan
e de
larations, 28

within where expressions, 15

de
odeFloat, 54, 57

default, 31

deleteFile, 73, 102

denominator, 52, 54

||dependen
y analysis, 35

||derived instan
es, 30

div, 53, 55

divRem, 53

done, 73, 102

e
ho, 73, 102

elems, 59

en
odeFloat, 54, 58

||entity, 37

enumFrom, 29, 120

enumFromThen, 29, 120

enumFromThenTo, 29, 120

enumFromTo, 29, 120

||enumeration, 119

||environment requests, 70

error, 61

||errors, 2, 61

even, 53, 56

exit, 72, 104

exp, 53, 56

exponent, 54, 58

||exponentiation, 56

||export lists, 39

||expression type-signature, 16

||expressions, 2, 10

||�le system requests, 68

||�les, 63

||�xity, 8

default, 8

||�xity de
larations, 48

floatDigits, 54, 57

floatRadix, 54, 57

floatRange, 54, 57

||
oating-point, 51

floor, 54, 57

||formal semanti
s, 1

fromInteger, 52, 53

fromIntegral, 54, 58

fromRational, 52, 53

fromRealFra
, 54, 58

||fun
tion appli
ation, 11

||fun
tion bindings, 33

||fun
tion type, 24

||fun
tional languages, ii

||fun
tions, 50

g
d, 54, 56

||generators, 14

getArgs, 73, 102

getEnv, 73, 102

||guard, 14, 16, 19

||identi�ers, 7

if ... then ... else ..., 12

imagPart, 55

||implementation, 37, 39

import, 41

||import de
larations, 41

inRange, 29, 119, 121

index, 29, 119, 121

indi
es, 59

infix, 48

infixl, 48

infixr, 48

||information hiding, 1

||input/output, 62

a

eptan
e, 66

e
hoing, 66

mode, 64

optional requests, 116

presentation, 65

semanti
s, 112

transparen
y, 65

instan
e, 28

||instan
e de
larations, 28

with respe
t to modules, 30

||integer, 51

intera
t, 72, 104

||interfa
e, 37, 42

interfa
e, 42

||irrefutable pattern, 18

isNullBin, 50

ixmap, 60

132 INDEX

||lambda abstra
tions, 11

||layout, 3, 106

l
m, 54, 56

let, 72, 104

lex, 93

lexLitChar, 94

||lexi
al stru
ture, 6

lines, 67

||list
omprehensions, 14

||list type, 24

||lists, 12, 50

log, 53, 56

logBase, 53, 56

||logarithm, 56

||magnitude, 56

magnitude, 55

main, 37

max, 119

maxInt, 51, 54

min, 119

minInt, 51, 54

mkPolar, 55

mod, 53, 55

||module, 37

losure, 38

implementation, 39

interfa
e, 42

module, 39

||monomorphi
, 25

||monotype, 25

||namespa
es, 2, 8

negate, 12, 53, 55

||negation, 8, 10, 12

not, 49

nullBin, 50

||numbers, 51

literal syntax, 8

numerator, 52, 54

||numeri
 types, 52

odd, 53, 56

||o�-side rule, 3, 107

||operator appli
ation, 11

||operators, 7, 11

ord, 49

||original names, 37

in interfa
es, 44

otherwise, 49

||overloading, 1, 27

defaults, 31

||pattern, 16, 17

||pattern bindings, 33

||pattern-mat
hing, 16

phase, 55

pi, 53

polar, 55

||polymorphism, 2

||pre
eden
e, 10

||prin
ipal typing, 25

print, 72, 104

prints, 72, 104

||program stru
ture, 1

properFra
tion, 53, 57

||quali�er, 14

range, 29, 119, 121

rangeSize, 121

read, 92

readBin, 29, 120

readBinChan, 73, 102

readBinFile, 73, 102

readChan, 73, 102

readDe
, 97

readFile, 73, 102

readHex, 97

readInt, 98

readList, 120

readLitChar, 96

readO
t, 97

readParen, 93

reads, 29, 92

readsPre
, 120, 123

realPart, 55

||refutable pattern, 18

rem, 53, 55

||renaming, 37, 41

with respe
t to original name, 38

round, 54, 57

s
aleFloat, 54

||semanti
s

formal, 1

input/output, 112

INDEX 133

setEnv, 73, 102

show, 92

showBin, 29, 120

showChar, 92

showInt, 98

showList, 120

showLitChar, 97

showParen, 92

showString, 92

shows, 29, 92

showsPre
, 120, 122

||sign, 56

signifi
and, 54, 58

signum, 53, 56

sin, 53

||sine, 57

sinh, 53

span, 67

sqrt, 53, 56

||standard prelude, 45

statusChan, 73

statusFile, 73, 102

stde
ho, 63

stderr, 63

stdin, 63

stdout, 63

strDispat
h, 72

||strings, 49

literal syntax, 9

su

Dispat
h, 72

||super
lass, 27

||syntax, 105

tan, 53

||tangent, 57

tanh, 53

toRational, 53, 57

||transa
tion, 71

||transparent
hara
ter set, 65

||transparent line, 65

||transparent string, 65

||trigonometri
 fun
tions, 57

||trivial type, 24

trun
ate, 54, 57

||tuple type, 24

||tuples, 13, 50

type, 27

||type
lasses, 27

||type expressions, 23

||type signatures, 32

for expressions, 16

||type synonyms, 27

||type system, 1

||types, 2, 23

||typing, 25

||unit, 13

unlines, 67

until, 50

unwords, 67

||values, 2

||well-typing, 25

where, 15

||where expressions, 15

||wild
ard, 17

words, 67

writeBinFile, 73, 102

writeFile, 73, 102

