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Prefae

\Some half dozen persons have written tehnially on ombinatory logi, and

most of these, inluding ourselves, have published something erroneous. Sine

some of our fellow sinners are among the most areful and ompetent logiians

on the ontemporary sene, we regard this as evidene that the subjet is re-

fratory. Thus fullness of exposition is neessary for auray; and exessive

ondensation would be false eonomy here, even more than it is ordinarily."

Haskell B. Curry and Robert Feys

in the Prefae to Combinatory Logi [3℄, May 31, 1956

In September of 1987 a meeting was held at the onferene on Funtional Programming

Languages and Computer Arhiteture in Portland, Oregon, to disuss an unfortunate sit-

uation in the funtional programming ommunity: there had ome into being more than a

dozen non-strit, purely funtional programming languages, all similar in expressive power

and semanti underpinnings. There was a strong onsensus at this meeting that more

widespread use of this lass of funtional languages was being hampered by the lak of a

ommon language. It was deided that a ommittee should be formed to design suh a

language, providing faster ommuniation of new ideas, a stable foundation for real ap-

pliations development, and a vehile through whih others would be enouraged to use

funtional languages. This doument desribes the result of that ommittee's e�orts: a

purely funtional programming language alled Haskell, named after the logiian Haskell

B. Curry whose work provides the logial basis for muh of ours.

Goals

The ommittee's primary goal was to design a language that satis�ed these onstraints:

1. It should be suitable for teahing, researh, and appliations, inluding building large

systems.

2. It should be ompletely desribed via the publiation of a formal syntax and semantis.

3. It should be freely available. Anyone should be permitted to implement the language

and distribute it to whomever they please.

4. It should be based on ideas that enjoy a wide onsensus.

5. It should redue unneessary diversity in funtional programming languages.

The ommittee hopes that Haskell an serve as a basis for future researh in language

design. We hope that extensions or variants of the language may appear, inorporating

experimental features.
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This Report

This report is the oÆial spei�ation of the Haskell language and should be suitable for

writing programs and building implementations. It is not a tutorial on programming in

Haskell, so some familiarity with funtional languages is assumed. Being the �rst edition

of the spei�ation, there may be some errors and inonsistenies; beware.

The Next Stage

Haskell is a large and omplex language, beause it is designed for a wide spetrum of

purposes. It also introdues a major new tehnial innovation, namely using type lasses

to handle overloading in a systemati way. This innovation permeates every aspet of the

language.

Haskell is bound to ontain infeliities and errors of judgement. During the forth-

oming year we welome your omments, suggestions and ritiisms on the language, or its

presentation in the report. Together with your input and our own experiene of using the

language, we plan to meet in about a year's time to resolve diÆulties and further stabilise

the design.

A ommon mailing list for tehnial disussion of Haskell an be reahed at either

haskell�s.yale.edu or haskell�s.glasgow.a.uk. Errata sheets for this report will

be posted there. To subsribe, send a request to haskell-request�s.glasgow.a.uk

(European residents) or haskell-request�s.yale.edu (residents elsewhere).

We thought it would be helpful to identify the aspets of the language design that

seem to be most �nely balaned, and hene are the most likely andidates for hange when

we review the language. The following list summarises these areas. It will only be fully

omprehensible after you have read the report.

Mutually reursive modules. Mutual reursion among modules is unrestrited at pre-

sent, whih is obviously desirable from the programmer's point of view, but whih poses

signi�ant hallenges to the ompilation system. In partiular, it is not suÆient to start

with trivial interfaes for eah module and iterate to a �xpoint, as this example shows:

module F( f ) where

import G

f [x℄ = g x

module G( g ) where

import F

g = f

If a ompilation system starts o� by giving F and G interfaes that give the type signatures

f::a and g::b respetively, then ompiling the two modules alternately will not reah a
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�xed point. In general, a ompiler may need to analyse a set of mutually reursive modules

as a whole, rather than separately. This only happens if there is a type error, but it is

obviously undesirable behaviour.

Default methods. Setion 4.3.1 desribes how a lass delaration may inlude default

methods for some of its operations. We onsidered extending this so that a lass delaration

ould inlude default methods for operations of its superlasses, whih override the super-

lass's default method. This looks like an attrative idea, whih will ertainly be onsidered

for a future revision.

Defaults for ambiguous types. Setion 4.3.4 desribes how ambiguous typings, whih

arise due to the type-lass system, are resolved. Ideally, the hoie made should not matter.

For example, onsider the expression if (length xs > 3) then E1 else E2. It should

not matter whether the length is omputed in Int or Integer or even Float; a bad hoie

ould result in a program beoming unde�ned due to overow, or a less eÆient program,

but if a result is produed it will be orret.

Our resolution rules strive only to resolve ambiguous types where the type hosen does

not \matter" in this sense, but we have not been entirely suessful, for example where

oating point is onerned. Further researh and pratial experiene may suggest a better

set of rules.

Stati semantis of where bindings. In Haskell variables not bound to lambda ab-

strations are not allowed to be overloaded in more than one way (Setion 4.4.2). This solves

two problems, whih are summarised below, but at the ost of restriting expressiveness.

Only experiene will tell how muh of a problem this is for the programmer.

These are the two problems. First, the expression (x,x) where x = fatorial 1000

looks as though x should only be omputed one, and this is the ase. If x were used at

di�erent overloadings, however, fatorial 1000 would be omputed twie, one at eah

type. We have found examples where the loss of eÆieny is exponential in the size of

the program. Modest ompiler optimisations an often eliminate the problem, but we have

found no simple sheme that an guarantee to do so. The restrition solves the problem by

ensuring that all uses of x are at the same overloading, and its evaluation an be shared as

usual.

Seond, a rather subtle form of type ambiguity (Setion 4.3.4) is eliminated by the

restrition to non-overloaded pattern bindings. An example is:

readNum s r = (n*r,s') where [(n,s')℄ = reads s

Here n::(Num a, Binary a) => a, s'::Binary a => Bin. If the de�nition of [(n,s')℄

is polymorphi, the a's may be resolved as di�erent types.
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Overloaded onstants. Overloaded onstants (e.g. 1, whih has type Num a => a) are

extraordinarily onvenient when programming, but are the soure of several serious teh-

nial problems, inluding both of those mentioned in the two preeding items. One ould

eliminate overloaded onstants altogether; we onsidered this at length, and we are sure to

reonsider it when we review the language.

Polymorphism in ase expressions. The type of a variables bound by a Standard

ML ase-expression is monomorphi; we have made the same deision in Haskell (Se-

tion 4.1.3). There is no tehnial reason why the type of suh a variable should not be

polymorphi; in suh a ase, the translation between where expressions and ase expres-

sions would preserve the stati semantis.

We have erred on the side of onservatism, but this deision will be reviewed. If imple-

mented, suh a hange would be upward-ompatible.
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1 Introdution

Haskell is a general purpose, purely funtional programming language inorporating many

reent innovations in programming language researh, inluding higher-order funtions,

non-strit semantis, stati polymorphi typing, user-de�ned algebrai data types, pattern-

mathing, list omprehensions, a module system, and a rih set of primitive data types,

inluding lists, arrays, arbitrary and �xed preision integers, and oating-point numbers.

Haskell is both the ulmination and solidi�ation of many years of researh on funtional

languages|the design has been inuened by languages as old as ISWIM and as new as

Miranda.

Although the initial emphasis was on standardisation, Haskell also has several new

features that both simplify and generalise the design. For example,

1. Rather than using ad ho tehniques for overloading, Haskell provides an expliit

overloading faility, integrated with the polymorphi type system, that allows the

preise de�nition of overloading behaviour for any operator or funtion.

2. The onventional notion of \abstrat data type" has been unbundled into two orthog-

onal omponents: data abstration and information hiding.

3. Haskell has a exible I/O faility that uni�es two popular styles of purely funtional

I/O|the stream model and the ontinuation model|and both styles an be mixed

within the same program. The system supports most of the standard operations

provided by onventional operating systems while retaining referential transpareny

within a program.

4. Reognising the importane of arrays, Haskell has a family of multi-dimensional non-

strit immutable arrays whose speial interation with list omprehensions provides a

onvenient \array omprehension" syntax for de�ning arrays monolithially.

This report de�nes the syntax for Haskell programs and an informal abstrat seman-

tis for the meaning of suh programs; the formal abstrat semantis is in preparation.

We leave as implementation dependent the ways in whih Haskell programs are to be

manipulated, interpreted, ompiled, et. This inludes suh issues as the nature of bath

versus interative programming environments, and the nature of error messages returned

for unde�ned programs (i.e. programs that formally evaluate to ?).

1.1 Program Struture

In this setion, we desribe the abstrat syntati and semanti struture of Haskell, as

well as how it relates to the organisation of the rest of the report.

1. At the top-most level a Haskell program is a set of modules (desribed in Setion 5).

Modules provide a way to ontrol namespaes and to re-use software in large programs.
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2. The top level of a module onsists of a olletion of delarations, of whih there are

several kinds, all desribed in Setion 4. Delarations de�ne things suh as ordinary

values, data types, type lasses, and �xity information.

3. At the next lower level are expressions, desribed in Setion 3. An expression denotes

a value and has a stati type; expressions are at the heart of Haskell programming

\in the small."

4. At the bottom level is Haskell's lexial struture, de�ned in Setion 2. The lexial

struture aptures the onrete representation of Haskell programs in text �les.

This report proeeds bottom-up with respet to Haskell's syntati struture.

The setions not mentioned above are Setion 6, whih desribes the standard built-

in datatypes in Haskell, and Setion 7, whih disusses the I/O faility in Haskell

(i.e. how Haskell programs ommuniate with the outside world). Also, there are several

appendies desribing the standard prelude, the onrete syntax, the semantis of I/O, and

the spei�ation of derived instanes.

1.2 The Haskell Kernel

Haskell has adopted many of the onvenient syntati strutures that have beome popular

in funtional programming. In all ases their formal semantis an be given via translation

into a proper subset of Haskell alled the Haskell kernel. It is essentially a slightly

sugared variant of the lambda alulus with a straightforward denotational semantis. The

translation of eah syntati struture into the kernel is given as the syntax is introdued.

This modular design failitates reasoning about Haskell programs and provides useful

guidelines for implementors of the language.

1.3 Values and Types

An expression evaluates to a value and has a stati type. Values and types are not mixed

in Haskell. However, the type system allows user-de�ned datatypes of various sorts,

and permits not only parametri polymorphism (using a traditional Hindley-Milner type

struture) but also ad ho polymorphism, or overloading (using type lasses).

Errors in Haskell are semantially equivalent to ?. Tehnially, they are not distin-

guishable from non-termination, so the language inludes no mehanism for deteting or

ating upon errors. Of ourse, implementations will probably try to provide useful infor-

mation about errors.

1.4 Namespaes

There are six kinds of names in Haskell: those for variables and onstrutors denote

values; those for type variables, type onstrutors, and type lasses refer to entities related

to the type system; and module names refer to modules. There are three onstraints on

naming:
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1. Names for variables and type variables are identi�ers beginning with small letters; the

other four kinds of names are identi�ers beginning with apitals.

2. Construtor operators are operators beginning with \:"; variable operators are oper-

ators not beginning with \:".

3. An identi�er must not be used as the name of a type onstrutor and a lass in the

same sope.

These are the only onstraints; for example, Int may simultaneously be the name of a

module, lass, and onstrutor within a single sope.

Haskell provides a lexial syntax for in�x operators (either funtions or onstrutors).

To emphasise that operators are bound to the same things as identi�ers, and to allow the two

to be used interhangeably, there is a simple way to onvert between the two: any funtion

or onstrutor identi�er may be onverted into an operator by enlosing it in bakquotes,

and any operator may be onverted into an identi�er by enlosing it in parentheses. For

example, x + y is equivalent to (+) x y, and f x y is the same as x �f� y. These lexial

matters are disussed further in Setion 2.

Examples of Haskell program fragments in running text are given in typewriter font:

z+1 where x = 1

y = 2

z = x+y

\Holes" in program fragments representing arbitrary piees of Haskell ode are written

in italis, as in if e

1

then e

2

else e

3

. Generally the italiised names will be mnemoni,

suh as e for expressions, d for delarations, t for types, et.

1.5 Layout

In the syntax given in the rest of the report, delaration lists are always preeded by the

keyword where or of, and are enlosed within urly braes ({ }) with the individual de-

larations separated by semiolons (;). For example, the syntax of a where expression is:

exp where { del

1

; del

2

; : : : ; del

n

}

Haskell permits the omission of the braes and semiolons by using layout to onvey

the same information. This allows both layout-sensitive and -insensitive styles of oding,

whih an be freely mixed within one program. Beause layout is not required, Haskell

programs may be mehanially produed by other programs.

The layout (or \o�-side") rule takes e�et whenever the open brae is omitted after the

keyword where or of. When this happens, the indentation of the next lexeme (whether or

not on a new line) is remembered and the omitted open brae is inserted (the whitespae

preeding the lexeme may inlude omments). For eah subsequent line, if it ontains only

whitespae or is indented more, then the previous item is ontinued (nothing is inserted);
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if it is indented the same amount, then a new item begins (a semiolon is inserted); and if

it is indented less, then the delaration list ends (a lose brae is inserted). A lose brae is

also inserted whenever the syntati ategory ontaining the delaration list ends (i.e. if an

illegal lexeme is enountered at a point where a lose brae would be legal, a lose brae is

inserted). The layout rule will math only those open braes that it has inserted; an open

brae that the user has inserted must be mathed by a lose brae inserted by the user.

Given these rules, a single newline may atually terminate several delaration lists. Also,

these rules permit:

f x = exp1 where a = 1; b = 2

g y = exp2

making a, b and g all part of the same delaration list.

To failitate the use of layout at the top level of a module (several modules may reside

in one �le), the keyword module and the end-of-�le token are assumed to our in olumn

0 (whereas normally the �rst olumn is 1). Otherwise, all top-level delarations would have

to be indented.

As an example, Figure 1 shows a (somewhat ontrived) module and Figure 2 shows

the result of applying the layout rule. Note in partiular: (a) the line beginning }};pop,

where the termination of the previous line invokes three appliations of the layout rule,

orresponding to the depth (3) of the nested where lauses, (b) the lose brae in the where

lause nested within the tuple, inserted beause the end of the tuple was deteted, and

() the lose brae at the very end, inserted beause of the olumn 0 indentation of the

end-of-�le token.

When omparing indentations for standard Haskell programs, a �xed-width font with

this tab onvention is assumed: tab stops are 8 haraters apart (with the �rst tab stop

in olumn 9), and a tab harater auses the insertion of enough spaes (always � 1) to

align the urrent position with the next tab stop. Partiular implementations may alter

this rule to aommodate variable-width fonts and alternate tab onventions, but standard

Haskell programs (i.e. ones that are portable) must observe the rule.
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module AStak( Stak, push, pop, top, size ) where

data Stak a = Empty

| MkStak a (Stak a)

push :: a -> Stak a -> Stak a

push x s = MkStak x s

size :: Stak a -> Integer

size s = length (stkToLst s) where

stkToLst Empty = [℄

stkToLst (MkStak x s) = x:xs where xs = stkToLst s

pop :: Stak a -> (a, Stak a)

pop (MkStak x s) = (x, r where r = s) -- (pop Empty) is an error

top :: Stak a -> a

top (MkStak x s) = x -- (top Empty) is an error

Figure 1: A sample program

module AStak( Stak, push, pop, top, size ) where

{data Stak a = Empty

| MkStak a (Stak a)

;push :: a -> Stak a -> Stak a

;push x s = MkStak x s

;size :: Stak a -> Integer

;size s = length (stkToLst s) where

{stkToLst Empty = [℄

;stkToLst (MkStak x s) = x:xs where {xs = stkToLst s

}};pop :: Stak a -> (a, Stak a)

;pop (MkStak x s) = (x, r where {r = s}) -- (pop Empty) is an error

;top :: Stak a -> a

;top (MkStak x s) = x -- (top Empty) is an error

}

Figure 2: Sample program with layout expanded
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2 Lexial Struture

In this setion, we desribe the low-level lexial struture of Haskell. Most of the details

may be skipped in a �rst reading of the report.

2.1 Notational Conventions

These notational onventions are used for presenting syntax:

[pattern℄ optional

fpatterng zero or more repetitions

(pattern) grouping

pat

1

j pat

2

hoie

pat

fpat

0

g

di�erene|elements generated by pat

exept those generated by pat

0

fibonai terminal syntax in typewriter font

Beause the syntax in this setion desribes lexial syntax, all whitespae is expressed

expliitly; there is no impliit spae between juxtaposed symbols. BNF-like syntax is used

throughout, with produtions having the form:

nonterm ! alt

1

j alt

2

j : : : j alt

n

Care must be taken in distinguishingmeta-logial syntax suh as j and [: : :℄ from onrete

terminal syntax (given in typewriter font) suh as | and [...℄, although usually the ontext

makes the distintion lear.

Haskell soure programs are urrently biased toward the ASCII harater set, although

future Haskell standardisation e�orts will likely address broader harater standards.

2.2 Lexial Program Struture

program ! f lexeme j whitespae g

lexeme ! varid j onid j varop j onop j literal j speial j reservedop j reservedid

literal ! integer j oat j har j string

speial ! ( j ) j , j ; j [ j ℄ j _ j { j }

whitespae ! whitestu� fwhitestu� g

whitestu� ! newline j spae j tab j vertab j formfeed j omment j nomment

newline ! a newline (system dependent)

spae ! a spae

tab ! a horizontal tab

vertab ! a vertial tab

formfeed ! a form feed
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omment ! -- fanyg newline

nomment ! {- fwhitespae j any

f{- j -}g

g -}

any ! graphi j spae j tab

graphi ! large j small j digit

j ! j " j # j $ j % j & j � j ( j ) j * j +

j , j - j . j / j : j ; j < j = j > j ? j �

j [ j \ j ℄ j ^ j _ j � j { j | j } j ~

small ! a j b j : : : j z

large ! A j B j : : : j Z

digit ! 0 j 1 j : : : j 9

Charaters not in the ategory graphi or whitestu� are not valid in Haskell programs

and should result in a lexing error.

Comments are valid whitespae . Ordinary omments begin with two onseutive dashes

(--) and extend to the following newline. Nested omments are enlosed by {- and -} and

an be between any two lexemes. Thus any ontiguous portion of Haskell program text

may be turned into a omment, whether or not that portion ontains omments within it.

Nested omments also provide a onvenient method for implementing annotations.

2.3 Identi�ers and Operators

avarid ! (small fsmall j large j digit j � j _g)

freservedidg

varid ! avarid j (avarop)

aonid ! large fsmall j large j digit j � j _g

onid ! aonid j (aonop)

reservedid ! ase j lass j data j default j deriving j else j hiding

j if j import j infix j infixl j infixr j instane j interfae

j module j of j renaming j then j to j type j where

An identi�er onsists of a letter followed by zero or more letters, digits, undersores, and

aute aents. Identi�ers are lexially distinguished into two lasses: those that begin

with a small letter (variable identi�ers) and those that begin with a apital (onstrutor

identi�ers). Identi�ers are ase sensitive: name, naMe, and Name are three distint identi�ers

(the �rst two are variable identi�ers, the last is a onstrutor identi�er).

avarop ! ( symbol fsymbol j :g )

freservedopg

j -

varop ! avarop j �avarid�

aonop ! (: fsymbol j :g)

freservedopg

onop ! aonop j �aonid�

symbol ! ! j # j $ j % j & j * j + j . j / j < j = j > j ? j � j \ j ^ j | j ~

reservedop ! .. j :: j => j = j � j \ j | j ~



8 2 LEXICAL STRUCTURE

An operator is either symboli or alphanumeri. Symboli operators are formed from one

or more symbols, as de�ned above, and are lexially distinguished into two lasses: those

that start with a olon (onstrutors) and those that do not (funtions).

Alphanumeri operators are formed by enlosing an identi�er between grave aents

(bakquote). Any variable or onstrutor may be used as an operator in this way. If fun

is an identi�er (either variable or onstrutor), then an expression of the form fun x y is

equivalent to x �fun� y . If no �xity delaration is given for �fun� then it defaults to in�x

with highest preedene and left assoiativity (see Setion 5.7).

Similarly, any symboli operator may be used as a (urried) variable or onstrutor by

enlosing it in parentheses. If op is an in�x operator, then an expression or pattern of the

form x op y is equivalent to (op) x y .

No spaes are permitted in names suh as �fun� and (op).

All operators are in�x, although there is a speial syntax for pre�x negation (see Se-

tion 3.2). All of the standard in�x operators are just pre-de�ned symbols and may be

rebound.

Although ase is reserved, ases is not. Similarly, although = is reserved, == and =~

are not. At eah point, the longest possible lexeme is read. Any kind of whitespae is also

a proper delimiter for lexemes.

In the remainder of the report six di�erent kinds of names will be used:

var ! varid (variables)

on ! onid (onstrutors)

tyvar ! avarid (type variables)

tyon ! aonid (type onstrutors)

tyls ! aonid (type lasses)

modid ! aonid (modules)

Variables and type variables are represented by identi�ers beginning with small letters, and

the other four by identi�ers beginning with apitals; also, variables and onstrutors have

in�x forms, the other four do not. Namespaes are disussed further in Setion 1.4.

2.4 Numeri Literals

integer ! digitfdigitg

oat ! integer.integer [e[-℄integer ℄

There are two distint kinds of numeri literals: integer and oating. A oating literal

must ontain digits both before and after the deimal point; this ensures that a deimal

point annot be mistaken for another use of the dot harater. Negative numeri literals

are disussed in Setion 3.2.
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2.5 Charater and String Literals

har ! � (graphi

f� j \g

j spae j esape

f\&g

) �

string ! " fgraphi

f" j \g

j spae j esape j gapg "

esape ! \ ( hares j asii j integer j o otitfotitg j x hexitfhexitg )

hares ! a j b j f j n j r j t j v j \ j " j � j &

asii ! ^ntrl j NUL j SOH j STX j ETX j EOT j ENQ j ACK

j BEL j BS j HT j LF j VT j FF j CR j SO j SI j DLE

j DC1 j DC2 j DC3 j DC4 j NAK j SYN j ETB j CAN

j EM j SUB j ESC j FS j GS j RS j US j SP j DEL

ntrl ! large j � j [ j \ j ℄ j ^ j _

gap ! \ ftab j spaeg newline ftab j spaeg \

hexit ! digit j A j B j C j D j E j F j a j b j  j d j e j f

otit ! 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7

Charater literals are written between aute aents, as in �a�, and strings between

double quotes, as in "Hello".

Esape odes may be used in haraters and strings to represent speial haraters. Note

that � may be used in a string, but must be esaped in a harater; similarly, " may be used

in a harater, but must be esaped in a string. \ must always be esaped. The ategory

hares also inludes portable representations for the haraters \alert" (\a), \bakspae"

(\b), \form feed" (\f), \new line" (\n), \arriage return" (\r), \horizontal tab" (\t), and

\vertial tab" (\v).

Esape haraters for the ASCII harater set, inluding ontrol haraters suh as \^X,

are also provided. Numeri esapes suh as \137 are used to designate the harater with

(implementation dependent) deimal representation 137; otal (e.g. \o137) and hexadeimal

(e.g. \x137) representations are also allowed. Numeri esapes that are out-of-range of the

ASCII standard are unde�ned and thus non-portable.

Consistent with the \onsume longest lexeme" rule, numeri esape haraters in strings

onsist of all onseutive digits and may be of arbitrary length. Similarly, the one ambiguous

ASCII esape ode, "\SOH", is parsed as a string of length 1. The esape harater \& is

provided as a \null harater" to allow strings suh as "\137\&9" and "\SO\&H" to be

onstruted (both of length two). Thus "\&" is equivalent to "" and the harater �\&� is

disallowed. Further equivalenes of haraters are de�ned in Setion 6.2.

A string may inlude a \gap"|two bakslants enlosing one newline and any number of

blanks or spaes|whih is ignored. This allows one to write long strings on more than one

line by writing a bakslant at the end of one line and at the start of the next. For example,

"Here is a bakslant \\ as well as \137, \

\a numeri esape harater, and \^X, a ontrol harater."

String literals are atually abbreviations for lists of haraters (see Setion 3.4).
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3 Expressions

In this setion, we desribe the syntax and informal semantis of Haskell expressions,

inluding their translations into the Haskell kernel where appropriate.

exp ! aexp

j exp aexp (funtion appliation)

j exp

1

op exp

2

(operator appliation)

j - aexp (pre�x -)

j \ apat

1

: : : apat

n

[gd ℄ -> exp (lambda abstration; n � 1 )

j if exp

1

then exp

2

else exp

3

(onditional)

j exp where { dels } (where expression)

j ase exp of { alts } (ase expression)

j exp :: [ontext =>℄ atype (expression type signature)

aexp ! var (variable)

j on (onstrutor)

j literal

j () (unit)

j ( exp ) (parenthesised expression)

j ( exp

1

, : : : , exp

k

) (tuple; k � 2 )

j [ exp

1

, : : : , exp

k

℄ (list; k � 0 )

j [ exp

1

[, exp

2

℄ .. [exp

3

℄ ℄ (arithmeti sequene)

j [ exp | [qual ℄ ℄ (list omprehension)

op ! varop j onop

To disambiguate expressions, this preedene is established, from strongest to weakest:

funtion appliation

operator appliation (broken down into ten preedene levels|see Setion 5.7)

onditional expression

where expression

lambda abstration

Expression type signatures are parsed as if :: were a left-assoiative in�x operator with

preedene lower than any other operator. Negation is the only pre�x operator in Haskell;

it has the same preedene as funtion appliation. Sample parses using these rules are

shown below.
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This Parses as

f x + g y (f x) + (g y)

- x + y (-x) + y

x + y where {...} (x + y) where {...}

if e1 then e2 else e3 where {...} (if e1 then e2 else e3) where {...}

\ x -> e1 where {...} \ x -> (e1 where {...})

f x y :: Int (f x y) :: Int

\ x -> a+b :: Int \ x -> ((a+b) :: Int)

3.1 Curried Appliations and Lambda Abstrations

exp ! exp aexp

j \ apat

1

: : : apat

n

[gd ℄ -> exp (n � 1 )

gd ! | exp

Funtion appliation is written e

1

e

2

. Appliation assoiates to the left, so the parentheses

may be omitted in (f x) y, for example. Beause e

1

ould be a onstrutor, partial

appliations of onstrutors are allowed.

Lambda abstrations are written \ p

1

: : : p

n

| g -> e, where the p

i

are patterns and

g is an optional guard (an expression whose type must be Bool). An expression suh as

\x:xs->x is syntatially inorret, and must be rewritten as \(x:xs)->x.

Translation: The lambda abstration \ p

1

: : : p

n

| g -> e is equivalent to

\ x

1

: : : x

n

-> ase (x

1

, : : : , x

n

) of (p

1

, : : : , p

n

) | g -> e

where the x

i

are new identi�ers. Given this translation ombined with the semantis of

ase expressions and pattern-mathing desribed in Setion 3.10, if the pattern fails to

math then the result is ?.

The type of a variable bound by a lambda abstration is monomorphi, as is always the

ase in the Hindley-Milner type system.

3.2 Operator Appliations

exp ! exp

1

op exp

2

j - aexp (pre�x -)

The form e

1

op e

2

is the obvious in�x appliation of binary operator op to expressions e

1

and e

2

.
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Although there are no pre�x operators in Haskell, the speial form -e denotes pre�x

negation, and is simply syntax for negate e, where negate is as de�ned in the standard

prelude (see Table 1, page 52). Beause e1-e2 parses as an in�x appliation of the binary

operator -, one must write e1(-e2) for the alternative parsing. Similarly, (-) is syntax for

(\ x y -> x-y), as with any in�x operator, and does not denote (\ x -> -x)|one must

use negate for that.

Translation: e

1

op e

2

is equivalent to (op) e

1

e

2

. -e is equivalent to negate e

where negate, an operator in the lass Num, is as de�ned in the standard prelude.

3.3 Conditionals

exp ! if exp

1

then exp

2

else exp

3

A onditional expression has form if e

1

then e

2

else e

3

and returns the value of e

2

if the

value of e

1

is True, e

3

if e

1

is False, and ? otherwise.

Translation: if e

1

then e

2

else e

3

is equivalent to:

ase e

1

of { True -> e

2

; False -> e

3

}

where True and False are the two nullary onstrutors from the type Bool, as de�ned

in the standard prelude.

3.4 Lists

aexp ! [ exp

1

, : : : , exp

k

℄ (k � 0 )

Lists are written [e

1

, : : : , e

k

℄, where k � 0 ; the empty list is written [℄. Standard

operations on lists are given in the standard prelude (see Appendix A).

Translation: [e

1

, : : : , e

k

℄ is equivalent to

e

1

: (e

2

: ( : : : (e

k

: [℄)))

where : and [℄ are onstrutors for lists, as de�ned in the standard prelude (see Se-

tion 6.4). The types of e

1

through e

k

must all be the same (all it t), and the type of

the overall expression is [t℄ (see Setion 4.1.1).
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3.5 Tuples

aexp ! ( exp

1

, : : : , exp

k

) (k � 2 )

Tuples are written (e

1

, : : : , e

k

), and may be of arbitrary length k � 2 . Standard

operations on tuples are given in the standard prelude (see Appendix A).

Translation: (e

1

, : : : , e

k

) for k � 2 is an instane of a k-tuple as de�ned in the

standard prelude, and requires no translation. If t

1

through t

k

are the types of e

1

through e

k

, respetively, then the type of the resulting tuple is (t

1

, : : : , t

k

) (see Se-

tion 4.1.1).

3.6 Unit Expressions and Parenthesised Expressions

aexp ! ()

j ( exp )

The form (e) is simply a parenthesised expression, and is equivalent to e. The form ()

has type () (see Setion 4.1.1); it is the only member of that type (it an be thought of as

the \nullary tuple")|see Setion 6.7.

Translation: (e) is equivalent to e.

3.7 Arithmeti Sequenes

aexp ! [ exp

1

[, exp

2

℄ .. [exp

3

℄ ℄

The form [e

1

, e

2

.. e

3

℄ denotes an arithmeti sequene from e

1

in inrements of e

2

� e

1

up to e

3

(if the inrement is positive) or down to e

3

(if the inrement is negative). An

in�nite list of e

1

's results if the inrement is zero, and the empty list results if e

3

is less

than e

1

and the inrement is positive, or if e

3

is greater than e

1

and the inrement is

negative. If the omma and e

2

are omitted, then the inrement is 1; if e

3

is omitted, then

the sequene is in�nite.

Arithmeti sequenes may be de�ned over any type in lass Enum, inluding Int, Integer,

and Char (see Setion 4.3.3). For example, ['a'..'z'℄ denotes the list of lower-ase letters

in alphabetial order.
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Translation: Arithmeti sequenes satisfy these identities:

[ e

1

.. ℄ = enumFrom e

1

[ e

1

,e

2

.. ℄ = enumFromThen e

1

e

2

[ e

1

..e

3

℄ = enumFromTo e

1

e

3

[ e

1

,e

2

..e

3

℄ = enumFromThenTo e

1

e

2

e

3

where enumFrom, enumFromThen, enumFromTo, and enumFromThenTo are operations in

the lass Enum as de�ned in the standard prelude (see Setion 4.3.1).

3.8 List Comprehensions

aexp ! [ exp | [qual ℄ ℄

qual ! qual

1

, qual

2

j pat <- exp

j exp

Quali�ers (qual) are either generators of the form p <- e, where p is a pattern (see Se-

tion 3.12) of type t and e is an expression of type [t℄; or guards, whih are arbitrary

expressions of type Bool.

A list omprehension has the form [ e | q

1

, : : : , q

n

℄ and returns the list of elements

produed by evaluating e in the suessive environments reated by the nested, depth-�rst

evaluation of the generators in the quali�er list. Binding of variables ours aording to

the normal pattern-mathing rules (see Setion 3.12), and if a math fails then that element

of the list is simply skipped over. Thus:

[ x | xs <- [ [(1,2),(3,4)℄, [(5,4),(3,2)℄ ℄,

(3,x) <- xs ℄

yields the list [4,2℄. If a quali�er is a guard, it must evaluate to True for the previous

pattern-math to sueed.
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Translation: List omprehensions satisfy these identities, whih may be used as a

translation into the kernel:

[ e | p <- l ℄ = map (\p -> e) l

[ e | b ℄ = if b then [e℄ else [℄

[ e | q

1

, q

2

℄ = onat [ [ e | q

2

℄ | q

1

℄

where e ranges over expressions, p ranges over irrefutable patterns, l ranges over list-

valued expressions, b ranges over boolean expressions, and q

1

and q

2

range over non-

empty lists of quali�ers. If p is a refutable pattern then the identity:

[ e | p <- l ℄ = [ e | ~p <- [ x | x <- l, ok x℄ ℄

where ok p = True

ok _ = False

where x and ok are new identi�ers not appearing in e, p, or l . These four equations

uniquely de�ne list omprehensions.

3.9 Where Expressions

exp ! exp where { dels }

Where expressions have the general form e where { d

1

; : : : ; d

n

}, and introdue a

nested, lexially-soped, mutually-reursive list of delarations. The sope of the dela-

rations is the expression e and the right hand side of the delarations. Delarations are

desribed in Setion 4. Pattern bindings are mathed lazily as irrefutable patterns.

Translation: The dynami semantis of the expression e

0

where { d

1

; : : : ; d

n

}

is aptured by this translation: After removing all type signatures, eah delaration d

i

is translated into an equation of the form p

i

= e

i

, where p

i

and e

i

are patterns and

expressions respetively, using the translation given in Setion 4.4.2. One done, these

identities hold, whih may be used as a translation into the kernel:

e

0

where {p

1

= e

1

; ...; p

n

= e

n

} = e

0

where (~p

1

,...,~p

n

) = (e

0

,...,e

n

)

e

0

where p = e

1

= ase e

1

of ~p -> e

0

when no variable in p appears free in e

1

e

0

where p = e

1

= e

0

where p = fix (\~p -> e

1

)

where fix is the least �xpoint operator. Note the use of the irrefutable patterns in

the seond and third rules. This same semantis applies to the top-level of a program

that has been translated into a where expression as desribed in Setion 5. The stati

semantis of where expressions is desribed in Setion 4.4.2.

3.10 Case Expressions

exp ! ase exp of { alts }
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alts ! alt

1

; : : : ; alt

n

(n � 1 )

alt ! pat [gd ℄ -> exp

gd ! | exp

A ase expression has the form

ase e of { p

1

| g

1

-> e

1

; ... ; p

n

| g

n

-> e

n

}

where eah lause p

i

| g

i

-> e

i

onsists of a pattern p

i

, an optional guard g

i

, and a body e

i

(an expression). There must be at least one lause, and eah pattern must be linear|no

variable is allowed to appear more than one. Eah body must have the same type, and the

type of the whole expression is that type.

A ase expression is evaluated by pattern-mathing the expression e against the indi-

vidual lauses. The mathes are tried sequentially, from top to bottom. The �rst suessful

math auses evaluation of the orresponding lause body, in the environment of the ase

expression extended by the bindings reated during the mathing of that lause. If no math

sueeds, the result is ?. Pattern mathing is desribed in Setion 3.12.

3.11 Expression Type-Signatures

exp ! aexp :: [ontext =>℄ atype

Expression type-signatures are used to type an expression expliitly and may be used to

resolve ambiguous typings due to overloading (see Setion 4.3.4). The value of the expression

is just that of aexp. As with normal type signatures (see Setion 4.4.1), the delared type

may be more spei� than the prinipal typing derivable from aexp, but it is an error to give

a typing that is more general than, or not omparable to, the prinipal typing. Also, every

type variable appearing in a signature is universally quanti�ed only over that signature.

This last onstraint implies that signatures suh as:

\ x -> ([x℄ :: [a℄)

are not valid, sine this delares [x℄ to be of type (8 a)[a℄, whih is not a valid polymorphi

type (it ontains only ?, the empty list, and lists just ontaining ?). In ontrast, this is

valid:

(\ x -> [x℄) :: a -> [a℄

3.12 Pattern-Mathing

Patterns appear in lambda abstrations, funtion de�nitions, pattern bindings, list ompre-

hensions, and ase expressions. However, the �rst four of these ultimately translate into

ase expressions, so it suÆes to restrit the de�nition of the semantis of pattern-mathing

to ase expressions.
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3.12.1 Patterns

Patterns have this syntax:

pat ! apat

j on apat

1

: : : apat

k

(arity on = k � 1 )

j pat

1

onop pat

2

(in�x onstrutor)

j var + integer (suessor pattern)

j [ - ℄ integer

apat ! var [ � apat ℄ (as pattern)

j on (arity on = 0 )

j integer j oat j har j string (literals)

j _ (wildard)

j () (unit pattern)

j ( pat ) (parenthesised pattern)

j ( pat

1

, : : : , pat

k

) (tuple patterns; k � 2 )

j [ pat

1

, : : : , pat

k

℄ (list patterns; k � 0 )

j ~ apat (irrefutable pattern)

The arity of a onstrutor must math the number of sub-patterns assoiated with it; one

annot math against a partially-applied onstrutor.

Patterns of the form var�pat are alled as-patterns, and allow one to use var as a name

for the value being mathed by pat . For example,

ase e of

xs�(x:rest) -> if x==0 then rest else xs

is equivalent to:

ase e of

xs -> if x == 0 then rest else xs

where (x:rest) = xs

This transformation of a ase expression is always valid, and is assumed done prior to the

pattern-mathing semantis given below.

Patterns of the form _ are wildards and are useful when some part of a pattern is not

referened on the right-hand-side. It is as if an identi�er not used elsewhere were put in its

plae. For example,

ase e of

[x,_,_℄ -> if x==0 then True else False

is equivalent to:

ase e of

[x,y,z℄ -> if x==0 then True else False

where y and z are identi�ers not used elsewhere. This translation is also assumed prior to

the semantis given below.
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In the pattern-mathing rules given below we distinguish two kinds of patterns: an

irrefutable pattern is either a variable, a wildard, or a pattern of form ~apat ; all other

patterns are refutable.

3.12.2 Informal semantis of pattern-mathing

Patterns are mathed against values. Attempting to math a pattern an have one of three

results: it may fail ; it may sueed, returning a binding for eah variable in the pattern; or

it may diverge (i.e. return ?). Pattern-mathing proeeds from left to right, and outside in,

aording to these rules:

1. Mathing a value v against the irrefutable pattern var always sueeds and binds var

to v . Similarly, mathing v against the irrefutable pattern ~apat always sueeds.

The free variables in apat are bound to the appropriate values if mathing v against

apat would otherwise sueed, and to ? if mathing v against apat fails or diverges.

(Binding does not imply evaluation.)

Operationally, this means that no mathing is done on an irrefutable pattern until one

of the variables in the pattern is used. At that point the entire pattern is mathed

against the value, and if the math fails or diverges, so does the overall omputation.

2. Mathing ? against a refutable pattern always diverges.

3. Mathing a non-? value an our against two kinds of refutable patterns:

(a) Mathing a non-? value against a onstruted pattern fails if the outermost

onstrutors are di�erent. If the onstrutors are the same, the result of the

math is the result of mathing the sub-patterns left-to-right: if all mathes

sueed, the overall math sueeds; the �rst to fail or diverge auses the overall

math to fail or diverge, respetively.

Construted values onsist of those reated by pre�x or in�x onstrutors, tuple

or list patterns, and strings (whih are lists of haraters). Also, literals (hara-

ters, positive and negative integers, and the unit value ()) are treated as nullary

onstrutors.

(b) Mathing a non-? value n against a pattern of the form x+k (where x is a variable

and k is a positive integer literal) sueeds if n � k , resulting in the binding of x

to n � k , and fails if n < k . For example, the Fibonai funtion may be de�ned

as follows:

fib n = ase n of

0 -> 1

1 -> 1

n+2 -> fib n + fib (n+1)

Sine n must be bound to a positive value, fib diverges for a negative argument,

and exatly one of the equations mathes any non-negative argument.
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Aside from the obvious stati type onstraints (for example, it is a stati error to math

a harater against an integer), these stati lass onstraints hold: an integer literal pattern

an only be mathed against a value in the lass Num; a oating literal pattern an only be

mathed against a value in the lass Frational; and a n+k pattern an only be mathed

against a value in the lass Integral.

Here are some simple examples:

1. If the pattern [1,2℄ is mathed against [0,?℄, then 1 fails to math against 0, and

the result is a failed math. But if [1,2℄ is mathed against [?,0℄, then attempting

to math 1 against ? auses the math to diverge.

2. These examples demonstrate refutable vs. irrefutable mathing:

(\ ~(x,y) -> 0) ? ) 0

(\ (x,y) -> 0) ? ) ?

(\ ~[x℄ -> 0) [℄ ) 0

(\ ~[x℄ -> x) [℄ ) ?

(\ ~[x,~(a,b)℄ -> x) [0,?℄ ) 0

(\ ~[x, (a,b)℄ -> x) [0,?℄ ) ?

(\ (x:xs) -> x:x:xs) ? ) ?

(\ ~(x:xs) -> x:x:xs) ? ) ?:?:?

Top level patterns in lambda expressions and ase expressions, and the set of top level

patterns in funtion or operator bindings, may have an assoiated guard. A guard is a

boolean expression that is evaluated only after all of the arguments have been suessfully

mathed, and it must be true for the overall pattern-math to sueed. The sope of the

guard is the same as the right-hand-side of the lambda expression, ase expression lause,

or funtion de�nition to whih it is attahed.

The guard semantis has an obvious inuene on the stritness harateristis of a

funtion or ase expression. In partiular, an otherwise irrefutable pattern may be evaluated

due to the presene of a guard. For example, in

f ~(x,y,z) [a℄ | a==y = 1

both a and y will be evaluated.

3.12.3 Formal semantis of pattern-mathing

The semantis of all other onstruts whih use pattern-mathing is de�ned by giving iden-

tities that relate them to ase expressions.

The semantis of ase expressions are given as a series of identities that they satisfy.

Figure 3 shows the identities: e, e

0

and e

i

are arbitrary expressions; g and g

i

are boolean-

valued expressions; p and p

i

are patterns; x and x

i

are variables; K and K

0

are onstrutors

(inluding tuple onstrutors); and k is an integer literal.
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ase e

0

of {p

1

| g

1

-> e

1

; : : : ; p

n

| g

n

-> e

n

}

= ase e

0

of

p

1

| g

1

-> e

1

_ -> : : : ase e

0

of

p

n

| g

n

-> e

n

_ -> error "Unexpeted ase"

ase e

0

of {p | g -> e; _ -> e

0

}

= ase e

0

of {p -> if g then e else e

0

; _ -> e

0

}

ase e

0

of {~p -> e; _ -> e

0

}

= ase e

0

of

x

0

-> ase (ase x

0

of p -> x

1

) of

x

1

-> : : : ase (ase x

n

of p -> x

n

) of

x

n

-> e

(when x

1

; : : : ; x

n

are all the variables in p, and

x

0

is a new variable not free in e)

ase e

0

of {x�p -> e; _ -> e

0

}

= ase e

0

of {x -> ase x of {p -> e ; _ -> e

0

}}

ase e

0

of {_ -> e; _ -> e

0

}

= e

ase e

0

of {Kp

1

: : : p

n

-> e; _ -> e

0

}

= ase e

0

of

Kx

1

: : : x

n

-> ase x

1

of

p

1

-> : : : ase x

n

of

p

n

-> e

_ -> e

0

: : :

_ -> e

0

_ -> e

0

(when x

1

; : : : ; x

n

are new variables not in p

1

; : : : ; p

n

or free in e

1

; : : : ; e

n

)

ase e

0

of {k -> e; _ -> e

0

}

= if (k == e

0

) then e else e

0

ase e

0

of {x+k -> e; _ -> e

0

}

= if (e

0

>= k) then (ase (e

0

-k) of {x -> e}) else e

0

ase e

0

of {x -> e; _ -> e

0

}

= ase e

0

of {x -> e}

ase e

0

of {x -> e}

= (\x -> e) e

0

ase (K

0

e

1

: : : e

m

) of {K x

1

: : : x

n

-> e; _ -> e

0

}

= e

0

(when K and K

0

are distint onstrutors of arity n and m respetively)

ase (K e

1

: : : e

n

) of {K x

1

: : : x

n

-> e; _ -> e

0

}

= ase e

1

of { x

1

-> : : : ase e

n

of { x

n

-> e } : : :}

(when K is a onstrutor of arity n)

Figure 3: Semantis of Case Expressions
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Using all but the last two identities in Figure 3 in a left-to-right manner yields a trans-

lation into a subset of general ase expressions, alled simple ase expressions. The �rst

identity mathes a general soure-language ase expression, regardless of whether it atually

inludes guards|if no guards are written, then True is substituted for the g

i

. Subsequent

identities manipulate the resulting ase expression into simpler and simpler forms. The

semantis of simple ase expressions is given by the last two identities.

When used as a translation, the identities in Figure 3 will generate a very ineÆient

program. This an be �xed by using further ase or where expressions, but doing so would

lutter the identities, whih are intended only to onvey the semantis.

These identities all preserve the stati semantis. The third rule from last uses a lambda

rather than a where; this indiates that variables bound by ase are monomorphially typed

(Setion 4.1.3).
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4 Delarations and Bindings

In this setion, we desribe the syntax and informal semantis of Haskell delarations.

module ! module modid [exports℄ where body

j body

body ! { [impdels ;℄ [�xdels ;℄ topdels }

j { impdels }

topdels ! topdel

1

; : : : ; topdel

n

(n � 1 )

topdel ! type [ontext =>℄ simple = type

j data [ontext =>℄ simple = onstrs [deriving (tyls j (tylses))℄

j lass [ontext =>℄ lass [where { dels }℄

j instane [ontext =>℄ tyls inst [where { dels }℄

j default (type j (type

1

, : : : , type

n

)) (n � 0 )

j del

dels ! del

1

; : : : ; del

n

(n � 1 )

del ! vars :: [ontext =>℄ type

j valdef

The delarations in the syntati ategory topdels are only allowed at the top level of

a Haskell module (see Setion 5), whereas dels may be used either at the top level or in

nested sopes (i.e. those within a where expression).

For exposition, we divide the delarations into three groups: user-de�ned datatypes, on-

sisting of type and data delarations (Setion 4.2); type lasses and overloading, onsisting

of lass, instane, and default delarations (Setion 4.3); and nested delarations, on-

sisting of value bindings and type signatures (Setion 4.4). The module delaration, along

with import and in�x delarations, is desribed in Setion 5.

Haskell has several primitive datatypes that are \hard-wired" (suh as integers and

arrays), but most \built-in" datatypes are de�ned in the standard prelude with normal

Haskell ode, using type and data delarations (see Setion 4.2). These \built-in"

datatypes are desribed in detail in Setion 6.

4.1 Overview of Types and Classes

Haskell uses a traditional Hindley-Milner polymorphi type system to provide a stati

type semantis [5, 9℄, but the type system has been extended with type lasses (or just

lasses) that provide a strutured way to introdue overloaded funtions. This is the major

tehnial innovation in the Haskell language.

A lass delaration (Setion 4.3.1) introdues a new type lass and the overloaded

operations that must be supported by any type that is an instane of that lass. An

instane delaration (Setion 4.3.2) delares that a type is an instane of a lass and
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inludes the de�nitions of the overloaded operations|alled methods|instantiated on the

named type.

For example, suppose we wish to overload the operations (+) and negate on types Int

and Float. We introdue a new type lass alled Num:

lass Num a where -- simplified lass delaration for Num

(+) :: a -> a -> a

negate :: a -> a

This delaration may be read \a type a is an instane of the lass Num if there are (over-

loaded) operations (+) and negate, of the appropriate types, de�ned on it."

We may then delare Int and Float to be instanes of this lass:

instane Num Int where -- simplified instane of Num Int

x + y = addInt x y

negate x = negateInt x

instane Num Float where -- simplified instane of Num Float

x + y = addFloat x y

negate x = negateFloat x

where addInt, negateInt, addFloat, and negateFloat are assumed in this ase to be

primitive funtions, but in general ould be any user-de�ned funtion. The �rst delaration

above may be read \Int is an instane of the lass Num as witnessed by these de�nitions

(i.e. methods) for (+) and negate."

4.1.1 Syntax of Types

type ! atype

j type

1

-> type

2

j tyon atype

1

: : : atype

k

(arity tyon = k � 1 )

atype ! tyvar

j tyon (arity tyon = 0 )

j () (unit type)

j ( type ) (parenthesised type)

j ( type

1

, : : : , type

k

) (tuple type; k � 2 )

j [ type ℄

tyvar ! avarid

tyon ! aonid

A type expression is built in the usual way from type variables, funtion types, type

onstrutors, tuple types, and list types. Type variables are identi�ers beginning with a

lower-ase letter and type onstrutors are identi�ers beginning with an upper-ase letter.

A type is one of:
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1. A funtion type having form t

1

-> t

2

. Funtion arrows assoiate to the right.

2. A onstruted type having form T t

1

: : : t

k

, where T is a type onstrutor of arity k .

3. A tuple type having form (t

1

, : : : , t

k

) where k � 2 . It denotes the type of k -tuples

with the �rst omponent of type t

1

, the seond omponent of type t

2

, and so on (see

Setions 3.5 and 6.5).

4. A list type has the form [t℄. It denotes the type of lists with elements of type t (see

Setions 3.4 and 6.4).

5. The trivial type having form (). It denotes the \degenerate tuple" type, and has

exatly one value, also written () (see Setions 3.6 and 6.7).

6. A parenthesised type having form (t), idential to the type t .

Although the tuple, list, and trivial types have speial syntax, they are not di�erent

from user-de�ned types with equivalent funtionality.

Expressions and types have a onsistent syntax. If t

i

is the type of expression or pattern

e

i

, then the expressions \ e

1

-> e

2

, [e

1

℄, and (e

1

; e

2

) have the types t

1

-> t

2

, [t

1

℄, and

(t

1

; t

2

), respetively.

4.1.2 Syntax of Class Assertions and Contexts

ontext ! lass

j ( lass

1

, : : : , lass

n

) (n � 1 )

lass ! tyls tyvar

tyls ! aonid

tyvar ! avarid

A lass assertion has form tyls tyvar , and indiates the membership of the parameterised

type tyvar in the lass tyls . A lass identi�er begins with a apital letter.

A ontext onsists of one or more lass assertions, and has the general form

( C

1

u

1

; : : : ; C

n

u

n

)

where C

1

; : : : ; C

n

are lass identi�ers, and u

1

; : : : ; u

n

are type variables; the parentheses

may be omitted when n = 1 . In general, we use  to denote a ontext and we write  => t

to indiate the type t restrited by the ontext  (where type variables in  are soped only

over  => t). For onveniene, we write  => t even if the ontext  is empty, although in

this ase the onrete syntax ontains no =>.
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4.1.3 Semantis of Types and Classes

In this subsetion, we provide informal details of the type system. (Wadler and Blott [17℄

disuss type lasses further.)

A type is a monotype if it ontains no type variables, and is monomorphi if it ontains

type variables but is not polymorphi (in Milner's original terminology, it is monomorphi

if it ontains no generi type variables).

A phrase of the form e ::  => t is alled a typing, and is valid if in the urrent envi-

ronment it is a well-typing. Typings are related by a generalisation order (spei�ed below);

the most general well-typing is alled the prinipal typing.

Haskell's extended Hindley-Milner type system an infer the prinipal typing of all

expressions, inluding the proper use of overloaded operations (although ertain ambiguous

overloadings ould arise, as desribed in Setion 4.3.4). Therefore, expliit typings (alled

type signatures) are optional (see Setions 3.11 and 4.4.1).

A well-typing e ::  => t depends on the type environment that gives typings for the

free variables in e. An instantiation of a well-typing is a typing that results from substituting

types for some of the free type variables; the validity of an instantiation also depends on

a lass environment that delares whih types are members of what lass (a type beomes

a member of a lass only via the presene of a (possibly derived) instane delaration).



1

=> t

1

is a valid instantiation of the typing 

2

=> t

2

if and only if there is a substitution

S suh that:

� t

1

is idential to S (t

2

).

� Whenever 

1

holds in the lass environment, S (

2

) also holds.

This notion of instantiation aptures the generalisation order on types mentioned earlier.

The main point about ontexts above is that, given the typing x ::  => t , the presene

of C u in the ontext  expresses the onstraint that u may be instantiated as t

0

within

the type expression t only if t

0

is a member of the lass C . For example, ontexts appear

in type and data delarations, where they have the typial form

type  => T u

1

... u

k

= ...

data  => T u

1

... u

k

= ...

The ontext portion of eah of these delarations delares that a type (T t

1

: : : t

k

) is only

valid where [t

1

=u

1

; : : : ; t

k

=u

k

℄ holds.

As an example, onsider:

type (Num a) => Point a = (a, a)

origin :: Point Integer

origin = (0, 0)

sale :: (Num a) => a -> Point a -> Point a

sale w (x,y) = (w*x, w*y)
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The typing for origin is valid beause Num Integer holds, and the typing for sale is

valid beause Point a is in the sope of the ontext Num a. On the other hand,

sale :: a -> Point a -> Point a

is not a valid typing, beause Point a is not in the sope of a ontext asserting Num a.

4.2 User-De�ned Datatypes

In this setion, we desribe type synonyms (type delarations) and algebrai datatypes

(data delarations). These delarations may only appear at the top level of a module.

In the onrete syntax of these delarations there is an optional ontext, with syntax

\ontext =>", related to overloading and type lasses. In this setion, we give syntax for

but ignore semantis of ontexts, returning to them in Setion 4.3.

4.2.1 Algebrai Data Type Delarations

topdel ! data [ontext =>℄ simple = onstrs [deriving (tyls j (tylses))℄

simple ! tyon tyvar

1

: : : tyvar

k

(arity tyon = k � 0 )

onstrs ! onstr

1

| : : : | onstr

n

(n � 1 )

onstr ! on atype

1

: : : atype

k

(arity on = k � 0 )

j type

1

onop type

2

(in�x onop)

tylses ! tyls

1

, : : : , tyls

n

(n � 0 )

The preedene for onstr is the same as that for expressions|normal onstrutor appli-

ation has higher preedene than in�x onstrutor appliation (thus a : Foo a parses as

a : (Foo a)).

An algebrai datatype delaration introdues a new type and onstrutors over that

type and has the form:

data T u

1

: : : u

k

= K

1

t

11

: : : t

1k

1

| � � � | K

n

t

n1

: : : t

nk

n

de�ning a new type onstrutor T with onstituent data onstrutors K

1

; : : : ; K

n

whose

typings are:

K

i

:: t

i1

-> � � � ->t

ik

i

->(T u

1

: : : u

k

)

The type variables u

1

through u

k

must be distint and are soped only over the right-hand-

side of the delaration; it is a stati error for any other type variable to appear on the

right-hand-side.

The visibility of a datatype's onstrutors (i.e. the \abstratness" of the datatype) out-

side of the module in whih the datatype is de�ned is ontrolled by the form of the datatype's

name in the export list as desribed in Setion 5.6.

The optional deriving part of a data delaration has to do with derived instanes, and

is desribed in Setion 4.3.3.
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4.2.2 Type Synonym Delarations

topdel ! type [ontext =>℄ simple = type

simple ! tyon tyvar

1

: : : tyvar

k

(arity tyon = k � 0 )

A type synonym delaration introdues a new type that is equivalent to an old type and

has the form

type T u

1

: : : u

k

= t

whih introdues a new type onstrutor, T . The type (T t

1

: : : t

k

) is equivalent to the

type t [t

1

=u

1

; : : : ; t

k

=u

k

℄. The type variables u

1

through u

k

must be distint and are soped

only over t ; it is a stati error for any other type variable to appear in t .

Although reursive and mutually reursive datatypes are allowed, this is not so for type

synonyms, unless an algebrai datatype intervenes. For example,

type Re a = [Cir a℄

data Cir a = Tag [Re a℄

is allowed, whereas

type Re a = [Cir a℄ -- ILLEGAL

type Cir a = [Re a℄ --

is not. Similarly, type Re a = [Re a℄ is not allowed.

4.3 Type Classes and Overloading

4.3.1 Class Delarations

topdel ! lass [ontext =>℄ lass [where { dels }℄

dels ! del

1

; : : : ; del

n

(n � 1 )

del ! vars :: type

j valdef

lass ! tyls tyvar

tyls ! aonid

tyvar ! avarid

vars ! var

1

, : : : , var

n

(n � 1 )

A lass delaration introdues a new lass and the operations on it. A lass delaration

has the form:

lass  => C u where { v

1

:: t

1

; : : : ; v

n

:: t

n

;

valdef

1

; : : : ; valdef

m

}

This introdues a new lass name C ; the type variable u is unique to, and only soped

within, the immediate lass delaration. The ontext  spei�es the superlasses of C , as
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desribed below. The delaration also introdues new operations v

1

; : : : ; v

n

, whose sope

extends outside the lass delaration, with typings:

v

i

:: C u => t

i

Note the impliit ontext in the typings for eah v

i

. Two lasses in sope at the same time

may not share any of the same operations.

Default methods for any of the v

i

may be inluded in the lass delaration as a normal

valdef ; no other de�nitions are permitted. The default method for v

i

is used if no binding

for it is given in a partiular instane delaration (see Setion 4.3.2).

Figure 4 shows some standard Haskell lasses, inluding the use of superlasses; note

the lass inlusion diagram on the right. For example, Eq is a superlass of Ord, and thus

in any ontext Ord a is equivalent to (Eq a, Ord a).

A lass delaration with no where part may be useful for ombining a olletion of

lasses into a larger one that inherits all of the operations in the original ones. For example,

lass (Ord a, Text a, Binary a) => Data a

In suh a ase, if a type is an instane of all superlasses, it is not automatially an instane

of the sublass, even though the sublass has no immediate operations. The instane

delaration must be given expliitly, and it must have an empty where part as well.

The superlass relation must not be yli; i.e. it must form a direted ayli graph.

4.3.2 Instane Delarations

topdel ! instane [ontext =>℄ tyls inst [where { dels }℄

inst ! tyon (arity tyon = 0 )

j ( tyon tyvar

1

: : : tyvar

k

) (arity tyon = k > 0 )

j ( tyvar

1

, : : : , tyvar

k

) k � 2

j ()

j [ tyvar ℄

j tyvar

1

-> tyvar

2

tyls ! aonid

An instane delaration introdues an instane of a lass. Let

lass  => C u where { v

1

:: t

1

; : : : ; v

n

:: t

n

}

be a lass delaration. The general form of the orresponding instane delaration is:

instane 

0

=> C (T u

1

: : : u

k

) where { d }

where k � 0 and T is not a type synonym. The ontext 

0

must imply the ontext

[(T u

1

: : : u

k

)=u℄, and d may ontain bindings (i.e. methods) only for v

1

through v

n

.
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lass Eq a where

(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)

lass (Eq a) => Ord a where

(<), (<=), (>=), (>) :: a -> a -> Bool

max, min :: a -> a -> a

x < y = x <= y && x /= y

x >= y = y <= x

x > y = y < x

max x y | x >= y = x

| y >= x = y

min x y | x <= y = x

| y <= x = y

lass Text a where

showsPre :: Int -> a -> String -> String

readsPre :: Int -> String -> [(a,String)℄

showList :: [a℄ -> String -> String -- Eq Text Binary

readList :: String -> [([a℄,String)℄ -- |

-- Ord

showList = ... -- see Appendix A.7 -- |

readList = ... -- see Appendix A.7 -- Ix

-- |

lass Binary a where -- Enum

showBin :: a -> Bin -> Bin --

readBin :: Bin -> (a,Bin) -- (Cf. Figures 7-9)

lass (Ord a) => Ix a where

range :: (a,a) -> [a℄

index :: (a,a) -> a -> Int

inRange :: (a,a) -> a -> Bool

lass (Ix a) => Enum a where

enumFrom :: a -> [a℄ -- [n..℄

enumFromThen :: a -> a -> [a℄ -- [n,n'..℄

enumFromTo :: a -> a -> [a℄ -- [n..m℄

enumFromThenTo :: a -> a -> a -> [a℄ -- [n,n'..m℄

enumFromTo n m = takeWhile ((>=) m) (enumFrom n)

enumFromThenTo n n' m = takeWhile

((if n' >= n then (>=) else (<=)) m)

(enumFromThen n n')

Figure 4: Standard Classes and Assoiated Funtions
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No ontexts may appear in d , sine they are implied: any signature delaration in d will

have the form v :: t , abbreviating v :: 

0

=> t . Eah v

i

has typing:

v

i

:: 

0

=> (t

i

[(T u

1

: : : u

k

)=u℄)

If no method is given for some v

i

then the default method in the lass delaration is

used (if present); if suh a default does not exist then v

i

is impliitly bound to the ompletely

unde�ned funtion (of the appropriate type) and no stati error results.

The onstraint on 

0

implies that if a datatype T is de�ned by:

data  => T a = ...

then an instane of T over some lass C must inlude the ontext, as in:

instane  => C (T a) where ...

An instane delaration that makes the type T to be an instane of lass C is alled

a C-T instane delaration and is subjet to these stati restritions:

� A C-T instane delaration may only appear either in the module in whih C is

delared or in the module in whih T is delared, and only where both C and T are

in sope.

� A type may not be delared as an instane of a partiular lass more than one in the

same sope.

Examples of instane delarations may be found in the next setion on derived in-

stanes.

4.3.3 Derived Instanes

As mentioned in Setion 4.2.1, data delarations ontain an optional deriving form. If

the form is inluded, then derived instane delarations are automatially generated for the

datatype in eah of the named lasses and all of their superlasses.

Derived instanes provide onvenient ommonly-used operations for user-de�ned data-

types. For example, derived instanes for datatypes in the lass Eq de�ne the operations ==

and /=, freeing the programmer from the need to de�ne them.

The only lasses for whih derived instanes are allowed are Eq, Ord, Ix, Enum, Text,

and Binary, all de�ned in Figure 4. The preise details of how the derived instanes are

generated for eah of these lasses are provided in Appendix D, inluding a spei�ation of

when suh derived instanes are possible (whih is important for the following disussion).

If it is not possible to derive an instane delaration over a lass named in a deriving

form, then a stati error results. For example, not all datatypes an properly support
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operations in Enum. It is also a stati error to expliitly give an instane delaration for

one that is also derived. These rules also apply to the superlasses of the lass in question.

On the other hand, if the deriving form is omitted from a data delaration, then

instane delarations are derived for the datatype in as many of the six lasses mentioned

above as is possible (see Appendix D); that is, no stati error will result if the instane

delarations annot be generated.

If no derived instane delarations for a datatype are wanted, then the empty deriving

form deriving () must be given in the data delaration for that type.

4.3.4 Defaults for Overloaded Operations

topdel ! default (type j (type

1

, : : : , type

n

)) (n � 0 )

A problem inherent with overloading is the possibility of ambiguous typing. For example,

using the read and show funtions de�ned in Appendix D, and supposing that just Int and

Bool are members of Text, then the expression

show x where x = read "..." -- ILLEGAL

is ambiguous|the typings for show and read,

show :: (Text a) => a -> String

read :: (Text a) => String -> a

ould be satis�ed by instantiating a as either Int in both ases, or Bool. Suh expressions

in Haskell are onsidered ill-typed, a stati error.

We say that an expression e is ambiguously overloaded if in its typing e ::  => t , 

ontains a type variable a that does not our in t and a is not bound in the type environment

(if a is part of the type of a bound lambda variable, for example, it will be bound in the

type environment).

For example, the earlier expression involving show and read is ambiguously overloaded

sine its typing is (Text a) => String, whereas in the de�nition of show itself:

show x = showsPre 0 x ""

no expression is ambiguous; showsPre 0 x "" has the typing (Text a) => String, but

it is unambiguous beause a refers to the type of the bound variable x.

Overloading ambiguity, although rare, an only be irumvented by input from the user.

One way is through the use of expression type-signatures as desribed in Setion 3.11. For

example, for the ambiguous expression given earlier, one ould write:

show (x::Bool) where x = read "..."

whih disambiguates the typing.

Ambiguities in the lass Num are most ommon, so Haskell provides a seond way to

resolve them|with a default delaration:

default (t

1

, : : : , t

n

)
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where n � 0 (the parentheses may be omitted when n = 1 ), and eah t

i

must be a monotype

for whih Num t

i

holds. In situations where an ambiguous typing is disovered, an ambiguous

type variable is defaultable if at least one of its lasses is a numeri lass and if all of its

lasses are either numeri lasses or standard lasses. (Figures 7{9, pages 53{55, show

the numeri lasses, and Figure 4, page 29, shows the standard lasses.) Eah defaultable

variable is replaed by the �rst type in the default list that is an instane of all the ambiguous

variable's lasses. It is a stati error if no suh type is found.

Only one default delaration is permitted per module, and its e�et is limited to that

module. If no default delaration is given in a module then it defaults to:

default (Int, Double)

The empty default delaration default ()must be given to turn o� all defaults in a module.

4.4 Nested Delarations

The following delarations may be used in any delaration list, inluding the top level of a

module.

4.4.1 Type Signatures

del ! vars :: [ontext =>℄ type

vars ! var

1

, : : : , var

n

(n � 1 )

A type signature spei�es types for variables, possibly with respet to a ontext. A type

signature has the form:

x

1

; : : : ; x

n

::  => t

whih is equivalent to independently asserting:

x

i

::  => t

for eah i from 1 to n. Eah x

i

must have a value binding in the same delaration list that

ontains the type signature; i.e. it is illegal to give a type signature for a variable bound in

an outer sope. Also, every type variable appearing in a signature is universally quanti�ed

only over that signature. This last onstraint implies that signatures suh as:

f x = ys where ys :: [a℄ -- ILLEGAL

ys = [x℄ --

are not valid, sine this delares ys to be of type (8 a) [a℄, whih is not a valid polymorphi

type (it ontains only ?, the empty list, and lists just ontaining ?). In ontrast:

f x = ys where ys = [x℄

f :: a -> [a℄

is valid. The sope of a type variable is limited to the type signature that ontains it.
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A type signature for x may be more spei� than the prinipal typing derivable from

the value binding of x (see Setion 4.1.3), but it is an error to give a typing that is more

general than, or inomparable to, the prinipal typing. If a more spei� typing is given

then all ourrenes of the variable must be used at the more spei� typing or at a more

spei� typing still.

For example, if we de�ne

sqr x = x*x

then the prinipal typing is sqr :: (Num a) => a -> a, whih allows appliations suh as

sqr 5 or sqr 0.1. It is also legal to delare a more spei� typing, suh as

sqr :: Int -> Int

but now appliations suh as sqr 0.1 are illegal. Typings suh as

sqr :: (Num a, Num b) => a -> b -- ILLEGAL

sqr :: a -> a --

are illegal, as they are more general than the prinipal typing.

4.4.2 Funtion and Pattern Bindings

del ! valdef

valdef ! lhs = exp

j lhs gdfun

lhs ! pat

j var apat

1

: : : apat

k

(k � 1 )

j apat

1

varop apat

2

j ( apat

1

varop apat

2

) apat

3

: : : apat

k

(k � 3 )

gdfun ! gd = exp [gdfun℄

gd ! | exp

We distinguish two ases within this syntax: a pattern binding ours when lhs is pat ;

otherwise, it is alled a funtion binding. Either binding may appear at the top-level of a

module or within a where lause.

Funtion bindings. A funtion binding binds a variable to a funtion value. Its general

form is:

x p

11

: : : p

1k

[g

1

℄ = e

1

: : :

x p

m1

: : : p

mk

[g

m

℄ = e

m
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All of the equations making up one funtion de�nition must appear together and must have

the same number of patterns. If only the guard hanges from the immediately preeding

equation then the funtion name and patterns may be omitted. For example,

f (x:xs) | x==0 = 0

| x<0 = -1

| x>0 = 1

is an abbreviation for

f (x:xs) | x==0 = 0

f (x:xs) | x<0 = -1

f (x:xs) | x>0 = 1

Alternative syntax is provided for binding funtional values to in�x operators. For

example, these two funtion de�nitions are equivalent:

plus x y z = x+y+z

(x �plus� y) z = x+y+z

Translation: The general binding form for funtions is semantially equivalent to the

equation (i.e. simple pattern binding):

x = \ x

1

x

2

::: x

k

-> ase (x

1

, :::, x

k

) of (p

11

; : : : ; p

1k

) [g

1

℄ -> e

1

: : :

(p

m1

; : : : ; p

mk

) [g

m

℄ -> e

m

where the x

i

are new identi�ers.

Pattern bindings. A pattern binding binds variables to values. A simple pattern binding

has form p = e. In both a where lause and at the top level of a program, the pattern

p is mathed \lazily" as an irrefutable pattern by default (as if there were an impliit ~ in

front of it). See the translation in Setion 3.9.

The general form of a pattern binding is:

p | g

1

= e

1

| g

2

= e

2

:::

| g

m

= e

m

Note: the simple form p = e is equivalent to p | True = e.

Translation: The pattern binding above is semantially equivalent to this simple

pattern binding:

p = if g

1

then e

1

else

if g

2

then e

2

else

:::

if g

m

then e

m

else error ""
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Stati semantis of funtion and pattern bindings. The stati semantis of the

funtion and pattern bindings of a where expression (inluding that of the top-level of a

program that has been translated into a where expression as desribed in Setion 5) is as

follows.

In general the stati semantis is given by the normal Hindley-Milner inferene rules, ex-

ept that a dependeny analysis transformation is �rst performed to enhane polymorphism.

Exhaustive appliation of the following rules apture this dependeny analysis:

2

(1) The order of delarations in where lauses is irrelevant.

(2) e where {d

1

; d

2

} = ( e where {d

2

} ) where {d

1

}

(when no identi�er bound in d

2

appears free in d

1

)

Apart from one important exeption to be overed below, the extension of the Hindley-

Milner type system to type lasses allows variables bound in a where to be both polymorphi

and overloaded. This ontrasts with a variable bound by a lambda abstration, whose type

must be monomorphi and hene may not be overloaded (Setion 3.1). (This extends to

type lasses a well-known restrition imposed by the Hindley-Milner type system.) Two

ases must be distinguished:

� Variables bound diretly to lambda abstrations are typed exatly as desribed above.

This inludes all funtion bindings and also all pattern bindings taking the form

v = \p

1

: : : p

n

-> e, where v is a variable. The latter two forms are equivalent, so

are both typed in the same way.

� Variables not bound diretly to a lambda abstration

3

may be polymorphi and over-

loaded, but must also obey the rule: variables not bound diretly to lambda abstrations

must not be used at more than one distint overloading. An immediate onsequene is

that overloaded variables not bound diretly to lambda abstrations annot be exported,

beause, one exported, there is no way to hek the required ondition.

The single-overloading rule an be de�ned as: the type of a variable not bound diretly

to a lambda abstration is monomorphi in any type variables onstrained by a ontext.

4

All

non-overloaded bindings are fully polymorphi in the usual way, and overloaded variables

not bound diretly to lambda abstrations are polymorphi in type variables not onstrained

by a ontext.

This de�nition gives an example of the e�et of the rule:

f x = (y,y) where y = fatorial 1000

The type inferred for f is Num b => a -> (b,b), not (Num b,Num ) => a -> (b,); the

2

Exhaustive appliation of these rules auses a transformation similar to that in Peyton Jones' book [12℄,

exept that where lauses are used uniformly, instead of a ombination of \let" and \letre" lauses.

3

This inludes de�nitions suh as (f,g) = (\x.x,\y.True). Here, f and g do not ount as being bound

diretly to lambda abstrations, beause the left-hand side of the de�nition is not a simple variable.

4

Notie the use of monomorphi, rather than monotyped (see Setion 4.1.3). It is not neessary that the

type be �xed at ompile time, merely that the variable is only used at a single overloading.
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two omponents of the pair returned an only be used at the same overloading. This avoids

the unpleasant possibility that fatorial 1000 might be omputed twie, one at eah

overloading.

This rule is restritive only where a truly overloaded onstant is required (usually at the

top level); for example,

module F( fa1000 ) where

fa1000 = fatorial 1000

The limitation may be overome in two main ways. fa1000 may be given a monotype suh

as Integer by using a type signature, in whih ase eah use of fa1000 must be replaed

by (fromInteger fa1000); alternatively, the de�nition may be hanged into a funtion

de�nition:

module F( fa1000 ) where

fa1000 () = fatorial 1000

in whih ase uses of fa1000 must be replaed by (fa1000 ()). Both alternatives or-

retly indiate that some reomputation may take plae.
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5 Modules

A module de�nes a olletion of values, data types, type synonyms, lasses, et. (see Se-

tion 4), and exports some of these resoures, making them available to other modules. We

use the term entity to refer to the values, types, and lasses de�ned in and perhaps exported

from a module.

A Haskell program is a olletion of modules, one of whih must be alled Main and

must export the value main. The value of the program is the value of the identi�er main in

module Main, and main must have type Dialogue (see Setion 7).

Modules may referene other modules via expliit import delarations, eah giving the

name of a module to be imported, speifying its entities to be imported, and optionally

renaming some or all of them. Modules may be mutually reursive.

The name-spae for modules is at, with eah module being assoiated with a unique

module name (whih are Haskell identi�ers beginning with a apital letter; i.e. aonid).

There are two distinguished modules, PreludeCore and Prelude, both disussed in Se-

tion 5.4.

5.1 Overview

5.1.1 Interfaes and Implementations

A module onsists of an interfae and an implementation of that interfae.

The interfae of a module provides omplete information about the stati semantis of

that module, inluding type signatures, lass de�nitions, and type delarations for the var-

ious entities made available by the module. This information is omplete in this sense: If

a module M imports modules M

1

; : : : ;M

n

, then only the interfaes of M

1

; : : : ;M

n

need be

examined in order to perform stati heking on the implementation of M. No implementa-

tions of M

1

; : : : ;M

n

need to exist, nor need any further interfaes be onsulted. Interfaes

are disussed in Setion 5.3.

An implementation \�lls in" the information about a module missing from the interfae.

For example, for eah value given a type signature in the interfae the implementation either

imports a module that de�nes the value or de�nes the value itself. Implementations are

disussed in Setion 5.2.

5.1.2 Original Names

It may be that a partiular entity is imported into a module by more than one route|for

example, beause it is exported by two modules both of whih are imported by a third mod-

ule. It is important that benign name-lashes of this form are allowed, but that aidental

name-lashes are deteted and reported as errors. This is done as follows.

Eah entity (lass, type onstrutor, value, et.) has an original name that is a pair

onsisting of the name of the module in whih it was originally delared, and the name it



38 5 MODULES

was given in that delaration. The original name is arried with the entity wherever it is

exported. Two entities are the same if and only if they have the same original name.

Renaming does not a�et the original name; it is a purely syntati operation that

a�ets only the name by whih the entity is urrently known. For example, if a lass is

renamed and a type is delared to be an instane of the newly-named lass, then it is also

an instane of the original lass|there is just one lass, whih happens to be known by

di�erent names in di�erent parts of the program. Also, �xity is a property of the original

name of an identi�er or operator and is not a�eted by renaming; the new name has the

same �xity as the old one.

5.1.3 Closure

The implementation together with the interfaes of the modules it imports must be stati-

ally losed aording to this rule: every value, type, or lass referred to in the text of an

implementation together with the interfaes that it imports, must be delared in the imple-

mentation or in one of the imported interfaes.

It is an error for a module to export a olletion of entities that annot possibly beome

losed. For example, if a module A delares both the type T and a value t of type T, it may

not export t without also exporting T.

However, the losure ondition applies on import, not on export. For example, if another

module B imported T from module A, and delared another value s of type T, it may export

s without exporting T|but any module importing B must also import the type T by some

other route, for example by also importing A.

5.1.4 The Compilation System

The task of heking onsisteny between interfaes and implementations must be done by

the ompilation system.

Haskell does not speify any partiular assoiation between implementations and in-

terfaes on the one hand, and �les on the other; nor does it speify how implementations

and interfaes are produed. These matters are determined by the ompilation system, and

many variations are possible, depending on the programming environment. For example, a

ompilation system ould insist that eah implementation and eah interfae reside alone

in a �le, and that the module name is the same as that of the �le, with the implementation

and interfae distinguished by a suÆx.

Similarly, a ompilation system may require the programmer to write the interfae, or

it may derive the interfae from examination of the implementation, or some hybrid of the

two. Haskell is de�ned so that, given the interfaes of all imported modules, it is always

possible to perform a omplete stati hek on the implementation, and, if it is well-typed,

to derive its unique interfae automatially. However, given a set of mutually reursive

implementations, the ompilation system may have to examine several modules at one to

derive the interfaes, whih will still be unique with one exeption: beause of the shorthand
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for exporting all entities from an imported module, the set of exports may not be unique.

Any set satisfying the onsisteny onstraints is a valid solution for a well-typed Haskell

program, but if an implementation automatially derives the interfae it must derive the

smallest set of exports.

For optimisation aross module boundaries, a ompilation system may need more infor-

mation than is provided by the standard interfae as de�ned in this report.

5.2 Module Implementations

A module implementation de�nes a mutually reursive sope ontaining delarations for

value bindings, data types, type synonyms, lasses, et. (see Setion 4).

module ! module modid [exports℄ where body

j body

body ! { [impdels ;℄ [�xdels ;℄ topdels }

j { impdels }

modid ! aonid

impdels ! impdel

1

; : : : ; impdel

n

(n � 1 )

topdels ! topdel

1

; : : : ; topdel

n

(n � 1 )

A module implementation begins with a header: the keyword module, the module name,

and a list of entities (enlosed in round parentheses) to be exported. The header is followed

by an optional list of import delarations that speify modules to be imported, optionally

restriting and renaming the imported bindings. This is followed by an optional list of

�xity delarations and the module body. The module body is simply a list of top-level

delarations (topdels), as desribed in Setion 4.

An abbreviated form of module is permitted, whih onsists only of the module body.

If this is used, the header is assumed to be module Main where. It is inadvisable for a

ompilation system to permit an abbreviated module to appear in the same �le as some

unabbreviated modules.

5.2.1 Export Lists

exports ! ( export

1

, : : : , export

n

) (n � 1 )

export ! varid

j tyon

j tyon (..)

j tyon ( onid

1

, : : : , onid

n

) (n � 1 )

j tyls (..)

j tyls ( varid

1

, : : : , varid

n

) (n � 0 )

j modid ..
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An export list identi�es the entities to be exported by a module delaration. A module

implementation may only export an entity that it delares, or that it imports from some

other module. If the export list is omitted, all values, types and lasses de�ned in the

module are exported, but not those that are imported.

Entities in an export list may be named as follows:

1. Ordinary values, whether delared in the implementation body or imported, may be

named by giving the name of the value as a varid. Operators should be enlosed in

parentheses to turn them into varid's.

2. A type synonym T delared by a type delaration may be named by simply giving

the name of the type.

3. An algebrai data type T with onstrutorsK

1

; : : : ;K

n

delared by a data delaration

may be named in one of three ways:

� The form T names the type but not the onstrutors. The ability to export a

type without its onstrutors allows the onstrution of abstrat data types (see

Setion 5.6).

� The form T(K

1

, : : : ,K

n

), where all and only the onstrutors are listed without

dupliations, names the type and all its onstrutors.

� The abbreviated form T(..) also names the type and all its onstrutors.

Data onstrutors may not be named in export lists in any other way.

4. A lass C with operations f

1

; : : : ; f

n

delared in a lass delaration may be named

in one of two ways, both of whih name the lass together with all its operations:

� The form C(f

1

, : : : ,f

n

), where all and only the operations in that lass are

listed without dupliations.

� The abbreviated form C(..).

Operators in a lass may not be named in export lists in any other way.

5. The set of all entities brought into sope (after renaming) from a module m by one

or more import delarations may be named by the form m.., whih is equivalent to

listing all of the entities imported from the module. For example,

module Queue( Stak.., enqueue, dequeue ) where

import Stak

...

Here the module Queue uses the module name Stak in its export list to abbreviate

all the entities imported from Stak. It is a stati error to have irular dependenies

between imports/exports using this naming onvention. For example, the following is

not allowed:
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module X( Y.. ) -- ILLEGAL

import Y --

x = 1 --

module Y( X.. ) --

import X --

y = 1 --

5.2.2 Import Delarations

impdel ! import modid [impspe℄ [renaming renamings℄

impspe ! ( import

1

, : : : , import

n

) (n � 0 )

j hiding ( import

1

, : : : , import

n

) (n � 1 )

import ! varid

j tyon

j tyon (..)

j tyon ( onid

1

, : : : , onid

n

) (n � 1 )

j tyls (..)

j tyls ( varid

1

, : : : , varid

n

) (n � 0 )

renamings ! ( renaming

1

, : : : , renaming

n

) (n � 1 )

renaming ! name

1

to name

2

name ! varid j onid

The entities exported by a module may be brought into sope in another module with

an import delaration at the beginning of the module. The import delaration names

the module to be imported, optionally spei�es the entities to be imported, and optionally

provides renamings for imported entities. A single module may be imported by more than

one import delaration.

Exatly whih entities are to be imported an be spei�ed in one of three ways:

1. The set of entities to be imported an be spei�ed expliitly by listing them in paren-

theses. Items in the list have the same form as those in export lists, exept that the

modid abbreviation is not permitted.

The list must name a subset of the entities exported by the imported module. The

list may be empty, in whih ase nothing is imported; this is espeially useful in the

ase of the module Prelude (see Setion 5.4.3).

2. Spei� entities an be exluded by using the form hiding( import

1

,:::,import

n

),

whih spei�es that all entities exported by the named module should be imported

apart from those named in the list.

3. Finally, if impspe is omitted then all the entities exported by the spei�ed module

are imported.

Some or all of the imported entities may be renamed, thus allowing them to be known

by a new name in the importing sope (see Setion 5.1.2). This is done using the renaming
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keyword, with a renaming of the form oldname to newname. All renaming is subjet to

the onstraint that eah name in a sope must refer to exatly one entity; however, a single

entity may be given more than one name.

5.3 Module Interfaes

Every module has an interfae ontaining all the information needed to do stati heks

on any importing module. All stati heks on a module implementation an be done by

inspeting its text and the interfaes of the modules it imports.

interfae ! interfae modid where ibody

ibody ! { [iimpdels ;℄ [�xes ;℄ itopdels }

j { iimpdels }

iimpdels ! iimpdel

1

; : : : ; iimpdel

n

(n � 1 )

iimpdel ! import modid ( import

1

, : : : , import

n

)

[renaming renamings℄ (n � 1 )

itopdels ! itopdel

1

; : : : ; itopdel

n

(n � 1 )

itopdel ! type [ontext =>℄ simple = type

j data [ontext =>℄ simple [= onstrs℄ [deriving (tyls j (tylses))℄

j lass [ontext =>℄ lass [where { idels }℄

j instane [ontext =>℄ tyls inst

j vars :: [ontext =>℄ type

idels ! idel

1

; : : : ; idel

n

(n � 1 )

idel ! vars :: type

The syntax of interfae is similar to that of module, exept:

� There is no export list: everything in the interfae is exported.

� import delarations have a slightly di�erent purpose from those in implementations

(see Setion 5.3.2). The list of entities to be imported is always spei�ed expliitly.

� data delarations appear without their onstrutors if these are not exported.

� There is no implementation part to instane delarations.

� Value delarations do not appear at all; for exported values, type signatures take their

plae.

5.3.1 Consisteny

The interfae and implementation of a module must obey ertain onstraints. (In the

following, the phrase \in the implementation" refers to something either delared within

the implementation or imported by it.)
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1. Every entity given a delaration in an interfae must either have an import delaration

for the entity in the interfae (the import spei�es the module that de�nes it) or have a

de�nition of the entity in the implementation. Furthermore, if an interfae A imports

an entity X from module B (perhaps renaming it), then the interfae for B must de�ne

X but not import it.

2. A lass, type synonym, algebrai data type, or value appears in the interfae exatly

when its name appears in the implementation's export list or, if the export list is

omitted, when it is delared in the implementation.

3. A type signature appears in the interfae for every value that the implementation

exports. This type signature must be the same as that in the implementation (see

Setion 4.1.3), where the latter is obtained from the expliit type signature in the im-

plementation (when present) or is the most general type inferred from the delaration

of the value.

4. A type delaration in an interfae must be idential to that in the implementation.

5. A lass delaration in an interfae must be idential to that in the implementation,

exept that default-method delarations are omitted.

6. If the onstrutors of a data type are not to be exported, then the data delaration

in the interfae di�ers from that in the implementation by omitting everything after

(and inluding) the = sign. If the data delaration in the implementation uses the

derivingmehanism to derive instane delarations for the type, a separate instane

delaration must appear in the interfae for eah lass of whih the type is made an in-

stane of. However, the information that ertain instanes are derived is hidden when

the onstrutors are hidden, sine in this ase the type is abstrat (see Setion 5.6).

7. If the onstrutors of a data delaration are to be exported, then the data delaration

in the interfae is idential to that in the implementation inluding the deriving part.

5

8. If a C-T instane is delared in a module or imported by it, then the instane dela-

ration appears in the interfae (omitting the where part) if either C is exported or T

is exported. Instane delarations are not named expliitly in export or import lists.

This rule ensures that, if C and T are both in sope, then the (unique) C-T instane

delaration will also be in sope.

6

No expliit instane delaration should appear in the interfae for instanes that are

spei�ed by the deriving part of a data delaration in the interfae.

9. A �xity delaration appears in an interfae exatly when (a) a type signature for the

value is also given in the interfae (either by itself or as part of a lass delaration)

and (b) the idential �xity delaration appears either in the implementation or in an

imported interfae.

5

It is important to retain the information about whih instanes are derived and whih are not, beause

the importing module \knows" more about derived instanes.

6

The reverse also applies. For example, suppose that a new type T is delared and made an instane

of an imported lass C. The instane delaration will be exported along with T , and so the losure rule

(Setion 5.1.3) will require that C is also in sope in every importing sope.
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This example illustrates most of these onstraints; �rst, the interfae:

interfae A where

infixr 4 �sameShape�

data BinTree a = Empty | Branh a (BinTree a) (BinTree a)

lass Tree a where

sameShape :: a -> a -> Bool

instane Tree (BinTree a)

sum :: Num a => BinTree a -> a

Now the implementation:

module A( BinTree(..), Tree(..), sum ) where

infixr 4 �sameShape�

-- �sameShape� is an operation of lass C below

data BinTree a = Empty | Branh a (BinTree a) (BinTree a)

lass Tree a where

sameShape :: a -> a -> Bool

t1 �sameShape� t2 = False -- Default method

instane Tree (BinTree a) where

Empty �sameShape� Empty = True

(Branh _ t1 t2) �sameShape� (Branh _ t1' t2')

= (t1 �sameShape� t1') && (t2 �sameShape� t2')

t1 �sameShape� t2 = False

sum Empty = 0

sum (Branh n t1 t2) = n + sum t1 + sum t2

5.3.2 Imports and Original Names

The original-name information is arried in the interfae �le using import delarations in

a speial way.

Suppose that a module A exports an entity x; the interfae for A will ontain stati

information about x. If x was originally de�ned in A, then this is all that appears. But,

suppose that x was imported by A from some other module B and that x was originally

de�ned in module C with name y; this delaration must appear in the interfae for A:

import C(y) renaming ( y to x )

No referene to B remains in the interfae. The import delaration in the interfae serves

only to onvey to the importing module the original name of x, and does not imply that

module B's interfae must be onsulted when reading module A's interfae. Multiple imports

from a single original module may optionally be grouped in a single import delaration in

the interfae.

A module may export a value whose typing involves a type and/or lass that is not

exported. (Any importing module would have to import the type or lass by some other
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route.) Nevertheless, it is still required that the interfae ontain the import delaration

required to give the original name of the type or lass.

In summary, for every entity e1 mentioned in the interfae of a module M whose original

name is e2 in module N, M's interfae must ontain the import delaration

import N(e2) renaming ( e2 to e1 )

The word \mentioned" inludes mention in the type signature of an exported value, as

disussed above.

5.4 Standard Prelude

Many of the features ofHaskell are de�ned inHaskell itself, as a large library of standard

data types, lasses and funtions, alled the \standard prelude." In Haskell, the stan-

dard prelude is spei�ed as two distint modules (in the tehnial sense of this hapter),

PreludeCore and Prelude.

PreludeCore and Prelude di�er from other modules in that their interfaes, and the

semantis of the entities de�ned by those interfaes, are part of the Haskell language

de�nition. This means, for example, that a ompiler may optimise alls to funtions in the

standard prelude, beause it knows their semantis as well as their interfae.

Eah of these modules are strutured into sub-modules. To avoid name-lashes with

these sub-modules, user-de�ned module names must not begin with the pre�x Prelude.

5.4.1 The PreludeCore Module

The PreludeCore module ontains all the algebrai data types, type synonyms, lasses and

instane delarations spei�ed by the standard prelude.

PreludeCore is always impliitly imported, so it is not possible to import only part of

it or to rename any of the entities that it de�nes.

The semantis of the entities de�ned by PreludeCore is spei�ed by an implemen-

tation written in Haskell, in Appendix A.2. A Haskell system need not implement

PreludeCore in this way. The interfae for PreludeCore may be inferred from the imple-

mentation in Appendix A.2.

Some data types (suh as Int) and funtions (suh as addition of Ints) annot be

spei�ed diretly in Haskell. This is expressed in the PreludeCore implementation by

importing these built-in types and values from PreludeBuiltin. The semantis of the

built-in data types and funtions is given as English text in Appendix A.1.

The implementation for PreludeCore is inomplete in its treatment of tuples: there

should be an in�nite family of instane delarations for tuples, but the implementation only

gives a sheme.

The alert reader may notie that the implementation of PreludeCore given in Ap-

pendix A.2 uses some funtions de�ned in Prelude (see next setion). There is no onit,

PreludeCore and Prelude are mutually reursive.
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5.4.2 The Prelude Module

The Prelude module ontains all the value delarations in the standard prelude.

The Prelude module is imported automatially if and only if it is not imported with an

expliit import delaration. This provision for expliit import allows values de�ned in the

standard prelude to be renamed or not imported at all.

The semantis of the entities in Prelude is spei�ed by an implementation of Prelude

written in Haskell, given in Appendix A. As for PreludeCore, a Haskell system may

implement the Prelude module as it pleases, provided it maintains the semantis in Ap-

pendix A. The interfae an be inferred from this implementation.

5.4.3 Shadowing Prelude Names and Non-Standard Preludes

The rules about the standard prelude have been ast so that it is possible to use standard

prelude names for non-standard purposes; however, every module that does so will have an

import delaration that makes this non-standard usage expliit. For example:

module A where

import Prelude hiding (map)

map f x = x f

Module A rede�nes map, but it must indiate this by importing Prelude without map.

Furthermore, A exports map, but every module that imports map from A must also hide map

from Prelude just as A does. Thus there is little danger of aidentally shadowing standard

prelude names.

It is possible to onstrut and use a di�erent Prelude module:

module B where

import Prelude()

import MyPrelude

...

B imports nothing from Prelude, but the expliit import Prelude delaration prevents the

automati import of Prelude. import MyPrelude brings the non-standard prelude into

sope. As before, the standard prelude names are hidden expliitly.
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5.5 Example

As an example, here are two small modules:

module A( Tree(..), depth ) where

data Tree a = Leaf a | Branh (Tree a) (Tree a)

depth (Leaf a) = 0

depth (Branh xt yt) = (depth xt �max� depth yt) + 1

module B( leaves ) where

import A

leaves (Leaf a) = [a℄

leaves (Branh xt yt) = leaves xt ++ leaves yt

Module A must export Tree beause it exports depth, and Tree ould not be made visible

in any other way. However, B is not required to export Tree, sine a module importing B

ould import A in order to satisfy the losure onstraints.

Modules may be used to ombine the resoures of other modules. For example, one

might use renaming to make trees available to Frenh speakers:

module C( Arbre(..), fond, feuilles ) where

import A renaming ( Tree to Arbre, Leaf to Feuille, Branh to Branhe,

depth to fond )

import B renaming ( leaves to feuilles )

5.6 Abstrat Data Types

The ability to export a data type without its onstrutors allows the onstrution of abstrat

data types (ADTs). For example, an ADT for staks ould be de�ned as:

module Stak( StkType, push, pop, empty ) where

data StkType a = EmptyStk | Stk a (StkType a)

push x s = Stk x s

pop (Stk _ s) = s

empty = EmptyStk

Modules importing Stak annot onstrut values of type StkType beause they do not

have aess to the onstrutors of the type.

It is also possible to build an ADT on top of an existing type by using a data delaration

with a single onstrutor with only one �eld. For example, staks an be de�ned with lists:

module Stak( StkType, push, pop, empty ) where

data StkType a = Stk [a℄

push x (Stk s) = Stk (x:s)

pop (Stk (x:s)) = Stk s

empty = Stk [℄

Note 1. Every ADT must be a module (but a Haskell ompilation system may allow

multiple modules in a single �le).
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Note 2. Using a single-onstrutor single-�eld data delaration to reate an isomorphi

type introdues an unwanted extra element to the new type, namely (Stk ?), with the

risk of an aompanying small ineÆieny in the implementation.

5.7 Fixity Delarations

�xdels ! �x

1

; : : : ; �x

n

(n � 1 )

�x ! infixl [digit ℄ ops

j infixr [digit ℄ ops

j infix [digit ℄ ops

ops ! op

1

, : : : , op

n

(n � 1 )

op ! varop j onop

A �xity delaration gives the �xity and binding preedene of a set of operators. Fixity

delarations must appear only at the start of a module

7

and may only be given for identi�ers

de�ned in that module. Fixity delarations annot subsequently be overridden, and an

identi�er an only have one �xity de�nition.

There are three kinds of �xity, non-, left- and right-assoiativity (infix, infixl, and

infixr, respetively), and ten preedene levels, 0 through 9 (level 0 binds least tightly,

and level 9 binds most tightly). If the digit is omitted, level 9 is assumed. Any operator

laking a �xity delaration is assumed to be infixl 9.

Fixity delarations allow parentheses to be dropped in these expressions when the asso-

iated onditions are satis�ed (in this table infix stands for any infix, infixl, or infixr

delaration):

(x op

1

y) op

2

z infix d

1

op

1

, infix d

2

op

2

, d

1

> d

2

(x op

1

y) op

2

z infixl d

1

op

1

, infixl d

2

op

2

, d

1

= d

2

x op

1

(y op

2

z ) infix d

1

op

1

, infix d

2

op

2

, d

1

< d

2

x op

1

(y op

2

z ) infixr d

1

op

1

, infixr d

2

op

2

, d

1

= d

2

The phrase \x op

1

y op

2

z", where we have infixl d

1

op

1
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is ambiguous and generates a parsing error.

Fixity is a property of the original name of an identi�er or operator (see Setion 5.1.2).

Fixity is not a�eted by renaming; the new name has the same �xity as the old one.

7

This is to avoid parsing problems that arise when �xity delarations appear lexially after the operators

to whih they refer.
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data Bool = False | True

(&&), (||) :: Bool -> Bool -> Bool

True && x = x

False && x = False

True || x = True

False || x = x

not :: Bool -> Bool

not True = False

not False = True

otherwise :: Bool

otherwise = True

Figure 5: Standard funtions on booleans

6 Basi Types

6.1 Booleans

The boolean type Bool is an enumeration; Figure 5 shows its de�nition and standard

funtions &&, ||, not, and otherwise.

6.2 Charaters and Strings

The harater type Char is an enumeration, and onsists of 256 values, of whih the �rst

128 are the ASCII harater set. The lexial syntax for haraters is de�ned in Setion 2.5;

harater literals are nullary onstrutors in the datatype Char. The standard prelude

provides an instane delaration for Char in lass Enum and two funtions relating haraters

to Ints in the range [0; 255℄:

ord :: Char -> Int

hr :: Int -> Char

An ASCII-based implementation must treat ertain pairs of haraters as equivalent

(reeted in the behaviour of == and in pattern-mathing). In partiular, (1) numeri

esape haraters, ASCII esape haraters, and ontrol haraters should be onsidered

equivalent to the degree implied by the ASCII standard, and (2) these pairs of haraters

are equivalent: \a and \BEL, \b and \BS, \f and \FF, \r and \CR, \t and \HT, \v and \VT,

and \n and \LF.

A string is a list of haraters:

type String = [Char℄
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Strings may be abbreviated using the lexial syntax desribed in Setion 2.5. For example,

"A string" abbreviates

[�A�,� �,�s�,�t�,�r�, �i�,�n�,�g�℄

6.3 Funtions

Funtions are de�ned via lambda abstrations and funtion de�nitions. Besides appliation,

an in�x omposition operator is de�ned:

(.) :: (b -> ) -> (a -> b) -> a -> 

(f . g) x = f (g x)

The funtion until applies a funtion to an initial value zero or more times until the result

satis�es a given prediate:

until :: (a -> Bool) -> (a -> a) -> a -> a

until p f x | p x = x

| otherwise = until p f (f x)

6.4 Lists

Lists are desribed in Setion 3.4. See the standard prelude (Appendix A) for the de�nitions

of the standard list funtions. Arithmeti sequenes and list omprehensions, two onvenient

syntaxes for speial kinds of lists, are desribed in Setions 3.7 and 3.8, respetively.

6.5 Tuples

Tuples are de�ned in Setion 3.5. Six funtions, named zip, zip3, : : :, zip7, are provided

by the standard prelude. These produe lists of n-tuples from n lists, for 2 � n � 7. The

resulting lists are as long as the shortest argument list; exess elements of other argument

lists are ignored.

6.6 Binary Datatype

The Bin datatype is a primitive abstrat datatype inluding the value nullBin (the empty

or nullary binary value), and the prediate isNullBin (whih returns True when applied to

nullBin and False when applied to all other values of type Bin). Also, derived instanes of

the Binary lass generate de�nitions for showBin and readBin, as desribed in Setion 4.3.3

and Appendix D. The Bin datatype is used primarily for eÆient and transparent I/O, as

desribed in Setion 7.

6.7 Unit Datatype

The unit datatype () has one member, the nullary onstrutor () (and thus an overloading

of syntax)|see also Setion 3.6.
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Figure 6: Numeri lass inlusions (f. Figure 4, page 29)

6.8 Numbers

6.8.1 Introdution

Haskell provides several kinds of numbers; the numeri types and the operations upon

them have been heavily inuened by Common Lisp [14℄ and Sheme [13℄. Numeri funtion

names and operators are usually overloaded, using several type lasses with an inlusion

relation shown in Figure 6 (f. Figure 4, page 29). (Some lasses are immediate sublasses

of two other lasses; there are pairs of lasses with a nontrivial intersetion.) The lass Num

of numeri types is a sublass of Eq, sine all numbers may be ompared for equality; its

sublass Real is also a sublass of Ord, sine the other omparison operations apply to all but

omplex numbers. The lass Integral ontains both �xed- and arbitrary-preision integers;

the lass Frational ontains all nonintegral types; and the lass Floating ontains all

oating-point types, both real and omplex.

Table 1 lists the standard numeri types. The type Int is a �xed-preision type, overing

at least the range [�2

29

+1; 2

29

�1℄. The range hosen by an implementation must either be

symmetri about zero or ontain one more negative value than positive (to aommodate

twos-omplement representation) and should be large enough to serve as array indies.

The onstants minInt and maxInt (Figure 8, page 54) de�ne the limits of Int in eah

implementation. Float is a oating-point type, also implementation-de�ned; it is desirable

that this type be at least equal in range and preision to the IEEE single-preision type.

Similarly, Double should over IEEE double-preision. An implementation may provide

other numeri types, suh as additional preisions of integer and oating-point. The results

of exeptional onditions (suh as overow or underow) on the �xed-preision numeri

types are unde�ned; an implementation may hoose error (?, semantially), a trunated
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Typing Class Desription

Integer Integral Arbitrary-preision integers

Int Integral Fixed-preision integers

(Integral a) => Ratio a RealFra Rational numbers

Float RealFloat Real oating-point, single preision

Double RealFloat Real oating-point, double preision

(RealFloat a) => Complex a Floating Complex oating-point

Table 1: Standard numeri types

value, or a speial value suh as in�nity, inde�nite, et.

The interfae text (Setion 5.3) assoiated with the standard numeri lasses, types, and

operations is shown in Figures 7{9.

6.8.2 Numeri Literals

The syntax of numeri literals is given in Setion 2.4. An integer literal represents the ap-

pliation of the funtion fromInteger to the appropriate value of type Integer. Similarly,

a oating literal stands for an appliation of fromRational to a value of type Rational

(that is, Ratio Integer). Given the typings:

fromInteger :: (Num a) => Integer -> a

fromRational :: (Frational a) => Rational -> a

integer and oating literals have the typings (Num a) => a and (Frational a) => a,

respetively. Numeri literals are de�ned in this indiret way so that they may be interpreted

as values of any appropriate numeri type. For example, fromInteger for omplex numbers

is de�ned as follows:

fromInteger n = fromInteger n :+ 0

See Setion 4.3.4 for a disussion of overloading ambiguity.

6.8.3 Construted Numbers

There are two kinds of numeri types formed by data onstrutors: namely, Ratio and

Complex. For eah Integral type t, there is a type Ratio t of rational pairs with omponents

of type t. (The type name Rational is a synonym for Ratio Integer.) Similarly, for eah

real oating-point type t, Complex t is a type of omplex numbers with real and imaginary

omponents of type t.

The operator (%) forms the ratio of two integral numbers. The funtions numerator and

denominator extrat the omponents of a ratio; these are in redued form with a positive

denominator.
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lass (Eq a) => Num a where

(+), (-), (*) :: a -> a -> a

negate :: a -> a

abs, signum :: a -> a

fromInteger :: Integer -> a

x - y = x + negate y

lass (Num a, Ord a) => Real a where

toRational :: a -> Rational

lass (Real a) => Integral a where

div, rem, mod :: a -> a -> a

divRem :: a -> a -> (a,a)

even, odd :: a -> Bool

toInteger :: a -> Integer

x `div` y = q where (q,r) = divRem x y

x `rem` y = r where (q,r) = divRem x y

x `mod` y = if signum x == - (signum y) then r + y else r

where r = x `rem` y

even x = x `rem` 2 == 0

odd = not . even

lass (Num a) => Frational a where

(/) :: a -> a -> a

fromRational :: Rational -> a

lass (Frational a) => Floating a where

pi :: a

exp, log, sqrt :: a -> a

(**), logBase :: a -> a -> a

sin, os, tan :: a -> a

asin, aos, atan :: a -> a

sinh, osh, tanh :: a -> a

asinh, aosh, atanh :: a -> a

x ** y = exp (log x * y)

logBase x y = log y / log x

sqrt x = x ** 0.5

tan x = sin x / os x

tanh x = sinh x / osh x

lass (Real a, Frational a) => RealFra a where

properFration :: a -> (Integer,a)

approxRational :: a -> a -> Rational

Figure 7: Numeri lasses and related operations
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lass (RealFra a, Floating a) => RealFloat a where

floatRadix :: a -> Integer

floatDigits :: a -> Int

floatRange :: a -> (Int,Int)

deodeFloat :: a -> (Integer,Int)

enodeFloat :: Integer -> Int -> a

exponent :: a -> Int

signifiand :: a -> a

saleFloat :: Int -> a -> a

exponent x = if m == 0 then 0 else n + floatDigits x

where (m,n) = deodeFloat x

signifiand x = enodeFloat m (- (floatDigits x))

where (m,_) = deodeFloat x

saleFloat k x = enodeFloat m (n+k)

where (m,n) = deodeFloat x

instane Integral Int

instane Integral Integer

minInt, maxInt :: Int

fromIntegral :: (Integral a, Num b) => a -> b

gd, lm :: (Integral a) => a -> a-> a

(^) :: (Num a, Integral b) => a -> b -> a

(^^) :: (Frational a, Integral b) => a -> b -> a

data (Integral a) => Ratio a

type Rational = Ratio Integer

instane (Integral a) => RealFra (Ratio a)

(%) :: (Integral a) => a -> a -> Ratio a

numerator, denominator :: (Integral a) => Ratio a -> a

instane RealFloat Float

instane RealFloat Double

fromRealFra :: (RealFra a, Frational b) => a -> b

trunate, round :: (RealFra a, Integral b) => a -> b

eiling, floor :: (RealFra a, Integral b) => a -> b

atan2 :: (RealFloat a) => a -> a -> a

Figure 8: Numeri lasses and related operations (ontinued)
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data (RealFloat a) => Complex a = a :+ a deriving (Eq, Binary, Text)

instane (RealFloat a) => Floating (Complex a)

realPart, imagPart :: (RealFloat a) => Complex a -> a

onjugate :: (RealFloat a) => Complex a -> Complex a

mkPolar :: (RealFloat a) => a -> a -> Complex a

is :: (RealFloat a) => a -> Complex a

polar :: (RealFloat a) => Complex a -> (a,a)

magnitude, phase :: (RealFloat a) => Complex a -> a

Figure 9: Numeri lasses and related operations (ontinued)

Complex numbers are an algebrai type:

data (RealFloat a) => Floating (Complex a) = a :+ a

The onstrutor (:+) forms a omplex number from its real and imaginary retangular

omponents. A omplex number may also be formed from polar omponents of magnitude

and phase by the funtion mkPolar. The funtion is produes a omplex number from an

angle t :

is t = os t :+ sin t

Put another way, is t is a omplex value with magnitude 1 and phase t (modulo 2�).

The funtion polar takes a omplex number and returns a (magnitude, phase) pair

in anonial form: The magnitude is nonnegative, and the phase, in the range (��; �℄; if

the magnitude is zero, then so is the phase. Several omponent-extration funtions are

provided:

realPart (x:+y) = x

imagPart (x:+y) = y

magnitude z = r where (r,t) = polar z

phase z = t where (r,t) = polar z

Also de�ned on omplex numbers is the onjugate funtion:

onjugate (x:+y) = x:+(-y)

6.8.4 Arithmeti and Number-Theoreti Operations

The in�x operations (+), (*), (-) and the unary funtion negate (whih an also be written

as a pre�x minus sign; see setion 3.2) apply to all numbers. The operations div, rem, and

mod apply only to integral numbers, while the operation (/) applies only to frational ones.

The div and rem operations satisfy the law:

(x �div� y)*y + (x �rem� y) == x
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The result of x �div� y has the same sign as x * y and is trunated toward zero. The

modulo funtion di�ers from the remainder funtion when the signs of the dividend and

divisor di�er, the remainder always having the sign of the dividend, and the modulo having

the sign of the divisor. For example,

-13 �rem� 4 == -1

-13 �mod� 4 == 3

13 �rem� -4 == 1

13 �mod� -4 == -3

The divRem operation takes a dividend and a divisor as arguments and returns a (quotient,

remainder) pair:

divRem x y = (x �div� y, x �rem� y)

Also available on integers are the even and odd prediates:

even x = x �rem� 2 == 0

odd = not . even

Finally, there are the greatest ommon divisor and least ommon multiple funtions: gd

x y is the greatest integer that divides both x and y. lm x y is the smallest positive integer

that both x and y divide.

6.8.5 Exponentiation and Logarithms

The one-argument exponential funtion exp and the logarithm funtion log at on oating-

point numbers and use base e. logBase a x returns the logarithm of x in base a. sqrt

returns the prinipal square root of a oating-point number. There are three two-argument

exponentiation operations: (^) raises any number to a nonnegative integer power, (^^)

raises a frational number to any integer power, and (**) takes two oating-point argu-

ments. The value of x^0 or x^^0 is 1 for any x, inluding zero; 0**y is unde�ned.

6.8.6 Magnitude and Sign

A number has a magnitude and a sign. The funtions abs and signum apply to any number

and satisfy the law:

abs x * signum x == x

For real numbers, these funtions are de�ned by:

abs x | x >= 0 = x

| x < 0 = -x

signum x | x > 0 = 1

| x == 0 = 0

| x < 0 = -1
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For omplex numbers, the de�nitions are di�erent:

abs z = magnitude z :+ 0

signum z�(x:+y) = x/r :+ y/r where r = magnitude z

That is, abs z is a number with the magnitude of z, but oriented in the positive real

diretion, whereas signum z has the phase of z, but unit magnitude. (abs for a omplex

number di�ers from magnitude only in type. See Setion 6.8.3.)

6.8.7 Trigonometri Funtions

The irular and hyperboli sine, osine, and tangent funtions and their inverses are pro-

vided for oating-point numbers. A version of artangent taking two real oating-point

arguments is also provided: For real oating x and y, atan2 y x di�ers from atan (y/x)

in that its range is (��; �℄ rather than (��=2; �=2) (beause the signs of the arguments

provide quadrant information), and that it is de�ned when x is zero.

The preise de�nition of the above funtions is as in Common Lisp [14℄, whih in turn

follows Pen�eld's proposal for APL [11℄. See these referenes for disussions of branh uts,

disontinuities, and implementation.

6.8.8 Coerions and Component Extration

The eiling, floor, trunate, and round funtions eah take a real frational argument

and return an integral result. eiling x returns the least integer not less than x, and

floor x, the greatest integer not greater than x. trunate x yields the integer nearest x

between 0 and x, inlusive. round x returns the nearest integer to x, the even integer if x

is equidistant between two integers.

The funtion properFration takes a real frational number x and returns a pair om-

prising x as a proper fration: an Integer with the same sign as x and a fration with

the same type and sign as x and with absolute value less than 1. The eiling, floor,

trunate, and round funtions an be de�ned in terms of this one.

Two funtions onvert numbers to type Rational: toRational returns the rational

equivalent of its real argument with full preision; approxRational takes two real fra-

tional arguments and returns an approximation to the �rst within the tolerane given by

the seond. Subjet to the tolerane onstraint, the result has the smallest denominator

possible.

The operations of lass RealFloat allow eÆient, mahine-independent aess to the

omponents of a oating-point number. The funtions floatRadix, floatDigits, and

floatRange give the parameters of a oating-point type: the radix of the representation,

the number of digits of this radix in the signi�and, and the lowest and highest values the

exponent may assume, respetively. The funtion deodeFloat applied to a real oating-

point number returns the signi�and expressed as an Integer and an appropriately saled

exponent (an Int). If deodeFloat x yields (m,n), then x is equal in value to mb

n

,

where b is the oating-point radix, and furthermore, either m and n are both zero or
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else b

d�1

� m < b

d

, where d is the value of floatDigits x. enodeFloat performs the

inverse of this transformation. The funtions signifiand and exponent together provide

the same information as deodeFloat, but rather than an Integer, signifiand x yields

a value of the same type as x, saled to lie in the open interval (�1 ; 1 ). exponent 0 is zero.

saleFloat multiplies a oating-point number by an integer power of the radix. These

identities hold:

toRational x == if e < 0 then m % b^(-e) else m*b^e % 1

where b = floatRadix x

(m,e) = deodeFloat x

x == enodeFloat m e where (m,e) = deodeFloat x

Also available are the following oerion funtions:

fromIntegral :: (Integral a, Num b) => a -> b

fromRealFra :: (RealFra a, Frational b) => a -> b

6.9 Arrays

Haskell provides indexable arrays, whih may be thought of as funtions whose domains

are isomorphi to ontiguous subsets of the integers. Funtions restrited in this way an

be implemented eÆiently; in partiular, a programmer may reasonably expet rapid aess

to the omponents. To ensure the possibility of suh an implementation, arrays are treated

as data, not as general funtions.

Types that are instanes of lass Ix (see Setion 4.3.2) may be indies of arrays; a

one-dimensional array might have index type Int, a two-dimensional array (Int,Char)

et.

6.9.1 Array Constrution

If a is an index type and b is any type, the type of arrays with indies in a and elements in

b is written Array a b. An array may be reated by the funtion array:

array :: (Ix a) => (a,a) -> [Asso a b℄ -> Array a b

data Asso a b = a := b

The �rst argument of array is a pair of bounds, eah of the index type of the array. These

bounds are the lowest and highest indies in the array, in that order. For example, a one-

origin vetor of length 10 has bounds (1,10), and a one-origin 10 by 10 matrix has bounds

((1,1),(10,10)).

The seond argument of array is a list of assoiations of the form index := value.

Typially, this list will be expressed as a omprehension. An assoiation i := x de�nes

the value of the array at index i to be x. The array is unde�ned if any index in the list is

out of bounds. If any two assoiations in the list have the same index, the value at that

index is unde�ned. Beause the indies must be heked for these errors, array is strit in

the bounds argument and in the indies of the assoiation list, but nonstrit in the values.

Thus, reurrenes suh as the following are possible:
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-- Saling an array of numbers by a given number:

sale :: (Num a, Ix b) => a -> Array b a -> Array b a

sale x a = array b [i := a!i * x | i <- range b℄

where b = bounds a

-- Inverting an array that holds a permutation of its indies

invPerm :: (Ix a) => Array a a -> Array a a

invPerm a = array b [a!i := i | i <- range b℄

where b = bounds a

-- The inner produt of two vetors

inner :: (Ix a, Num b) => Array a b -> Array a b -> b

inner v w = if b == bounds w

then sum [v!i * w!i | i <- range b℄

else error "inonformable arrays for inner produt"

where b = bounds v

Figure 10: Array examples

a = array (1,100) ((1 := 1) : [i := i * a!(i-1) | i <- [2..100℄℄)

Not every index within the bounds of the array need appear in the assoiation list, but the

values assoiated with indies that do not appear will be unde�ned. Figure 10 shows some

examples that use the Array onstrutor.

(!) denotes array subsripting; the bounds funtion applied to an array returns its

bounds:

(!) :: (Ix a) => Array a b -> a -> b

bounds :: (Ix a) => Array a b -> (a,a)

The funtions indies, elems, and assos, when applied to an array, return lists of the

indies, elements, or assoiations, respetively, in index order:

indies:: (Ix a) => Array a b -> [a℄

indies = range . bounds

elems:: (Ix a) => Array a b -> [b℄

elems a = [a!i | i <- indies a℄

assos: (Ix a) => Array a b -> [Asso a b℄

assos a = [ i := a!i | i <- indies a℄

An array may be onstruted from a pair of bounds and a list of values in index order using

the funtion listArray:

listArray:: (Ix a) => (a,a) -> [b℄ -> Array a b

listArray bnds xs = Array bnds (zipWith (:=) (range bnds) xs)
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6.9.2 Aumulated Arrays

Another array reation funtion, aumArray, relaxes the restrition that a given index may

appear at most one in the assoiation list, using an aumulating funtion whih ombines

the values of assoiations with the same index [10, 16℄:

aumArray::(Ix a) => (b->->b) -> b -> (a,a) -> [Asso a ℄ -> Array a b

The �rst argument of aumArray is the aumulating funtion; the seond is an initial

value; the remaining two arguments are a bounds pair and an assoiation list, as for the

array funtion. For example, given a list of values of some index type, hist produes a

histogram of the number of ourrenes of eah index within a spei�ed range:

hist :: (Ix a, Num b) => (a,a) -> [a℄ -> Array a b

hist bnds is = aumArray (+) 0 bnds [i := 1 | i<-is, inRange bnds i℄

If the aumulating funtion is strit, then aumArray is strit in the values, as well as the

indies, in the assoiation list. Thus, unlike ordinary arrays, aumulated arrays should not

in general be reursive.

6.9.3 Inremental Array Updates

(//) :: (Ix a) => Array a b -> Asso a b -> Array a b

aum :: (Ix a) => (b ->  -> b) -> Array a b -> [Asso a ℄ -> Array a b

The operator (//) takes an array and an Asso pair and returns an array idential to

the left argument exept for one element spei�ed by the right argument. aum f takes

an array and an assoiation list and aumulates pairs from the list into the array with the

aumulating funtion f . Thus aumArray an be de�ned using aum:

aumArray f z b = aum f (array b [i := z | i <- range b℄)

6.9.4 Derived Arrays

The two funtions amap and ixmap derive new arrays from existing ones; they may be

thought of as providing funtion omposition on the left and right, respetively, with the

mapping that the original array embodies:

amap :: (Ix a) => (b -> ) -> Array a b -> Array a 

amap f a = array b [i := f (a!i) | i <- range b℄

where b = bounds a

ixmap :: (Ix a,Ix a') => (a',a') -> (a'->a) -> Array a b -> Array a' b

ixmap bnds f a = array bnds [i := a ! f i | i <- range bnds℄

amap is the array analogue of the map funtion on lists, while ixmap allows for transforma-

tions on array indies. Figure 11 shows some examples.
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-- A retangular subarray

subArray :: (Ix a) => (a,a) -> Array a b -> Array a b

subArray bnds = ixmap bnds (\i->i)

-- A row of a matrix

row :: (Ix a, Ix b) => a -> Array (a,b)  -> Array b 

row i x = ixmap (l',u') (\j->(i,j)) x where ((l,l'),(u,u')) = bounds x

-- Diagonal of a square matrix

diag :: (Ix a) => Array (a,a) b -> Array a b

diag x = ixmap (l,u) (\i->(i,i)) x

where ((l,l'),(u,u')) | l == l' && u == u' = bounds x

-- Projetion of first omponents of an array of pairs

firstArray :: (Ix a) => Array a (b,) -> Array a b

firstArray = amap (\(x,y)->x)

Figure 11: Derived array examples

6.10 Errors

All errors in Haskell are semantially equivalent to ?. error:: String -> a takes a

string argument and returns ?. An appliation of error terminates evaluation of the

program and displays the string as appropriate.
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7 Input/Output

Haskell's I/O system is based on the view that a program ommuniates to the outside

world via streams of messages: a program issues a stream of requests to the operating system

and in return reeives a stream of responses. Sine a stream in Haskell is only a lazy list,

a Haskell program has the type:

type Dialogue = [Response℄ -> [Request℄

The datatypes Response and Request are de�ned below. Intuitively, [Response℄ is an

ordered list of responses and [Request℄ is an ordered list of requests; the nth response is

the operating system's reply to the nth request.

With this view of I/O, there is no need for any speial-purpose syntax or onstruts for

I/O; the I/O system is de�ned entirely in terms of how the operating system responds to

a program with the above type|i.e. what response it issues for eah request. An abstrat

spei�ation of this behaviour is de�ned by giving a de�nition of the operating system as

a funtion that takes as input an initial state and a olletion of Haskell programs, eah

with the above type. This spei�ation appears in Appendix C, using standard Haskell

syntax augmented with a single non-deterministi merge operator.

One an de�ne a ontinuation-based version of I/O in terms of a stream-based version.

Suh a de�nition is provided in Setion 7.5. The spei� I/O requests available in eah

style are idential; what di�ers is the way they are expressed. This means that programs

in either style may be ombined with a well-de�ned semantis. In both ases arbitrary I/O

requests within onventional operating systems may be indued while retaining referential

transpareny within a Haskell program.

The required requests for a valid implementation are:
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data Request =

-- file system requests:

ReadFile Name

| WriteFile Name String

| AppendFile Name String

| ReadBinFile Name

| WriteBinFile Name Bin

| AppendBinFile Name Bin

| DeleteFile Name

| StatusFile Name

-- hannel system requests:

| ReadChan Name

| AppendChan Name String

| ReadBinChan Name

| AppendBinChan Name Bin

| StatusChan Name

-- environment requests:

| Eho Bool

| GetArgs

| GetEnv Name

| SetEnv Name String

type Name = String

stdin = "stdin"

stdout = "stdout"

stderr = "stderr"

stdeho = "stdeho"

Coneptually the above requests an be organised into three groups: those relating to the

�le system omponent of the operating system (the �rst eight), those relating to the hannel

system (the next �ve), and those relating to the environment (the last four).

The �le system is fairly onventional: a mapping of �le names to ontents. The han-

nel system onsists of a olletion of hannels, examples of whih inlude standard input

(stdin), standard output (stdout), standard error (stderr), and standard eho (stdeho)

hannels. A hannel is a one-way ommuniation medium|it either onsumes values from

the program (via AppendChan or AppendBinChan) or produes values for the program (by

responding to ReadChan or ReadBinChan). Channels ommuniate to and from agents (a

onept made more preise in Appendix C). Examples of agents inlude line printers, disk

ontrollers, networks, and human beings. As an example of the latter, the user is normally

the onsumer of standard output and the produer of standard input. Channels annot be

deleted, nor is there a notion of reating a hannel.
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Apart from these required requests, several optional requests are desribed in Ap-

pendix C.1. Although not required for a valid Haskell implementation, they may be

useful in partiular implementations.

Requests to the �le system are in general order-dependent; if i > j then the response

to the ith request may depend on the jth request. In the ase of the hannel system the

nature of the dependenies is ditated by the agents. In all ases external e�ets may also

be felt \between" internal e�ets.

Responses are de�ned by:

data Response = Suess

| Str String

| Bn Bin

| Failure IOError

data IOError = WriteError String

| ReadError String

| SearhError String

| FormatError String

| OtherError String

The response to a request is either Suess, when no value is returned; Str s [Bn b℄, when

a string [binary℄ value s [b℄ is returned; or Failure e, indiating failure with I/O error e.

The nature of a failure is de�ned by the IOError datatype, whih aptures the most

ommon kinds of errors. The String omponents of these errors are implementation depen-

dent, and may be used to re�ne the desription of the error (for example, for ReadError, the

string might be "file loked", "aess rights violation", et.). An implementation

is free to extend IOError as required.

7.1 I/O Modes

The I/O requests ReadFile, WriteFile, AppendFile, ReadChan, and AppendChan all work

with text values|i.e. strings. Any value whose type is an instane of the lass Text may be

written to a �le (or ommuniated on a hannel) by using the appropriate output request

if it is �rst onverted to a string, using shows (see Setion 4.3.3). Similarly, reads an be

used with the appropriate input request to read suh a value from a �le (or a hannel). This

is text mode I/O.

For both eÆieny and transpareny, Haskell also supports a orresponding set of

binary I/O requests|ReadBinFile, WriteBinFile, AppendBinFile, ReadBinChan, and

AppendBinChan. showBin and readBin are using analogously to shows and reads (see

Setion 4.3.3) for values whose types are instanes of the lass Binary (see Setion 6.6).

Binary mode I/O ensures transpareny within an implementation|i.e. \what is read

is what was written." Implementations on onventional mahines will probably be able to
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realise binary mode more eÆiently than text mode. On the other hand, the Bin datatype

itself is implementation dependent, and thus binary mode should not be used as a method

to ensure transpareny between implementations.

In the remainder of this setion, various aspets of text mode will be disussed, inluding

the behaviour of standard hannels suh as stdin and stdout.

7.1.1 Transparent Charater Set

The transparent harater set is de�ned by:

the 52 upperase and lowerase alphabeti haraters

the 10 deimal digits

the 32 graphi haraters:

! " # $ % & � ( ) * + , - . / : ; < = > ? � [ \ ℄ ^ _ � { | } ~

the spae harater

(This is idential to the any syntati ategory de�ned in Setion 2.2, with tab exluded.)

A transparent line is a list of no more than 254 transparent haraters followed by a

\n harater (i.e. no more than 255 haraters in total). A transparent string is the �nite

onatenation of zero or more transparent lines.

Haskell's text mode for �les is transparent whenever the string being used is transpar-

ent. An implementation must ensure that a transparent string written to a �le in text mode

is idential to the string read bak from the same �le in text mode (assuming there were no

intervening external e�ets).

The transparent harater set is restrited beause of the inonsistent treatment of text

�les by operating systems. For example, some systems translate the newline harater

\n into CR/LF, and others into just CR or just LF|so none of these haraters an be in

the transparent harater set. Similarly, some systems trunate lines exeeding a ertain

length, others do not. Haskell's transparent string is intended to provide a useful degree

of portability of text �le manipulating programs. Of ourse, an implementation is free to

guarantee a higher degree of transpareny than that de�ned here (suh as longer lines or

more harater types).

Besides this de�nition of text mode transpareny, the standard input and output han-

nels arry with them notions of standard presentation and aeptane, as de�ned below.

7.1.2 Presentation

Standard text mode presentation guarantees a minimum kind of presentable output on stan-

dard output devies; thus it is only de�ned for AppendChan using the hannels stdout,

stderr, and stdeho. Abstratly, these hannels are assumed to be attahed to a sequene

of retangular grids of haraters alled pages; eah page onsists of a number of lines and

olumns, with the �rst line presented at the \top" and the �rst olumn presented to the

\left." The width of a olumn is assumed to be onstant. (On a paper printing devie,
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we expet an abstrat page to orrespond to a physial page; on a terminal display, it will

orrespond to whatever abstration is presented by the terminal, but at a minimum the

terminal should support display of at least one full page.)

Charaters obtained from AppendChan requests are written sequentially into these pages

starting at the top left hand orner of the �rst page. The haraters are written in order

horizontally aross the page until a newline harater (\n) is proessed, at whih point the

subsequent haraters are written starting in olumn one of line two, and so on. If a form

feed harater (\f) is proessed, writing starts at the top left hand orner of the seond

page, and so on.

Maximum line length and page length for the output hannels stdout, stdeho, and

stderr may be obtained via the StatusChan request as desribed in Setion 7.3. These

are implementation-dependent onstants, but must be at least 40 haraters and 20 lines,

respetively. AppendChan may indue a FormatError if either of these limits is exeeded.

Presentation of the transparent harater set may be in any readable font. Presentation

of \n and \f is as de�ned above. Presentation of any other harater is not de�ned|

presentation of suh a harater may invalidate standard presentation of all subsequent

haraters. An implementation, of ourse, may guarantee other forms of useful presentation

beyond what is spei�ed here.

To failitate proessing of text to and from standard input/output hannels, the auxiliary

funtions shown in Figure 12 are provided in the standard prelude.

7.1.3 Aeptane

Standard text mode aeptane guarantees a minimum kind of harater input from standard

input devies; thus it is only de�ned for ReadChan using the hannel stdin. Abstratly,

stdin is assumed to be attahed to a keyboard. The only requirement of the keyboard is

that it have keys to support the transparent harater set plus the newline (\n) harater.

7.1.4 Ehoing

The hannel stdeho is assumed onneted to the display assoiated with the devie to

whih stdin is onneted. It may be possible for stdout and stdeho to be onneted to

the same devie, but this is not required. It may be possible in some operating systems to

rediret stdout to a �le while still displaying information to the user on stdeho.

The Eho request (desribed in Setion 7.4) ontrols ehoing of stdin on stdeho. When

ehoing is enabled, haraters typed at the terminal onneted to stdin are ehoed onto

stdeho, with optional implementation-spei� line-editing funtions available. The list of

haraters returned by a read request to stdin should be the result of this proessing. As

an entire line may be erased by the user, a program will not see any of the line until a \n

harater is typed.

A display may reeive data from four di�erent soures: ehoing from stdin, and expliit

output to stdeho, stdout, and stderr. The result is an interleaving of these harater



7.1 I/O Modes 67

span, break :: (a -> Bool) -> [a℄ -> ([a℄,[a℄)

span p xs = (takeWhile p xs, dropWhile p xs)

break p = span (not . p)

lines :: String -> [String℄

lines "" = [℄

lines s = l : (if null s' then [℄ else lines (tail s'))

where (l, s') = break ((==) '\n') s

words :: String -> [String℄

words s = ase dropWhile isSpae s of

"" -> [℄

s' -> w : words s''

where (w, s'') = break isSpae s'

unlines :: [String℄ -> String

unlines ls = onat (map (\l -> l ++ "\n") ls)

unwords :: [String℄ -> String

unwords [℄ = ""

unwords [w℄ = w

unwords (w:ws) = w ++ onat (map ((:) ' ') ws)

Figure 12: Auxiliary Funtions for Text Proessing of Standard Output
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streams, but it is not an arbitrary one, beause of two onstraints: (1) expliit output (via

AppendChan) must appear as the onatenation of the individual streams; i.e. they annot

be interleaved (this is onsistent with the hyperstrit nature of AppendChan), and (2) if

ehoing is on, haraters from stdin that a program depends on for some I/O request must

appear on the display before that I/O ours. These onstraints permit a user to type

ahead, but prevent a system from printing a reply before ehoing the user's request.

7.2 File System Requests

In this setion, eah request is desribed using the stream model|the orresponding be-

haviour using the ontinuation model should be obvious. Optional requests, not required

of a valid Haskell implementation, are desribed in Appendix C.1.

�

ReadFile name

ReadBinFile name

Returns the ontents of �le name treated as a text [binary℄ �le. If suessful, the

response will be of the form Str s [Bn b℄, where s [b℄ is a string [binary℄ value. If

the �le is not found, the response Failure (SearhError string) is indued; if

it is unreadable for some other reason, the Failure (ReadError string) error is

indued.

�

WriteFile name string

WriteBinFile name bin

Writes string [bin℄ to �le name. If the �le does not exist, it is reated. If it already

exists, it is overwritten. A suessful response has form Suess; the only failure

possible has the form Failure (WriteError string).

Both of these requests are \hyperstrit" in their seond argument: no response is

returned until the entire list of values is ompletely evaluated.

�

AppendFile name string

AppendBinFile name bin

Idential to WriteFile [WriteBinFile℄, exept that (1) the string [bin℄ argument is

appended to the urrent ontents of the �le named name; (2) if the I/O mode does not

math the previous mode with whih name was written, the behaviour is not spei�ed;

and (3) if the �le does not exist, the response Failure (SearhError string) is in-

dued. All other errors have form Failure (WriteError string), and both requests

are hyperstrit in their seond argument.
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�

DeleteFile name

Deletes �le name, with suessful response Suess. If the �le does not exist, the

response Failure (SearhError string) is indued. If it annot be deleted for some

other reason, a response of the form Failure (WriteError string) is indued.

�

StatusFile name

Indues Failure (SearhError string) if an objet name does not exist, otherwise

indues Str status where status is a string ontaining, in this order: (1) either �t�,

�b�, �d�, or �u� depending on whether the objet is a text �le, binary �le, diretory,

or something else, respetively (if text and binary �les annot be distinguished, �f�

indiates either text or binary �le); (2) �r� if the objet is readable by this program,

�-� if not; and (3) �w� if the objet is writable by this program, �-� if not. For example

"dr-" denotes a diretory that an be read but not written. An implementation is

free to append more status information to this string.

Note 1. A proper implementation of ReadFile or ReadBinFilemay have to make opies

of �les in order to preserve referential transpareny|a suessful read of a �le returns a

lazy list whose ontents should be preserved, despite future writes to or deletions of that

�le, even if the lazy list has not yet been ompletely evaluated.

Note 2. Given the two juxtaposed requests:

[ ..., WriteFile name ontents1, ReadFile name, ... ℄

with the orresponding responses:

[ ..., Suess, Str ontents2, ... ℄

then ontents1 == ontents2 if ontents1 is a transparent string, assuming that there

were no external e�ets. A similar result would hold if the binary versions were used.

7.3 Channel System Requests

Channels are inherently di�erent from �les|they ontain ephemeral streams of data as

opposed to persistent stationary values. The most ommon hannels are standard input

(stdin), standard output (stdout), standard error (stderr), and standard eho (stdeho);

these four are the only required hannels in a valid implementation.

�

ReadChan name
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ReadBinChan name

Opens hannel name for input. A suessful response returns the ontents of the

hannel as a lazy stream of haraters [a binary value℄. If the hannel does not exist

the response Failure (SearhError string) is indued; all other errors have form

Failure (ReadError string).

Unlike �les, one a ReadChan or ReadBinChan request has been issued for a partiular

hannel, it annot be issued again for the same hannel in that program. This reets

the ephemeral nature of its ontents and prevents a serious spae leak.

�

AppendChan name string

AppendBinChan name bin

Writes string [bin℄ to hannel name. The semantis is as for AppendFile, exept:

(1) the seond argument is appended to whatever was previously written (if any-

thing); (2) if AppendChan and AppendBinChan are both issued to the same hannel,

the resulting behaviour is not spei�ed; (3) if the hannel does not exist, the re-

sponse Failure (SearhError string) is indued; and (4) if the maximum line

or page length of stdout, stderr, or stdeho is exeeded, the response Failure

(FormatError string) is indued (see Setion 7.1.2). All other errors have form

Failure (WriteError string). Both requests are hyperstrit in their seond argu-

ment.

�

StatusChan name

Indues Failure (SearhError string) if hannel name does not exist, otherwise

indues Str status where status is a string ontaining implementation-dependent

information about the named hannel. The only information required of a valid im-

plementation is that for the output hannels stdout, stdeho, and stderr: the be-

ginning of the status string must ontain two integers separated by a spae, the �rst

integer indiating the maximum line length (in haraters) allowed on the hannel,

the seond indiating the maximum page length (in lines) allowed (see Setion 7.1.2).

A zero length implies that there is no bound.

7.4 Environment Requests

�

Eho bool

Eho True enables ehoing of stdin on stdeho; Eho False disables it (see Se-

tion 7.1.4). Either Suess or Failure (OtherError string) is indued.
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The eho mode an only be set one by a partiular program, and it must be done

before any I/O involving stdin. If no Eho request is made, the default is True

(i.e. ehoing enabled).

�

GetArgs

Indues the response Str str, where str is a onatenation of the program's om-

mand line arguments separated by \n's.

�

GetEnv name

Returns the value of environment variable name. If suessful, the response will be

of the form Str s, where s is a string. If the environment variable does not exist, a

SearhError is indued.

�

SetEnv name string

Sets environment variable name to value string, with response Suess. If the envi-

ronment variable does not exist, it is reated.

7.5 Continuation-based I/O

Haskell supports an alternative style of I/O alled ontinuation-based I/O. Under this

model, a Haskell program still has type [Response℄->[Request℄, but instead of the user

manipulating the requests and responses diretly, a olletion of transations de�ned in a

ontinuation style, aptures the e�et of eah request/response pair.

Transations are funtions. For eah request Req there orresponds a transation req, as

shown in Figure 13. For example, ReadFile indues either a failure response Failure msg

or suess response Str ontents. In ontrast the transation readFile would be used in

ontinuation-based I/O, as for example,

readFile name (\ msg -> errorTransation)

(\ ontents -> suessTransation)

where the seond and third arguments are the failure ontinuation and suess ontinuation,

respetively. If the transation fails then the error ontinuation is applied to the error

message; if it sueeds then the suess ontinuation is applied to the ontents of the �le.

The following type synonyms and auxiliary funtions are de�ned for ontinuation-based

I/O:
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type Dialogue = [Response℄ -> [Request℄

type SuCont = Dialogue

type StrCont = String -> Dialogue

type BinCont = Bin -> Dialogue

type FailCont = IOError -> Dialogue

strDispath fail su (resp:resps) =

ase resp of Str val -> su val resps

Failure msg -> fail msg resps

binDispath fail su (resp:resps) =

ase resp of Bn val -> su val resps

Failure msg -> fail msg resps

suDispath fail su (resp:resps) =

ase resp of Suess -> su resps

Failure msg -> fail msg resps

abort :: FailCont

abort err = done

exit :: FailCont

exit err = appendChan stdout msg abort done

where msg = ase err of ReadError s -> s

WriteError s -> s

SearhError s -> s

FormatError s -> s

OtherError s -> s

let :: a -> (a -> b) -> b

let x k = k x

print :: (Text a) => a -> Dialogue

print x = appendChan stdout (show x) abort done

prints :: (Text a) => a -> String -> Dialogue

prints x s = appendChan stdout (shows x s) abort done

interat :: (String -> String) -> Dialogue

interat f = readChan stdin abort

(\x -> appendChan stdout (f x) abort done)
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done :: Dialogue

readFile :: Name -> FailCont -> StrCont -> Dialogue

writeFile :: Name -> String -> FailCont -> SuCont -> Dialogue

appendFile :: Name -> String -> FailCont -> SuCont -> Dialogue

readBinFile :: Name -> FailCont -> BinCont -> Dialogue

writeBinFile :: Name -> Bin -> FailCont -> SuCont -> Dialogue

appendBinFile :: Name -> Bin -> FailCont -> SuCont -> Dialogue

deleteFile :: Name -> FailCont -> SuCont -> Dialogue

statusFile :: Name -> FailCont -> StrCont -> Dialogue

readChan :: Name -> FailCont -> StrCont -> Dialogue

appendChan :: Name -> String -> FailCont -> SuCont -> Dialogue

readBinChan :: Name -> FailCont -> BinCont -> Dialogue

appendBinChan :: Name -> Bin -> FailCont -> SuCont -> Dialogue

statusChan :: Name -> FailCont -> StrCont -> Dialogue

eho :: Bool -> FailCont -> SuCont -> Dialogue

getArgs :: FailCont -> StrCont -> Dialogue

getEnv :: Name -> FailCont -> StrCont -> Dialogue

setEnv :: Name -> String -> FailCont -> SuCont -> Dialogue

done resps = [℄

readFile name fail su resps = --similarly for readBinFile

(ReadFile name) : strDispath fail su resps

writeFile name ontents fail su resps = --similarly for writeBinFile

(WriteFile name ontents) : suDispath fail su resps

appendFile name ontents fail su resps = --similarly for appendBinFile

(AppendFile name ontents) : suDispath fail su resps

deleteFile name fail su resps =

(DeleteFile name) : suDispath fail su resps

statusFile name fail su resps = --similarly for statusChan

(StatusFile name) : strDispath fail su resps

readChan name fail su resps = --similarly for readBinChan

(ReadChan name) : strDispath fail su resps

appendChan name ontents fail su resps = --similarly for appendBinChan

(AppendChan name ontents) : suDispath fail su resps

eho bool fail su resps =

(Eho bool) : suDispath fail su resps

getArgs fail su resps =

GetArgs : strDispath fail su resps

getEnv name fail su resps =

(GetEnv name) : strDispath fail su resps

setEnv name ontents fail su resps =

(SetEnv name ontents) : suDispath fail su resps

Figure 13: Transations of ontinuation-based I/O.
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7.6 A Small Example

Both of the following programs prompt the user for the name of a �le, and then look up and

display the ontents of the �le on standard-output. The �lename as typed by the user is

also ehoed. The �rst program uses the stream-based style (note the irrefutable patterns):

main ~(Suess : ~((Str userInput) : ~(Suess : ~(r4 : _)))) =

[ AppendChan stdout "please type a filename\n",

ReadChan stdin,

AppendChan stdout name,

ReadFile name,

AppendChan stdout (ase r4 of Str ontents -> ontents

Failure ioerror -> "an't open file")

℄ where (name : _) = lines userInput

The seond program uses the ontinuation-based style:

main = appendChan stdout "please type a filename\n" abort (

readChan stdin abort (\ userInput ->

let (lines userInput) (\ (name : _) ->

appendChan stdout name abort (

readFile name (\ ioerror -> appendChan stdout

"an't open file" abort done)

(\ ontents ->

appendChan stdout ontents abort done)))))

Many more examples and a general disussion of both forms of I/O may be found in a

report by Hudak and Sundaresh [6℄.
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A Standard Prelude

In this appendix the entire Haskell prelude is given. It is organised into a root module

and eight sub-modules.
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A.1 Prelude PreludeBuiltin
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A.2 Prelude PreludeCore

-- Standard types, lasses, and instanes

module PreludeCore (

Eq((=), (/=)),

Ord((<), (<=), (>=), (>), max, min),

Num((+), (-), (*), negate, abs, signum, fromInteger),

Integral(divRem, div, rem, mod, even, odd, toInteger),

Frational((/), fromRational),

Floating(pi, exp, log, sqrt, (**), logBase,

sin, os, tan, asin, aos, atan,

sinh, osh, tanh, asinh, aosh, atanh),

Real(toRational),

RealFra(properFration, approxRational),

RealFloat(floatRadix, floatDigits, floatRange,

enodeFloat, deodeFloat, exponent, signifiand, saleFloat),

Ix(range, index, inRange),

Enum(enumFrom, enumFromThen, enumFromTo, enumFromThenTo),

Text(readsPre, showsPre, readList, showList),

Binary(readBin, showBin),

-- List type: [_℄((:), [℄)

-- Tuple types: (_,_), (_,_,_), et.

-- Trivial type: ()

Bool(True, False),

Char, Int, Integer, Float, Double, Bin,

Ratio, Complex((:+)), Asso((:=)), Array,

String, Rational ) where

import PreludeBuiltin

import PreludeText(Text(readsPre, showsPre, readList, showList))

import PreludeRatio(Ratio, Rational)

import PreludeComplex

import PreludeArray(Asso(:=), Array)

import PreludeIO(Name, Request, Response, IOError,

Dialogue, SuCont, StrCont, BinCont, FailCont)

infixr 8 **

infixl 7 *

infix 7 /, `div`, `rem`, `mod`

infixl 6 +, -

infixr 3 :

infix 2 ==, /=, <, <=, >=, >
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-- Equality and Ordered lasses

lass Eq a where

(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)

lass (Eq a) => Ord a where

(<), (<=), (>=), (>):: a -> a -> Bool

max, min :: a -> a -> Bool

x < y = x <= y && x /= y

x >= y = y <= x

x > y = y < x

max x y | x >= y = x

| y >= x = y

min x y | x <= y = x

| y <= x = y

-- Numeri lasses

lass (Eq a) => Num a where

(+), (-), (*) :: a -> a -> a

negate :: a -> a

abs, signum :: a -> a

fromInteger :: Integer -> a

x - y = x + negate y

lass (Num a, Ord a) => Real a where

toRational :: a -> Rational

lass (Real a) => Integral a where

div, rem, mod :: a -> a -> a

divRem :: a -> a -> (a,a)

even, odd :: a -> Bool

toInteger :: a -> Integer

x `div` y = q where (q,r) = divRem x y

x `rem` y = r where (q,r) = divRem x y

x `mod` y = if signum x == - (signum y) then r + y else r

where r = x `rem` y

even x = x `rem` 2 == 0

odd = not . even
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lass (Num a) => Frational a where

(/) :: a -> a -> a

fromRational :: Rational -> a

lass (Frational a) => Floating a where

pi :: a

exp, log, sqrt :: a -> a

(**), logBase :: a -> a -> a

sin, os, tan :: a -> a

asin, aos, atan :: a -> a

sinh, osh, tanh :: a -> a

asinh, aosh, atanh :: a -> a

x ** y = exp (log x * y)

logBase x y = log y / log x

sqrt x = x ** 0.5

tan x = sin x / os x

tanh x = sinh x / osh x

lass (Real a, Frational a) => RealFra a where

properFration :: a -> (Integer,a)

approxRational :: a -> a -> Rational

lass (RealFra a, Floating a) => RealFloat a where

floatRadix :: a -> Integer

floatDigits :: a -> Int

floatRange :: a -> (Int,Int)

deodeFloat :: a -> (Integer,Int)

enodeFloat :: Integer -> Int -> a

exponent :: a -> Int

signifiand :: a -> a

saleFloat :: Int -> a -> a

exponent x = if m == 0 then 0 else n + floatDigits x

where (m,n) = deodeFloat x

signifiand x = enodeFloat m (- (floatDigits x))

where (m,_) = deodeFloat x

saleFloat k x = enodeFloat m (n+k)

where (m,n) = deodeFloat x
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-- Index and Enumeration lasses

lass (Ord a) => Ix a where

range :: (a,a) -> [a℄

index :: (a,a) -> a -> Int

inRange :: (a,a) -> a -> Bool

lass (Ix a) => Enum a where

enumFrom :: a -> [a℄ -- [n..℄

enumFromThen :: a -> a -> [a℄ -- [n,n'..℄

enumFromTo :: a -> a -> [a℄ -- [n..m℄

enumFromThenTo :: a -> a -> a -> [a℄ -- [n,n'..m℄

enumFromTo n m = takeWhile ((>=) m) (enumFrom n)

enumFromThenTo n n' m

= takeWhile ((if n' >= n then (>=) else (<=)) m)

(enumFromThen n n')

-- Binary lass

lass Binary a where

readBin :: Bin -> (a,Bin)

showBin :: a -> Bin -> Bin

-- Boolean type

data Bool = False | True

-- Charater type

instane Eq Char where

 == ' = ord  == ord '

instane Ord Char where

 <= ' = ord  <= ord '

instane Ix Char where

range (,') = [..'℄

index (,') i = ord i - ord 

inRange (,') i = ord  <= i && i <= ord '

where i = ord i
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instane Enum Char where

enumFrom  = map hr [ord  ..℄

enumFromThen  ' = map hr [ord , ord ' ..℄

type String = [Char℄

-- Standard Integral types

instane Eq Int where

(==) = primEqInt

instane Eq Integer where

(==) = primEqInteger

instane Ord Int where

(<=) = primLeInt

instane Ord Integer where

(<=) = primLeInteger

instane Num Int where

(+) = primPlusInt

negate = primNegInt

(*) = primMulInt

abs = absReal

signum = signumReal

fromInteger = primIntegerToInt

instane Num Integer where

(+) = primPlusInteger

negate = primNegInteger

(*) = primMulInteger

abs = absReal

signum = signumReal

fromInteger x = x

absReal x | x >= 0 = x

| otherwise = - x

signumReal x | x == 0 = 0

| x > 0 = 1

| otherwise = -1
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instane Real Int where

toRational x = toInteger x % 1

instane Real Integer where

toRational x = x % 1

instane Integral Int where

divRem = primDivRemInt

toInteger = primIntToInteger

instane Integral Integer where

divRem = primDivRemInteger

toInteger x = x

instane Ix Int where

range (m,n) = [m..n℄

index (m,n) i = i - m

inRange (m,n) i = m <= i && i <= n

instane Ix Integer where

range (m,n) = [m..n℄

index (m,n) i = fromInteger (i - m)

inRange (m,n) i = m <= i && i <= n

instane Enum Int where

enumFrom n = enumFromBy n 1

enumFromThen n m = enumFromBy n (m - n)

instane Enum Integer where

enumFrom n = enumFromBy n 1

enumFromThen n m = enumFromBy n (m - n)

enumFromBy n k = n : enumFromBy (n+k) k

-- Standard Floating types

instane Eq Float where

(==) = primEqFloat

instane Eq Double where

(==) = primEqDouble

instane Ord Float where

(<=) = primLeFloat
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instane Ord Double where

(<=) = primLeDouble

instane Num Float where

(+) = primPlusFloat

negate = primNegFloat

(*) = primMulFloat

abs = absReal

signum = signumReal

fromInteger n = enodeFloat n 0

instane Num Double where

(+) = primPlusDouble

negate = primNegDouble

(*) = primMulDouble

abs = absReal

signum = signumReal

fromInteger n = enodeFloat n 0

instane Real Float where

toRational = floatingToRational

instane Real Double where

toRational = floatingToRational

floatingToRational x = (m%1)*(b%1)^^n

where (m,n) = deodeFloat x

b = floatRadix x

instane Frational Float where

(/) = primDivFloat

fromRational = rationalToFloating

instane Frational Double where

(/) = primDivDouble

fromRational = rationalToFloating

rationalToFloating x = fromInteger (numerator x)

/ fromInteger (denominator x)
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instane Floating Float where

pi = primPiFloat

exp = primExpFloat

log = primLogFloat

sqrt = primSqrtFloat

sin = primSinFloat

os = primCosFloat

tan = primTanFloat

asin = primAsinFloat

aos = primAosFloat

atan = primAtanFloat

sinh = primSinhFloat

osh = primCoshFloat

tanh = primTanhFloat

asinh = primAsinhFloat

aosh = primAoshFloat

atanh = primAtanhFloat

instane Floating Double where

pi = primPiDouble

exp = primExpDouble

log = primLogDouble

sqrt = primSqrtDouble

sin = primSinDouble

os = primCosDouble

tan = primTanDouble

asin = primAsinDouble

aos = primAosDouble

atan = primAtanDouble

sinh = primSinhDouble

osh = primCoshDouble

tanh = primTanhDouble

asinh = primAsinhDouble

aosh = primAoshDouble

atanh = primAtanhDouble

instane RealFra Float where

properFration = floatProperFration

approxRational = floatApproxRational

instane RealFra Double where

properFration = floatProperFration

approxRational = floatApproxRational
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floatProperFration x = if n >= 0

then (m * b^n, 0)

else (m', fromInteger k / fromInteger d)

where (m,n) = deodeFloat x

b = floatRadix x

(m',k) = divRem m d

d = b^(-n)

floatApproxRational x eps =

ase withinEps of

r:r':_ | denominator r == denominator r' -> r'

r:_ -> r

where withinEps = dropWhile (\r -> abs (fromRational r - x) > eps)

(approximants p q)

(p,q) = if n < 0 then (m, b^(-n)) else (m*b^n, 1)

(m,n) = deodeFloat x

b = toInteger (floatRadix x)

instane RealFloat Float where

floatRadix _ = primFloatRadix

floatDigits _ = primFloatDigits

floatRange _ = (primFloatMinExp,primFloatMaxExp)

deodeFloat = primDeodeFloat

enodeFloat = primEnodeFloat

instane RealFloat Double where

floatRadix _ = primDoubleRadix

floatDigits _ = primDoubleDigits

floatRange _ = (primDoubleMinExp,primDoubleMaxExp)

deodeFloat = primDeodeDouble

enodeFloat = primEnodeDouble

instane Ix Float where

range (x,y) = [x..y℄

index (x,y) i = floor (i - x)

inRange (x,y) i = x <= i && i <= y

instane Ix Double where

range (x,y) = [x..y℄

index (x,y) i = floor (i - x)

inRange (x,y) i = x <= i && i <= y

instane Enum Float where

enumFrom x = enumFromBy x 1

enumFromThen x y = enumFromBy x (y - x)
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instane Enum Double where

enumFrom x = enumFromBy x 1

enumFromThen x y = enumFromBy x (y - x)
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A.3 Prelude PreludeRatio



88 A STANDARD PRELUDE

A.4 Prelude PreludeComplex

-- Complex Numbers

module PreludeComplex ( Complex(:+) ) where

infix 6 :+

data (RealFloat a) => Complex a = a :+ a deriving (Eq,Binary,Text)

instane (RealFloat a) => Num (Complex a) where

(x:+y) + (x':+y') = (x+x') :+ (y+y')

(x:+y) - (x':+y') = (x-x') :+ (y-y')

(x:+y) * (x':+y') = (x*x'-y*y') :+ (x*y'+y*x')

negate (x:+y) = negate x :+ negate y

abs z = magnitude z :+ 0

signum 0 = 0

signum z�(x:+y) = x/r :+ y/r where r = magnitude z

fromInteger n = fromInteger n :+ 0

instane (RealFloat a) => Frational (Complex a) where

(x:+y) / (x':+y') = (x*x''+y*y'') / d :+ (y*x''-x*y'') / d

where x'' = saleFloat k x'

y'' = saleFloat k y'

k = - (max (exponent x') (exponent y'))

d = x'*x'' + y'*y''

fromRational a = fromRational a :+ 0
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instane (RealFloat a) => Floating (Complex a) where

pi = pi :+ 0

exp (x:+y) = expx * os y :+ expx * sin y

where expx = exp x

log z = log (magnitude z) :+ phase z

sqrt 0 = 0

sqrt z�(x:+y) = u :+ (if y < 0 then -v else v)

where (u,v) = if x < 0 then (v',u') else (u',v')

v' = abs y / (u'*2)

u' = sqrt ((magnitude z + abs x) / 2)

sin (x:+y) = sin x * osh y :+ os x * sinh y

os (x:+y) = os x * osh y :+ sin x * sinh y

tan (x:+y) = (sinx*oshy:+osx*sinhy)/(osx*oshy:+sinx*sinhy)

where sinx = sin x

osx = os x

sinhy = sinh y

oshy = osh y

sinh (x:+y) = os y * sinh x :+ sin y * osh x

osh (x:+y) = os y * osh x :+ (- (sin y) * sinh x)

tanh (x:+y) = (osy*sinhx:+siny*oshx)/(osy*oshx:+(-siny*sinhx))

where siny = sin y

osy = os y

sinhx = sinh x

oshx = osh x

asin z�(x:+y) = y':+(-x')

where (x':+y') = log ((-y:+x) + sqrt (1 - z*z))

aos z�(x:+y) = y'':+(-x'')

where (x'':+y'') = log (z + ((-y'):+x'))

(x':+y') = sqrt (1 - z*z)

atan z�(x:+y) = y':+(-x')

where

(x':+y') = log (((-y+1):+x) * sqrt (1/(1+z*z)))

asinh z = log (z + sqrt (1+z*z))

aosh z = log (z + (z+1) * sqrt ((z-1)/(z+1)))

atanh z = log ((z+1) * sqrt (1 - 1/(z*z)))
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A.5 Prelude PreludeList
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A.6 Prelude PreludeArray
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A.7 Prelude PreludeText

module PreludeText (

Text(readsPre,showsPre,readList,showList),

ReadS, ShowS, reads, shows, show, read, lex,

showChar, showString, readParen, showParen ) where

type ReadS a = String -> [(a,String)℄

type ShowS = String -> String

lass Text a where

readsPre :: Int -> ReadS a

showsPre :: Int -> a -> ShowS

readList :: ReadS [a℄

showList :: [a℄ -> ShowS

readList = readParen False

(\r -> [pr | ("[",s) <- [lex r℄, pr <- readl s℄)

where readl s = [([℄,t) | ("℄",t) <- [lex s℄℄ ++

[(x:xs,v) | (x,t) <- reads s,

(",",u) <- [lex t℄,

(xs,v) <- readl u ℄

showList xs = showChar '[' . showl xs

where showl [℄ = showChar '℄'

showl (x:xs) = shows x . showChar ',' . showl xs

reads :: (Text a) => ReadS a

reads = readsPre 0

shows :: (Text a) => a -> ShowS

shows = showsPre 0

read :: (Text a) => String -> a

read s = x

where [x℄ = [x | (x,t) <- reads s, ("","") <- [lex t℄℄

show :: (Text a) => a -> String

show x = shows x ""

showChar :: Char -> ShowS

showChar = (:)

showString :: String -> ShowS

showString = (++)

showParen :: Bool -> ShowS -> ShowS

showParen b p = if b then showChar '(' . p . showChar ')' else p
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readParen :: Bool -> ReadS a -> ReadS a

readParen b g = if b then mandatory else optional

where optional r = g r ++ mandatory r

mandatory r = [(x,u) | ("(",s) <- [lex r℄,

(x,t) <- optional s,

(")",u) <- [lex t℄ ℄

lex :: String -> (String,String)

lex "" = ("","")

lex ('-':'>':s) = ("->",s)

lex ('-':s) = ("-",s)

lex r�(:s) =

if isSpae  then lex (dropWhile isSpae s)

else if isAlpha  then span isIdChar r

else if isSingleSym  then ([℄,s)

else if isMultiSym  then span isMultiSym r

else if isDigit  then lexNum r

else if  == '\'' then ('\'' : h ++ "'", u)

where {(h,t) = lexLitChar s; '\'':u = t}

else if  == '"' then ('"':str, t)

where (str,t) = lexString s

else error "bad harater"

where

isIdChar  = isAlphanum  ||  == '_' ||  == '\''

isSingleSym  =  `in` ",;()[℄{}_"

isMultiSym  =  `in` "!�#$%&*+-./<=>?\\^|~"

lexNum r = (ds++f, t) where (ds,s) = span isDigit r

(f,t) = lexFraExp s

lexFraExp ('.':r) = ('.':ds++e, t)

where (ds,s) = lexDigits r

(e, t) = lexExp s

lexFraExp s = ("",s)

lexExp ('e':'-':r) = ("e-"++ds, s) where (ds,s) = lexDigits r

lexExp ('e':r) = ('e':ds, s) where (ds,s) = lexDigits r

lexExp s = ("",s)

lexDigits r�(d:_) | isDigit d = span isDigit r

lexString ('"':s) = ("\"", s)

lexString s = (h++str, u)

where (h,t) = lexLitChar s

(str,u) = lexString t
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lexLitChar :: String -> (String,String)

lexLitChar ('\\':s) = ('\\':es, t)

where (es,t) = lexEs s

lexEs (:s) |  `in` "abfnrtv\\\"'&" = ([℄,s)

lexEs ('^'::s) | isUpper  = (['^',℄, s)

lexEs ('N':'U':'L':s) = ("NUL", s)

lexEs ('S':'O':'H':s) = ("SOH", s)

lexEs ('S':'T':'X':s) = ("STX", s)

lexEs ('E':'T':'X':s) = ("ETX", s)

lexEs ('E':'O':'T':s) = ("EOT", s)

lexEs ('E':'N':'Q':s) = ("ENQ", s)

lexEs ('A':'C':'K':s) = ("ACK", s)

lexEs ('B':'E':'L':s) = ("BEL", s)

lexEs ('B':'S':s) = ("BS", s)

lexEs ('H':'T':s) = ("HT", s)

lexEs ('L':'F':s) = ("LF", s)

lexEs ('V':'T':s) = ("VT", s)

lexEs ('F':'F':s) = ("FF", s)

lexEs ('C':'R':s) = ("CR", s)

lexEs ('S':'O':s) = ("SO", s)

lexEs ('S':'I':s) = ("SI", s)

lexEs ('D':'L':'E':s) = ("DLE", s)

lexEs ('D':'C':'1':s) = ("DC1", s)

lexEs ('D':'C':'2':s) = ("DC2", s)

lexEs ('D':'C':'3':s) = ("DC3", s)

lexEs ('D':'C':'4':s) = ("DC4", s)

lexEs ('N':'A':'K':s) = ("NAK", s)

lexEs ('S':'Y':'N':s) = ("SYN", s)

lexEs ('E':'T':'B':s) = ("ETB", s)

lexEs ('C':'A':'N':s) = ("CAN", s)

lexEs ('E':'M':s) = ("EM", s)

lexEs ('S':'U':'B':s) = ("SUB", s)

lexEs ('E':'S':'C':s) = ("ESC", s)

lexEs ('F':'S':s) = ("FS", s)

lexEs ('G':'S':s) = ("GS", s)

lexEs ('R':'S':s) = ("RS", s)

lexEs ('U':'S':s) = ("US", s)

lexEs ('S':'P':s) = ("SP", s)

lexEs ('D':'E':'L':s) = ("DEL", s)

lexEs r�(d:s) | isDigit d = span isDigit r

lexEs ('o':s) = ('o':os, t)

where (os,t) = nonempty

(\ ->  >= '0' &&

 <= '7' )
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lexEs ('x':s) = ('x':xs, t)

where (xs,t) = nonempty

(\ -> isDigit  ||

 >= 'A' &&

 <= 'F' )

lexEs r�(:s) | isSpae  = (sp++"\\", u)

where

(sp,t) = span isSpae s

('\\',u) = t

nonempty p r�(:s) | p  = span p r

lexLitChar (:s) = ([℄,s)

-- Trivial type

instane Text () where

readsPre p = readParen False

(\r -> [((),t) | ("(",s) <- [lex r℄,

(")",t) <- [lex s℄ ℄ )

showsPre p () = showString "()"

-- Charater type

instane Text Char where

readsPre p = readParen False

(\r -> [(,t) | ('\'':s,t)<-[lex r℄,

(,_) <-[readLitChar s℄℄)

showsPre p '\'' = showString "'\\''"

showsPre p  = showChar '\'' . showLitChar  . showChar '\''

readList = readParen False (\r -> [(s,t) | ('"':s, t) <- [lex r℄,

pr <- readl s℄)

where readl s = [("",t) | '"':t <- [s℄ ℄ ++

[(:s,u) | ( ,t) <- readLitChar s,

(s,u) <- readl u ℄

showList s = showChar '"' . showl s

where showl "" = showChar '"'

showl ('\'':s) = showString "\\'" . showl s

showl (:s) = showLitChar  . showl s
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readLitChar :: ReadS Char

readLitChar s = if ignore h then readLitChar t else [(harVal h, t)℄

where

(h,t) = lexLitChar s

ignore "\\&" = True

ignore ('\\'::_) | isSpae  = True

ignore _ = False

harVal ('\\':es) = esVal es

harVal [℄ = 

esVal "a" = '\a'

esVal "b" = '\b'

esVal "f" = '\f'

esVal "n" = '\n'

esVal "r" = '\r'

esVal "t" = '\t'

esVal "v" = '\v'

esVal "\\" = '\\'

esVal "\"" = '"'

esVal "'" = '\''

esVal ('^':[℄) = hr (ord  - 64)

esVal "NUL" = '\NUL'

esVal "SOH" = '\SOH'

esVal "STX" = '\STX'

esVal "ETX" = '\ETX'

esVal "EOT" = '\EOT'

esVal "ENQ" = '\ENQ'

esVal "ACK" = '\ACK'

esVal "BEL" = '\BEL'

esVal "BS" = '\BS'

esVal "HT" = '\HT'

esVal "LF" = '\LF'

esVal "VT" = '\VT'

esVal "FF" = '\FF'

esVal "CR" = '\CR'

esVal "SO" = '\SO'

esVal "SI" = '\SI'

esVal "DLE" = '\DLE'

esVal "DC1" = '\DC1'

esVal "DC2" = '\DC2'

esVal "DC3" = '\DC3'

esVal "DC4" = '\DC4'



A.7 Prelude PreludeText 97

esVal "NAK" = '\NAK'

esVal "SYN" = '\SYN'

esVal "ETB" = '\ETB'

esVal "CAN" = '\CAN'

esVal "EM" = '\EM'

esVal "SUB" = '\SUB'

esVal "ESC" = '\ESC'

esVal "FS" = '\FS'

esVal "GS" = '\GS'

esVal "RS" = '\RS'

esVal "US" = '\US'

esVal "SP" = '\SP'

esVal "DEL" = '\DEL'

esVal r�(d:s) | isDigit d = hr n

where [(n,_)℄ = readDe r

esVal ('o':s) = hr n

where [(n,_)℄ = readOt s

esVal ('x':s) = hr n

where [(n,_)℄ = readHex s

showLitChar :: Char -> ShowS

showLitChar '\\' = showString "\\\\"

showLitChar  | isPrint  = showChar 

showLitChar '\a' = showString "\\a"

showLitChar '\b' = showString "\\b"

showLitChar '\f' = showString "\\f"

showLitChar '\n' = showString "\\n"

showLitChar '\r' = showString "\\r"

showLitChar '\t' = showString "\\t"

showLitChar '\v' = showString "\\v"

showLitChar  = showChar '\\' . showInt (ord ) . ont

where ont s�(:s) | isDigit  = "\\&" ++ s

ont s = s

readDe, readOt, readHex :: (Integral a) => ReadS a

readDe = readInt 10 isDigit (\d -> ord d - ord '0')

readOt = readInt 8 (\ ->  >= 0 &&  <= 7) (\d -> ord d - ord '0')

readHex = readInt 16 (\ -> isDigit  ||  >= 'A' &&  <= 'F')

(\d -> if isDigit d then ord d - ord '0'

else ord d - ord 'A' + 10)
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readInt :: (Integral a) => a -> (Char -> Bool) -> (Char -> a) -> ReadS a

readInt radix isDig digToInt s =

[(foldl (\n d -> n * radix + digToInt d) digToInt d, r)

| (d:ds,r) <- [span isDig s℄ ℄

showInt :: (Integral a) => a -> ShowS

showInt n = if n < 0 then showChar '-' . showInt' (-n) else showInt' n

where showInt' n r = hr (ord '0' + d) :

if n' > 0 then showInt' n' r else r

where (n',d) = divRem n 10

-- Standard integral types

instane Text Int where

readsPre = readIntegral

showsPre = showIntegral

instane Text Integer where

readsPre = readIntegral

showsPre = showIntegral

readIntegral p = readParen False read'

where read' r = [(-n,t) | ("-",s) <- [lex r℄,

(n,t) <- [read'' s℄ ℄

read'' r = [(n,s) | (ds,s) <- [lex r℄,

(n,"") <- readDe ds℄

showIntegral p n = showParen (n < 0 && p > 6) (showInt n)

-- Standard floating-point types

instane Text Float where

readsPre = readFloating

showsPre = showFloating

instane Text Double where

readsPre = readFloating

showsPre = showFloating
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readFloating p = readParen False read'

where read' r = [(-x,t) | ("-",s) <- [lex r℄,

(x,t) <- [read'' s℄ ℄

read'' r = [(fromRational x,t)

| (s,t) <- [lex r℄,

(x,"") <- readFix s ++ readSi s℄

readFix r = [(x%1 + y%10^(length t), u)

| (x,'.':s) <- readDe r,

(t,u) <- [span isDigit s℄,

y <- [read t℄ ℄

readSi r = [(x*(10^n%1),t)

| (x,'e':s) <- readFix r,

(n,t) <- readDe s ℄ ++

[(x*(1%10^n),t)

| (x,'e':'-':s) <- readFix r,

(n,t) <- readDe s ℄

showFloating p x =

if p >= 0 then show' x else showParen (p>6) (showChar '-'.show'(-x))

where

show' x = if e >= m || e < 0 then showSi else showFix e

showSi = showFix 1 . showChar 'e' . showInt e

showFix k = showString (fill (take k ds)) . showChar '.'

. showString (fill (drop k ds))

fill ds = if null ds then "0" else ds

ds = if sig == 0 then take m (repeat '0') else show sig

(m, sig, e) = if b == 10 then

(w, s, if s == 0 then 0 else n+w)

else

(eiling ((fromInt w * log (fromInteger b))/log 10) + 1,

round ((s%1) * (b%1)^^n * 10^^(m-e)),

if s == 0 then 0 else floor (logBase 10 x))

(s, n) = deodeFloat x

b = floatRadix x

w = floatDigits x

-- Lists

instane (Text a) => Text [a℄ where

readsPre p = readList

showsPre p = showList
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-- Tuples

instane (Text a, Text b) => Text (a,b) where

readsPre p = readParen False

(\r -> [((x,y), w) | ("(",s) <- [lex r℄,

(x,t) <- reads s,

(",",u) <- [lex t℄,

(y,v) <- reads u

(")",w) <- [lex v℄ ℄ )

showsPre p (x,y) = showChar '(' . shows x . showChar ',' .

shows y . showChar ')'

-- et etera
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A.8 Prelude PreludeIO

-- I/O funtions and definitions

module PreludeIO where

-- File and hannel names:

type Name = String

stdin = "stdin"

stdout = "stdout"

stderr = "stderr"

stdeho = "stdeho"

-- Requests and responses:

data Request = -- file system requests:

ReadFile Name

| WriteFile Name String

| AppendFile Name String

| ReadBinFile Name

| WriteBinFile Name Bin

| AppendBinFile Name Bin

| DeleteFile Name

| StatusFile Name

-- hannel system requests:

| ReadChan Name

| AppendChan Name String

| ReadBinChan Name

| AppendBinChan Name Bin

| StatusChan Name

-- environment requests:

| Eho Bool

| GetArgs

| GetEnv Name

| SetEnv Name String

data Response = Suess

| Str String

| Bn Bin

| Failure IOError
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data IOError = WriteError String

| ReadError String

| SearhError String

| FormatError String

| OtherError String

-- Continuation-based I/O:

type Dialogue = [Response℄ -> [Request℄

type SuCont = Dialogue

type StrCont = String -> Dialogue

type BinCont = Bin -> Dialogue

type FailCont = IOError -> Dialogue

done :: Dialogue

readFile :: Name -> FailCont -> StrCont -> Dialogue

writeFile :: Name -> String -> FailCont -> SuCont -> Dialogue

appendFile :: Name -> String -> FailCont -> SuCont -> Dialogue

readBinFile :: Name -> FailCont -> BinCont -> Dialogue

writeBinFile :: Name -> Bin -> FailCont -> SuCont -> Dialogue

appendBinFile :: Name -> Bin -> FailCont -> SuCont -> Dialogue

deleteFile :: Name -> FailCont -> SuCont -> Dialogue

statusFile :: Name -> FailCont -> StrCont -> Dialogue

readChan :: Name -> FailCont -> StrCont -> Dialogue

appendChan :: Name -> String -> FailCont -> SuCont -> Dialogue

readBinChan :: Name -> FailCont -> BinCont -> Dialogue

appendBinChan :: Name -> Bin -> FailCont -> SuCont -> Dialogue

eho :: Bool -> FailCont -> SuCont -> Dialogue

getArgs :: FailCont -> StrCont -> Dialogue

getEnv :: Name -> FailCont -> StrCont -> Dialogue

setEnv :: Name -> String -> FailCont -> SuCont -> Dialogue

done resps = [℄

readFile name fail su resps =

(ReadFile name) : strDispath fail su resps

writeFile name ontents fail su resps =

(WriteFile name ontents) : suDispath fail su resps

appendFile name ontents fail su resps =

(AppendFile name ontents) : suDispath fail su resps
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readBinFile name fail su resps =

(ReadBinFile name) : binDispath fail su resps

writeBinFile name ontents fail su resps =

(WriteBinFile name ontents) : suDispath fail su resps

appendBinFile name ontents fail su resps =

(AppendBinFile name ontents) : suDispath fail su resps

deleteFile name fail su resps =

(DeleteFile name) : suDispath fail su resps

statusFile name fail su resps =

(StatusFile name) : strDispath fail su resps

readChan name fail su resps =

(ReadChan name) : strDispath fail su resps

appendChan name ontents fail su resps =

(AppendChan name ontents) : suDispath fail su resps

readBinChan name fail su resps =

(ReadBinChan name) : binDispath fail su resps

appendBinChan name ontents fail su resps =

(AppendBinChan name ontents) : suDispath fail su resps

eho bool fail su resps =

(Eho bool) : suDispath fail su resps

getArgs fail su resps =

GetArgs : strDispath fail su resps

getEnv name fail su resps =

(GetEnv name) : strDispath fail su resps

setEnv name val fail su resps =

(SetEnv name val) : suDispath fail su resps

strDispath fail su (resp:resps) = ase resp of

Str val -> su val resps

Failure msg -> fail msg resps
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binDispath fail su (resp:resps) = ase resp of

Bn val -> su val resps

Failure msg -> fail msg resps

suDispath fail su (resp:resps) = ase resp of

Suess -> su resps

Failure msg -> fail msg resps

abort :: FailCont

abort msg = done

exit :: FailCont

exit err = appendChan stdout msg abort done

where msg = ase err of ReadError s -> s

WriteError s -> s

SearhError s -> s

FormatError s -> s

OtherError s -> s

let :: a -> (a -> b) -> b

let x k = k x

print :: (Text a) => a -> Dialogue

print x = appendChan stdout (show x) abort done

prints :: (Text a) => a -> String -> Dialogue

prints x s = appendChan stdout (shows x s) abort done

interat :: (String -> String) -> Dialogue

interat f = readChan stdin abort

(\x -> appendChan stdout (f x) abort done)
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B Syntax

B.1 Notational Conventions

These notational onventions are used for presenting syntax:

[pattern℄ optional

fpatterng zero or more repetitions

(pattern) grouping

pat

1

j pat

2

hoie

pat

fpat

0

g

di�erene|elements generated by pat

exept those generated by pat

0

fibonai terminal syntax in typewriter font

BNF-like syntax is used throughout, with produtions having form:

nonterm ! alt

1

j alt

2

j : : : j alt

n

B.2 Lexial Syntax

program ! f lexeme j whitespae g

lexeme ! varid j onid j varop j onop j literal j speial j reservedop j reservedid

literal ! integer j oat j har j string

speial ! ( j ) j , j ; j [ j ℄ j _ j { j }

whitespae ! whitestu� fwhitestu� g

whitestu� ! newline j spae j tab j vertab j formfeed j omment j nomment

newline ! a newline (system dependent)

spae ! a spae

tab ! a horizontal tab

vertab ! a vertial tab

formfeed ! a form feed

omment ! -- fanyg newline

nomment ! {- fwhitespae j any

f{- j -}g

g -}

any ! graphi j spae j tab

graphi ! large j small j digit

j ! j " j # j $ j % j & j � j ( j ) j * j +

j , j - j . j / j : j ; j < j = j > j ? j �

j [ j \ j ℄ j ^ j _ j � j { j | j } j ~

small ! a j b j : : : j z

large ! A j B j : : : j Z

digit ! 0 j 1 j : : : j 9
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avarid ! (small fsmall j large j digit j � j _g)

freservedidg

varid ! avarid j (avarop)

aonid ! large fsmall j large j digit j � j _g

onid ! aonid j (aonop)

reservedid ! ase j lass j data j default j deriving j else j hiding

j if j import j infix j infixl j infixr j instane j interfae

j module j of j renaming j then j to j type j where

avarop ! ( symbol fsymbol j :g )

freservedopg

j -

varop ! avarop j �avarid�

aonop ! (: fsymbol j :g)

freservedopg

onop ! aonop j �aonid�

symbol ! ! j # j $ j % j & j * j + j . j / j < j = j > j ? j � j \ j ^ j | j ~

reservedop ! .. j :: j => j = j � j \ j | j ~

var ! varid (variables)

on ! onid (onstrutors)

tyvar ! avarid (type variables)

tyon ! aonid (type onstrutors)

tyls ! aonid (type lasses)

modid ! aonid (modules)

integer ! digitfdigitg

oat ! integer.integer [e[-℄integer ℄

har ! � (graphi

f� j \g

j spae j esape

f\&g

) �

string ! " fgraphi

f" j \g

j spae j esape j gapg "

esape ! \ ( hares j asii j integer j o otitfotitg j x hexitfhexitg )

hares ! a j b j f j n j r j t j v j \ j " j � j &

asii ! ^ntrl j NUL j SOH j STX j ETX j EOT j ENQ j ACK

j BEL j BS j HT j LF j VT j FF j CR j SO j SI j DLE

j DC1 j DC2 j DC3 j DC4 j NAK j SYN j ETB j CAN

j EM j SUB j ESC j FS j GS j RS j US j SP j DEL

ntrl ! large j � j [ j \ j ℄ j ^ j _

gap ! \ ftab j spaeg newline ftab j spaeg \

hexit ! digit j A j B j C j D j E j F j a j b j  j d j e j f

otit ! 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7

B.3 Layout

De�nitions: The indentation of a lexeme is the olumn number indiating the start of that

lexeme; the indentation of a line is the indentation of its left-most lexeme. To determine

the olumn number, assume a �xed-width font with this tab onvention: tab stops are 8
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haraters apart, and a tab harater auses the insertion of enough spaes to align the

urrent position with the next tab stop.

In the syntax given in the other parts of the report, delaration lists are always preeded

by the keyword where or of, and are enlosed within urly braes ({ }) with the individual

delarations separated by semiolons (;). For example, the syntax of a where expression is:

exp where { del

1

; del

2

; : : : ; del

n

}

Haskell permits the omission of the braes and semiolons by using layout to onvey

the same information. This allows both layout-sensitive and -insensitive styles of oding,

whih an be freely mixed within one program. Beause layout is not required, Haskell

programs may be mehanially produed by other programs.

The layout (or \o�-side") rule takes e�et whenever the open brae is omitted after the

keyword where or of. When this happens, the indentation of the next lexeme (whether or

not on a new line) is remembered and the omitted open brae is inserted (the whitespae

preeding the lexeme may inlude omments). For eah subsequent line, if it ontains only

whitespae or is indented more, then the previous item is ontinued (nothing is inserted);

if it is indented the same amount, then a new item begins (a semiolon is inserted); and if

it is indented less, then the delaration list ends (a lose brae is inserted). A lose brae is

also inserted whenever the syntati ategory ontaining the delaration list ends (i.e. if an

illegal lexeme is enountered at a point where a lose brae would be legal, a lose brae is

inserted). The layout rule will math only those open braes that it has inserted; an open

brae that the user has inserted must be mathed by a lose brae inserted by the user.

Given these rules, a single newline may atually terminate several delaration lists. Also,

these rules permit:

f x = exp1 where a = 1; b = 2

g y = exp2

making a, b and g all part of the same delaration list.

To failitate the use of layout at the top level of a module (several modules may reside

in one �le), the keyword module and the end-of-�le token are assumed to our in olumn

0 (whereas normally the �rst olumn is 1). Otherwise, all top-level delarations would have

to be indented.

B.4 Context-Free Syntax

module ! module modid [exports℄ where body

j body

body ! { [impdels ;℄ [�xdels ;℄ topdels }

j { impdels }

modid ! aonid

impdels ! impdel

1

; : : : ; impdel

n

(n � 1 )
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exports ! ( export

1

, : : : , export

n

) (n � 1 )

export ! varid

j tyon

j tyon (..)

j tyon ( onid

1

, : : : , onid

n

) (n � 1 )

j tyls (..)

j tyls ( varid

1

, : : : , varid

n

) (n � 0 )

j modid ..

impdel ! import modid [impspe℄ [renaming renamings℄

impspe ! ( import

1

, : : : , import

n

) (n � 0 )

j hiding ( import

1

, : : : , import

n

) (n � 1 )

import ! varid

j tyon

j tyon (..)

j tyon ( onid

1

, : : : , onid

n

) (n � 1 )

j tyls (..)

j tyls ( varid

1

, : : : , varid

n

) (n � 0 )

renamings ! ( renaming

1

, : : : , renaming

n

) (n � 1 )

renaming ! name

1

to name

2

name ! varid j onid

�xdels ! �x

1

; : : : ; �x

n

(n � 1 )

�x ! infixl [digit ℄ ops

j infixr [digit ℄ ops

j infix [digit ℄ ops

ops ! op

1

, : : : , op

n

(n � 1 )

op ! varop j onop

topdels ! topdel

1

; : : : ; topdel

n

(n � 1 )

topdel ! type [ontext =>℄ simple = type

j data [ontext =>℄ simple = onstrs [deriving (tyls j (tylses))℄

j lass [ontext =>℄ lass [where { dels }℄

j instane [ontext =>℄ tyls inst [where { dels }℄

j default (type j (type

1

, : : : , type

n

)) (n � 0 )

j del

dels ! del

1

; : : : ; del

n

(n � 1 )

del ! vars :: [ontext =>℄ type

j valdef

type ! atype

j type

1

-> type

2

j tyon atype

1

: : : atype

k

(arity tyon = k � 1 )
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atype ! tyvar

j tyon (arity tyon = 0 )

j () (unit type)

j ( type ) (parenthesised type)

j ( type

1

, : : : , type

k

) (tuple type; k � 2 )

j [ type ℄

ontext ! lass

j ( lass

1

, : : : , lass

n

) (n � 1 )

lass ! tyls tyvar

dels ! del

1

; : : : ; del

n

(n � 1 )

del ! vars :: type

j valdef

vars ! var

1

, : : : , var

n

(n � 1 )

simple ! tyon tyvar

1

: : : tyvar

k

(arity tyon = k � 0 )

onstrs ! onstr

1

| : : : | onstr

n

(n � 1 )

onstr ! on atype

1

: : : atype

k

(arity on = k � 0 )

j type

1

onop type

2

(in�x onop)

tylses ! tyls

1

, : : : , tyls

n

(n � 0 )

inst ! tyon (arity tyon = 0 )

j ( tyon tyvar

1

: : : tyvar

k

) (arity tyon = k > 0 )

j ( tyvar

1

, : : : , tyvar

k

) k � 2

j ()

j [ tyvar ℄

j tyvar

1

-> tyvar

2

valdef ! lhs = exp

j lhs gdfun

lhs ! pat

j var apat

1

: : : apat

k

(k � 1 )

j apat

1

varop apat

2

j ( apat

1

varop apat

2

) apat

3

: : : apat

k

(k � 3 )

gdfun ! gd = exp [gdfun℄

gd ! | exp

exp ! aexp
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j exp aexp (funtion appliation)

j exp

1

op exp

2

(operator appliation)

j - aexp (pre�x -)

j \ apat

1

: : : apat

n

[gd ℄ -> exp (lambda abstration; n � 1 )

j if exp

1

then exp

2

else exp

3

(onditional)

j exp where { dels } (where expression)

j ase exp of { alts } (ase expression)

j exp :: [ontext =>℄ atype (expression type signature)

aexp ! var (variable)

j on (onstrutor)

j literal

j () (unit)

j ( exp ) (parenthesised expression)

j ( exp

1

, : : : , exp

k

) (tuple; k � 2 )

j [ exp

1

, : : : , exp

k

℄ (list; k � 0 )

j [ exp

1

[, exp

2

℄ .. [exp

3

℄ ℄ (arithmeti sequene)

j [ exp | [qual ℄ ℄ (list omprehension)

qual ! qual

1

, qual

2

j pat <- exp

j exp

alts ! alt

1

; : : : ; alt

n

(n � 1 )

alt ! pat [gd ℄ -> exp

pat ! apat

j on apat

1

: : : apat

k

(arity on = k � 1 )

j pat

1

onop pat

2

(in�x onstrutor)

j var + integer (suessor pattern)

j [ - ℄ integer

apat ! var [ � apat ℄ (as pattern)

j on (arity on = 0 )

j integer j oat j har j string (literals)

j _ (wildard)

j ( pat

1

, : : : , pat

k

) (tuple patterns; k � 2 )

j [ pat

1

, : : : , pat

k

℄ (list patterns; k � 0 )

j ( pat ) (parenthesised pattern)

j () (unit pattern)

j ~ apat

tyls ! aonid

tyvar ! avarid

tyon ! aonid
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B.5 Interfae Syntax

interfae ! interfae modid where ibody

ibody ! { [iimpdels ;℄ [�xes ;℄ itopdels }

j { iimpdels }

iimpdels ! iimpdel

1

; : : : ; iimpdel

n

(n � 1 )

iimpdel ! import modid ( import

1

, : : : , import

n

)

[renaming renamings℄ (n � 1 )

itopdels ! itopdel

1

; : : : ; itopdel

n

(n � 1 )

itopdel ! type [ontext =>℄ simple = type

j data [ontext =>℄ simple [= onstrs℄ [deriving (tyls j (tylses))℄

j lass [ontext =>℄ lass [where { idels }℄

j instane [ontext =>℄ tyls inst

j vars :: [ontext =>℄ type

idels ! idel

1

; : : : ; idel

n

(n � 1 )

idel ! vars :: type
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C Input/Output Semantis

The behaviour of a Haskell program performing I/O is given within the environment in

whih it is running. That environment will be desribed using standard Haskell ode

augmented with a non-deterministi merge operator.

The state of the operating system (OS state) that is relevant to Haskell programs is

ompletely desribed by the �le system and the hannel system. The hannel system is split

into two subsystems, the input hannel system and the output hannel system.

type State = (FileSystem, ChannelSystem)

type FileSystem = Name -> Response

type ChannelSystem = (ICs, OCs)

type ICs = Name -> (Agent, Open)

type OCs = Name -> Response

type Agent = (FileSystem, OCs) -> Response

type Open = PId -> Bool

type PId = Int

type PList = [(PId,[Request->Response℄)℄

type Name = String

An agent maps a list of OS states to responses. Those responses will be used as the ontents

of input hannels, and thus an depend on output hannels, other input hannels, �les, or

any ombination thereof. For example, a valid implementation must allow the user to at

as agent between the standard output hannel and standard input hannel.

Eah running proess (i.e. program) has a unique PId. Elements of PList are lists of

running programs.

os :: TagReqList -> State -> (TagRespList, State)

type TagRespList = [(PId,Response)℄

type TagReqList = [(PId,Request)℄

The operating system is modeled as a (non-deterministi) funtion os. The os takes a

tagged request list and an initial state, and returns a tagged response list and a �nal state.

Given a list of programs pList, os must exhibit this behaviour:

(tagRespList, state') = os tagReqList state

tagReqList = merge [ zip [pId,pId..℄ (pro (untag pId tagRespList))

| (pId, pro) <- pList ℄

where merge is a non-deterministi merge of a list of lists, and untag is:

untag n [℄ = [℄

untag n ((m,resp):resps) = if n==m then resp:(untag n resps)

else untag n resps

This relationship an be generalised to inlude requests suh as CreateProess.

A valid implementation must ensure that the input hannel system is de�ned at stdin

and the output hannel system is de�ned at stdout, stderr, and stdeho. If the agent
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attahed to standard input is alled user (i.e. is stdin has form (user, open)), then

user must depend at least on standard output. In other words, this onstraint must hold:

user [..., (fs,(is,os)), ...℄ = ... user' (os stdout) ...

where user' is a strit, but otherwise arbitrary, funtion modelling the user. Its stritness

orresponds to the user's onsumption of standard output whilst determining standard

input.

The rest of this setion spei�es the required behaviour of os in response to eah kind

of request. This semantis is relatively abstrat and omits any referene to hardware errors

(e.g. \bad setor on disk") and system dependent errors (e.g. \aess rights violation").

Implementation-spei� requests (for example the environment requests) are not shown

here. We desribe only the text version of the requests: the binary version di�ers trivially.

os is de�ned by:

os :: TagReqList -> State -> (TagRespList,State)

os [℄ state = ([℄, state)

os ((n, ReadChan name):es) state�(fs,(is,os)) =

(alist',state') where

(agent,open) = is name

alist' = (n, (if open n

then fail

else (agent (fs,os)) )) : alist

fail = Failure (OtherError "Channel already open\n")

(alist,state') = os es (fs, (update is name

(agent, update open n true),

os))

where the auxiliary funtion update is de�ned by:

update f x v x' = if x==x' then v else f x

If an attempt is made to read a non-existent hannel, is returns an agent that gives

the appropriate error message when applied to its arguments. This de�nition is generalised

in the obvious way for the behaviour of ReadChannels. In partiular, ak must be reated

by non-deterministially merging the result of applying eah agent to the stream of future

states.
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os ((n, AppendChan name ontents):es) state�(fs,(is,os)) =

(alist',state') where

alist' = ak:alist

ak =

(n,

ase (os name) of

Failure msg -> Failure (SearhError "Nonexistent Channel")

Str ohan -> Suess

Bn ohan -> Failure (FormatError "format error")

)

(alist,state') = os es (fs,(is,

ase (os name) of

Failure msg -> os

Str ohan -> update os name

(Str (ohan ++ ontents))

Bn ohan -> os

))

os ((n, ReadFile name):es) state�(fs,(is,os)) =

(alist',state') where

alist' = ak : alist

ak = (n,

ase (fs name) of

Failure msg -> Failure (SearhError "File not found")

Str string -> Str string

Bn binary -> Failure (FormatError "")

)

(alist,state') = os es state

os ((n, WriteFile name ontents):es) state�(fs,(is,os)) =

(alist',state') where

alist' = (n, Suess):alist

(alist,state') = os es (update fs name (Str ontents),

(is,os))
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os ((n, AppendFile name ontents):es) state�(fs,(is,os)) =

(alist',state') where

alist' = ak:alist

ak = (n,

ase (fs name) of

Failure msg -> Failure (SearhError "file not found")

Str s -> Suess

Bn b -> Failure (FormatError "")

)

(alist,state') = os es (newfs, (is,os)) where

newfs = ase (fs name) of

Failure msg -> fs

Str s ->

update fs name (Str (s++ontents))

Bn b -> fs

os ((n, DeleteFile name):es) state�(fs,(is,os)) =

(alist',state') where

alist' = ak : alist

ak = (n,

ase (fs name) of

Failure msg -> Failure (SearhError "file not found")

Str s -> Suess

Bn b -> Suess

)

(alist,state') = os es (ase (fs name) of

Failure msg -> fs

Str s -> update fs name fail

Bn b -> update fs name fail,

(is,os))

fail = Failure (SearhError "file not found")

os ((n,StatusFile name):es) state�(fs,(is,os)) = (alist',state') where

alist' = ak : alist

ak = (n,

ase (fs name) of

Failure msg -> Failure (SearhError "File not found")

Str string -> Str "t"++(rw n fs name)

Bn binary -> Str "b"++(rw n fs name)

)

(alist, state') = os es state

where rw is a funtion that determines the read and write status of a �le for this partiular

proess.
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C.1 Optional Requests

These optional I/O requests may be useful in a Haskell implementation.

� ReadChannels [name1, ..., namek℄

ReadBinChannels [name1, ..., namek℄

Opens name1 through namek for input. A suessful response has form Tag vals

[BinTag vals℄ where vals is a list of values tagged with the name of the hannel.

These responses require an extension to the Response datatype:

data Response = ...

| Tag [(Name,Char)℄

| BinTag [(Name,Bin)℄

The tagged list of values is the non-deterministi merge of the values read from the

individual hannels. If an element of this list has form (namei,val), then it ame

from hannel namei.

If any namei does not exist then the response Failure (SearhError string) is

indued; all other errors indue Failure (ReadError string).

� CreateProess prog

Introdues a new program prog into the operating system. prog must have type

[Response℄ -> [Request℄. Either Suess and Failure (OtherError string) is

indued.

� CreateDiretory name string

DeleteDiretory name

Create or delete diretory name. The string argument to CreateDiretory is an

implementation-dependent spei�ation of the initial state of the diretory.

� OpenFile name inout

OpenBinFile name inout

CloseFile file

ReadVal file

ReadBinVal file

WriteVal file har

WriteBinVal file bin

These requests emulate traditional �le I/O in whih haraters are read and written

one at a time.

data Response = ...

| Fil File

data File

type Bins = [Bin℄

OpenFile name inout [OpenBinFile name inout℄ opens the �le name in text [binary℄

mode with diretion inout (True for input, False for output). The response Fil file
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is indued, where file has type File, a primitive type that represents a handle to a

�le. Subsequent use of that �le by other requests is via this handle.

CloseFile file loses file. Failure (OtherError string) is indued if file an-

not be losed.

ReadVal [ReadBinVal℄ file reads file, induing the response Str val [Bins val℄

or Failure (ReadError string).

WriteVal file har [WriteBinVal file bin℄ writes har [bin℄ to file. The re-

sponse Suess or Failure (WriteError string) is indued.

Failure (SearhError string) is indued for ReadVal, ReadBinVal, WriteVal,

and WriteBinVal if file is not a text or binary �le, as appropriate.
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D Spei�ation of Derived Instanes

If T is an algebrai data type delared by:

data  => T u

1

: : : u

k

= K

1

t

11

: : : t

1k

1

| � � � | K

n

t

n1

: : : t

nk

n

deriving (C

1

, : : : , C

m

)

(where m � 0 and the parentheses may be omitted if m = 1 ) then a derived instane de-

laration is possible for a lass C if and only if these onditions hold:

1. C is one of Eq, Ord, Enum, Ix, Text, or Binary.

2. There is a ontext 

0

suh that 

0

) C t

ij

holds for eah of the onstituent types t

ij

.

3. If C is either Ix or Enum, then further onstraints must be satis�ed as desribed under

the paragraphs for Ix and Enum later in this setion.

4. There must be no expliit instane delaration elsewhere in the module whih makes

T u

1

: : : u

k

an instane of C or of any of C 's superlasses.

If the deriving form is present (as in the above general data delaration), an instane

delaration is automatially generated for T u

1

: : : u

k

over eah lass C

i

and eah of C

i

's

superlasses. If the derived instane delaration is impossible for any of the C

i

then a stati

error results. If no derived instanes are required, the form deriving () must be used.

If the deriving form is omitted then instane delarations are derived for the datatype

in as many of the six lasses mentioned above as is possible; that is, no stati error an

our. Sine datatypes may be reursive, the implied inlusion in these lasses may also be

reursive, and the largest possible set of derived instanes is generated. For example,

data T1 a = C1 (T2 a) | Nil1

data T2 a = C2 (T1 a) | Nil2

Beause the deriving form is omitted, we would expet derived instanes for Eq (for ex-

ample). But T1 is in Eq only if T2 is, and T2 is in Eq only if T1 is. The largest solution has

both types in Eq, and thus both derived instanes are generated.

Eah derived instane delaration will have the form:

instane (, C

0

1

u

0

1

, : : : , C

0

j

u

0

j

) => C

i

(T u

1

: : : u

k

) where { d }

where d is derived automatially depending on C

i

and the data type delaration for T (as

will be desribed in the remainder of this setion), and u

0

1

through u

0

j

form a subset of

u

1

through u

k

. The lass assertions C

0

u

0

are onstraints on T 's type variables that are

inferred from the instane delarations of the onstituent types t

ij

. For example, onsider:

data T1 a = C1 (T2 a) deriving Eq

data T2 a = C2 a deriving ()
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And onsider these three di�erent instanes for T2 in Eq:

instane Eq (T2 a) where C2 x == C2 y = True

instane (Eq a) => Eq (T2 a) where C2 x == C2 y = x == y

instane (Ord a) => Eq (T2 a) where C2 x == C2 y = x > y

The orresponding derived instanes for T1 in Eq are:

instane Eq (T1 a) where C1 x == C1 y = x == y

instane (Eq a) => Eq (T1 a) where C1 x == C1 y = x == y

instane (Ord a) => Eq (T1 a) where C1 x == C1 y = x == y

When inferring the ontext for the derived instanes, type synonyms must be expanded

out �rst. The remaining details of the derived instanes for eah of the six lasses are now

given.

Derived instanes of Eq and Ord. The operations automatially introdued by de-

rived instanes of Eq and Ord are (==), (/=), (<), (<=), (>), (>=), max, and min. The

latter six operators are de�ned so as to ompare their arguments lexiographially with

respet to the onstrutor set given, with earlier onstrutors in the data type delaration

ounting as smaller than later ones. For example, for the Bool datatype, we have that

True > False == True.

Derived instanes of Ix. The derived instane delarations for the lass Ix are only

possible for integers, enumerations (i.e. datatypes having only nullary onstrutors), and

single-onstrutor datatypes (inluding tuples) whose onstituent types are instanes of Ix.

They introdue the overloaded funtions range, index, and inRange. The operation range

takes a (lower, upper) bound pair, and returns a list of all indies in this range, in asending

order. The operation inRange is a prediate taking a (lower, upper) bound pair and an

index and returning True if the index is ontained within the spei�ed range. The operation

index takes a (lower, upper) bound pair and an index and returns an integer, the position

of the index within the range.

For an enumeration, the nullary onstrutors are assumed to be numbered left-to-right

with the indies 0 through n� 1. For example, given the datatype:

data Colour = Red | Orange | Yellow | Green | Blue | Indigo | Violet

we would have:
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range (Yellow,Blue) == [Yellow,Green,Blue℄

index (Yellow,Blue) Green == 1

inRange (Yellow,Blue) Red == False

For single-onstrutor datatypes, the derived instane delarations are reated as shown for

tuples in Figure 14.

Derived instanes of Enum. Derived instane delarations for the lass Enum are only

possible for enumerations, using the same ordering assumptions made for Ix. They intro-

due the operations enumFrom, enumFromThen, enumFromTo, and enumFromThenTo, whih

are used to de�ne arithmeti sequenes as desribed in Setion 3.7.

enumFrom n returns a list orresponding to the omplete enumeration of n's type starting

at the value n. Similarly, enumFromThen n n' is the enumeration starting at n, but with

seond element n', and with subsequent elements generated at a spaing equal to the

di�erene between n and n'. enumFromTo and enumFromThenTo are as de�ned by the default-

methods for Enum (see Figure 4, page 29).

Derived instanes of Binary. The Binary lass is used primarily for transparent I/O

(see Setion 7.1). The operations automatially introdued by derived instanes of Binary

are readBin and showBin. They oere values to and from the primitive abstrat type Bin

(see Setion 6.6). An implementation must be able to reate derived instanes of Binary

for any type t not ontaining a funtion type.

showBin is analogous to shows, taking two arguments: the �rst is the value to be

oered, and the seond is a Bin value to whih the result is to be onatenated. readBin is

analogous to reads, \parsing" its argument and returning a pair onsisting of the oered

value and any remaining Bin value.

Derived versions of showBin and readBin must obey this property:

readBin (showBin v b) == (v,b)

for any Bin value b and value v whose type is an instane of the lass Binary.

Derived instanes of Text. The operations automatially introdued by derived in-

stanes of Text are showsPre, readsPre, showList and readList. They are used to

oere values into strings and parse strings into values.

The funtion showsPre d x r aepts a preedene level d (a number from 0 to 10),

a value x, and a string r. It returns a string representing x onatenated to r. showsPre

satis�es the law:

showsPre d x r ++ s == showsPre d x (r ++ s)
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lass (Ord a) => Ix a where

range :: (a,a) -> [a℄

index :: (a,a) -> a -> Int

inRange :: (a,a) -> a -> Bool

rangeSize :: (Ix a) => (a,a) -> Int

rangeSize (l,u) = index (l,u) u + 1

instane Ix Int where

range (l,u) = [l..u℄

index (l,u) i = i - l

inRange (l,u) i = i >= l && i <= u

instane Ix Integer where

range (l,u) = [l..u℄

index (l,u) i = fromInteger (i - l)

inRange (l,u) i = i >= l && i <= u

instane (Ix a, Ix b) => Ix (a,b) where

range ((l,l'),(u,u'))

= [(i,i') | i <- range (l,u), i' <- range (l',u')℄

index ((l,l'),(u,u')) (i,i')

= index (l,u) i * rangeSize (l',u') + index (l',u') i'

inRange ((l,l'),(u,u')) (i,i')

= inRange (l,u) i && inRange (l',u') i'

-- Instanes for other tuples are obtained from this sheme:

--

-- instane (Ix a1, Ix a2, ... , Ix ak) => Ix (a1,a2,...,ak) where

-- range ((l1,l2,...,lk),(u1,u2,...,uk)) =

-- [(i1,i2,...,in) | i1 <- range (l1,u1),

-- i2 <- range (l2,u2),

-- ...

-- ik <- range (lk,uk)℄

-- index ((l1,l2,...,lk),(u1,u2,...,uk)) (i1,i2,...,ik) =

-- index (l1,u1) i1 * rangeSize ((l2,...,lk),(u2,...,uk))

-- + index (l2,u2) i2 * rangeSize ((l3,...,lk),(u3,...,uk))

-- ...

-- + index (lk,uk) ik

-- inRange ((l1,u2,...lk),(u1,u2,...,uk)) (i1,i2,...,ik) =

-- inRange (l1,u1) i1 && inRange (l2,u2) i2 &&

-- ... && inRange (lk,uk) ik

Figure 14: Index lasses and instanes
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The representation will be enlosed in parentheses if the preedene of the top-level on-

strutor operator in x is less than d. Thus, if d is 0 then the result is never surrounded in

parentheses; if d is 10 it is always surrounded in parentheses, unless it is an atomi expres-

sion. The extra parameter r is essential if tree-like strutures are to be printed in linear

time rather than time quadrati in the size of the tree.

The funtion readsPre d s aepts a preedene level d (a number from 0 to 10) and

a string s, and returns a list of pairs (x,r) suh that showsPre d x r == s. readsPre

is a parse funtion, returning a list of (parsed value, remaining string) pairs. If there is no

suessful parse, the returned list is empty.

showList and readList allow lists of objets to be represented using non-standard

denotations. This is espeially useful for strings (list s of Char).

For onveniene, the standard prelude provides the following auxiliary funtions:

shows = showsPre 0

reads = readsPre 0

show x = shows x ""

read s = x where [(x,"")℄ = reads s

shows and reads use a default preedene of 0, and show and read assume that the result

is not being appended to an initial string.

The instanes of Text for the standard types Int, Integer, Float, Double, Char, lists,

tuples, and rational and omplex numbers are de�ned in the standard prelude (see Ap-

pendix A). For haraters and strings, the ontrol haraters that have speial represen-

tations (\n et.) are shown as suh by showsPre; otherwise deimal esapes are used.

Floating-point numbers for whih �1 � log

10

jf j � sf(f) where

sf f = (floatDigits f * floatRadix f) `div` 10 + 1

are represented by showsPre in non-exponential format; otherwise they are in exponential

format with one digit before the deimal point. Unneessary trailing zeroes are suppressed

(but at least one digit must follow the deimal point).

readsPre will parse any valid representation of the standard types apart from lists, for

whih only the braketted form [. . . ℄ is aepted. See Appendix A for full details.

D.1 Spei�ation of showsPre

As desribed in Setion 4.3.3, showsPre has the typing

(Text a) => Int -> a -> String -> String

The �rst parameter is a preedene in the range 0 to 10, the seond is the value to be

onverted into a string, and the third is the string to append to the end of the result.
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showsPre d (e1 `Con` e2) =

showParen (d > p) showStr where

p = `the preedene of Con'

lp = if `Con is left assoiative' then p else p+1

rp = if `Con is right assoiative' then p else p+1

n = `the original name of Con'

showStr = showsPre lp e1 .

showChar ' ' . showString n . showChar ' ' .

showsPre rp e2

Figure 15: Spei�ation of showsPre for In�x Construtors of arity 2

showsPre d (Con e1 ... en) =

showParen (d >= 10) showStr where

showStr = showString n . showChar ' ' .

showsPre 10 e1 . showChar ' ' .

...

showsPre 10 en

n = `the original name of Con'

Figure 16: General Spei�ation of showsPre for User-De�ned Construtors

For all onstrutors Con de�ned by some data delaration suh as:

data  => T u

1

: : : u

k

= : : : | Con t

1

: : : t

n

| : : :

the orresponding de�nition of showsPre for Con is shown in Figure 15 for binary in�x on-

strutors and Figure 16 for all other onstrutors. See Appendix A for details of showParen,

showChar, et.

D.2 Spei�ation of readsPre

A lexeme is exatly as in Setion 2. lex :: String -> (String, String) parses a string

into two parts: (1) a string representing the �rst lexeme or "" if the input is "" or onsists

entirely of white spae, and (2) the remainder of the input after the �rst lexeme is extrated.

Whitespae (again refer to Setion 2) is ignored exept within strings. An error results if
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readsPre d r = readCon K1 k1 `the original name of K1' r ++

...

readCon Kn kn `the original name of Kn' r

readCon on n n = -- if on is infix and n == 2

readParen (d > p) readVal

where

readVal r = [(u `on` v, s2) |

(u,s0) <- readsPre lp r,

(tok,s1) <- [lex s0℄, tok == n,

(v,s2) <- readsPre rp s1℄

p = `the preedene of on'

lp = if `on is left assoiative' then p else p+1

rp = if `on is right assoiative' then p else p+1

readCon on n n = -- if on is not infix or n /= 2

readParen (d > 9) readVal

where

readVal r = [(on t1 ... tn, sn) |

(t0,s0) <- [lex r℄, t0 == n,

(t1,s1) <- readsPre 10 s0,

...

(tn,sn) <- readsPre 10 s(n-1)℄

Figure 17: De�nition of readsPre for User-De�ned Types

no proper lexeme an be parsed (suh as in the ase of an unreognised ontrol harater).

A full de�nition is provided in Appendix A.7.

As desribed in Setion 4.3.3, readsPre has the typing

Text a => Int -> String -> [(a,String)℄

Its �rst parameter is a preedene in the range 0 to 10, its seond is the string to be parsed.

Figure 17 shows the spei�ation of readsPre for user-de�ned datatypes of the form:

data  => T u

1

: : : u

k

= K

1

t

11

: : : t

1k

1

| : : : | K

n

t

n1

: : : t

nk

n
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D.3 An example

As a omplete example, onsider a tree datatype:

data Tree a = Leaf a | Tree a :^: Tree a

Sine there is no deriving lause, this is shorthand for:

data Tree a = Leaf a | Tree a :^: Tree a

instane (Eq a) => Eq (Tree a)

where ...

instane (Ord a) => Ord (Tree a)

where ...

instane (Text a) => Text (Tree a)

where ...

instane (Binary a) => Binary (Tree a)

where ...

Note the reursive ontext; the omponents of the datatype must themselves be instanes

of the lass. Instane delarations for Ix and Enum are not present, as Tree is not an

enumeration or single-onstrutor datatype. Exept for Binary, the omplete instane

delarations for Tree are shown in Figure 18, Note the impliit use of default-method

de�nitions|for example, only <= is de�ned for Ord, with the other operations (<, >, >=,

max, and min) being de�ned by the defaults given in the lass delaration shown in Figure 4

(page 29).
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infix 4 :^:

data Tree a = Leaf a | Tree a :^: Tree a

instane (Eq a) => Eq (Tree a) where

Leaf m == Leaf n = m==n

u:^:v == x:^:y = u==x && v==y

_ == _ = False

instane (Ord a) => Ord (Tree a) where

Leaf m <= Leaf n = m<=n

Leaf m <= x:^:y = True

u:^:v <= Leaf n = False

u:^:v <= x:^:y = u<x || u==x && v<=y

instane (Text a) => Text (Tree a) where

showsPre d (Leaf m) = showParen (d >= 10) showStr where

showStr = showString "Leaf" . showChar ' ' . showsPre 10 m

showsPre d (u :^: v) = showParen (d > 4) showStr where

showStr = showsPre 5 u .

showChar ' ' . showString ":^:" . showChar ' ' .

showsPre 5 v

readsPre d r = readParen (d > 4)

(\r -> [(u:^:v,w) |

(u,s) <- readsPre 5 r,

(":^:",t) <- [lex s℄,

(v,w) <- readsPre 5 t℄) r

++ readParen (d > 9)

(\r -> [(Leaf m,t) |

("Leaf",t) <- [lex r℄,

(m,t) <- readsPre 10 t℄) r

Figure 18: Example of Derived Instanes
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