
Report on the

Programming Language

Haskell

A Non-stri
t, Purely Fun
tional Language

Version 1.0

1 April 1990

Paul Hudak

1

[editor℄

Philip Wadler

2

[editor℄

Arvind

3

Brian Boutel

4

Jon Fairbairn

5

Joseph Fasel

6

Kevin Hammond

2

John Hughes

2

Thomas Johnsson

2;7

Di
k Kieburtz

8

Rishiyur Nikhil

3

Simon Peyton Jones

2;9

Mike Reeve

10

David Wise

11

Jonathan Young

1;3

Authors' aÆliations: (1) Yale University, (2) University of Glasgow, (3) Mas-

sa
husetts Institute of Te
hnology, (4) Vi
toria University of Welling-

ton, (5) Cambridge University, (6) Los Alamos National Laboratory,

(7) Chalmers University of Te
hnology, (8) Oregon Graduate Institute of

S
ien
e and Te
hnology, (9) University College, London, (10) Imperial Col-

lege, (11) Indiana University.



CONTENTS i

Contents

1 Introdu
tion 1

1.1 Program Stru
ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Haskell Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Values and Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Namespa
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Lexi
al Stru
ture 6

2.1 Notational Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Lexi
al Program Stru
ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Identi�ers and Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Numeri
 Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Chara
ter and String Literals . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Expressions 10

3.1 Curried Appli
ations and Lambda Abstra
tions . . . . . . . . . . . . . . . . 11

3.2 Operator Appli
ations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5 Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6 Unit Expressions and Parenthesised Expressions . . . . . . . . . . . . . . . 13

3.7 Arithmeti
 Sequen
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.8 List Comprehensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.9 Where Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.10 Case Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.11 Expression Type-Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.12 Pattern-Mat
hing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.12.1 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.12.2 Informal semanti
s of pattern-mat
hing . . . . . . . . . . . . . . . . 18

3.12.3 Formal semanti
s of pattern-mat
hing . . . . . . . . . . . . . . . . . 19

4 De
larations and Bindings 22

4.1 Overview of Types and Classes . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Syntax of Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.2 Syntax of Class Assertions and Contexts . . . . . . . . . . . . . . . . 24

4.1.3 Semanti
s of Types and Classes . . . . . . . . . . . . . . . . . . . . . 25

4.2 User-De�ned Datatypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1 Algebrai
 Data Type De
larations . . . . . . . . . . . . . . . . . . . 26

4.2.2 Type Synonym De
larations . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Type Classes and Overloading . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 Class De
larations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.2 Instan
e De
larations . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.3 Derived Instan
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.4 Defaults for Overloaded Operations . . . . . . . . . . . . . . . . . . 31



ii CONTENTS

4.4 Nested De
larations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4.1 Type Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4.2 Fun
tion and Pattern Bindings . . . . . . . . . . . . . . . . . . . . . 33

5 Modules 37

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Interfa
es and Implementations . . . . . . . . . . . . . . . . . . . . . 37

5.1.2 Original Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.3 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.4 The Compilation System . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Module Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1 Export Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.2 Import De
larations . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Module Interfa
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.1 Consisten
y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.2 Imports and Original Names . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Standard Prelude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.1 The PreludeCore Module . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.2 The Prelude Module . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.3 Shadowing Prelude Names and Non-Standard Preludes . . . . . . . 46

5.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.6 Abstra
t Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.7 Fixity De
larations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Basi
 Types 49

6.1 Booleans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Chara
ters and Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3 Fun
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.4 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.5 Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.6 Binary Datatype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.7 Unit Datatype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.8 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.8.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.8.2 Numeri
 Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.8.3 Constru
ted Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.8.4 Arithmeti
 and Number-Theoreti
 Operations . . . . . . . . . . . . . 55

6.8.5 Exponentiation and Logarithms . . . . . . . . . . . . . . . . . . . . . 56

6.8.6 Magnitude and Sign . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.8.7 Trigonometri
 Fun
tions . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.8.8 Coer
ions and Component Extra
tion . . . . . . . . . . . . . . . . . 57

6.9 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.9.1 Array Constru
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.9.2 A

umulated Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.9.3 In
remental Array Updates . . . . . . . . . . . . . . . . . . . . . . . 60



CONTENTS iii

6.9.4 Derived Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.10 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Input/Output 62

7.1 I/O Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.1.1 Transparent Chara
ter Set . . . . . . . . . . . . . . . . . . . . . . . 65

7.1.2 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.1.3 A

eptan
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1.4 E
hoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2 File System Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.3 Channel System Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.4 Environment Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.5 Continuation-based I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.6 A Small Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A Standard Prelude 75

A.1 Prelude PreludeBuiltin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.2 Prelude PreludeCore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.3 Prelude PreludeRatio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.4 Prelude PreludeComplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.5 Prelude PreludeList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.6 Prelude PreludeArray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.7 Prelude PreludeText . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.8 Prelude PreludeIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B Syntax 105

B.1 Notational Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B.2 Lexi
al Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B.3 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

B.4 Context-Free Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B.5 Interfa
e Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

C Input/Output Semanti
s 112

C.1 Optional Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

D Spe
i�
ation of Derived Instan
es 118

D.1 Spe
i�
ation of showsPre
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

D.2 Spe
i�
ation of readsPre
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

D.3 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



iv CONTENTS

Prefa
e

\Some half dozen persons have written te
hni
ally on 
ombinatory logi
, and

most of these, in
luding ourselves, have published something erroneous. Sin
e

some of our fellow sinners are among the most 
areful and 
ompetent logi
ians

on the 
ontemporary s
ene, we regard this as eviden
e that the subje
t is re-

fra
tory. Thus fullness of exposition is ne
essary for a

ura
y; and ex
essive


ondensation would be false e
onomy here, even more than it is ordinarily."

Haskell B. Curry and Robert Feys

in the Prefa
e to Combinatory Logi
 [3℄, May 31, 1956

In September of 1987 a meeting was held at the 
onferen
e on Fun
tional Programming

Languages and Computer Ar
hite
ture in Portland, Oregon, to dis
uss an unfortunate sit-

uation in the fun
tional programming 
ommunity: there had 
ome into being more than a

dozen non-stri
t, purely fun
tional programming languages, all similar in expressive power

and semanti
 underpinnings. There was a strong 
onsensus at this meeting that more

widespread use of this 
lass of fun
tional languages was being hampered by the la
k of a


ommon language. It was de
ided that a 
ommittee should be formed to design su
h a

language, providing faster 
ommuni
ation of new ideas, a stable foundation for real ap-

pli
ations development, and a vehi
le through whi
h others would be en
ouraged to use

fun
tional languages. This do
ument des
ribes the result of that 
ommittee's e�orts: a

purely fun
tional programming language 
alled Haskell, named after the logi
ian Haskell

B. Curry whose work provides the logi
al basis for mu
h of ours.

Goals

The 
ommittee's primary goal was to design a language that satis�ed these 
onstraints:

1. It should be suitable for tea
hing, resear
h, and appli
ations, in
luding building large

systems.

2. It should be 
ompletely des
ribed via the publi
ation of a formal syntax and semanti
s.

3. It should be freely available. Anyone should be permitted to implement the language

and distribute it to whomever they please.

4. It should be based on ideas that enjoy a wide 
onsensus.

5. It should redu
e unne
essary diversity in fun
tional programming languages.

The 
ommittee hopes that Haskell 
an serve as a basis for future resear
h in language

design. We hope that extensions or variants of the language may appear, in
orporating

experimental features.
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This Report

This report is the oÆ
ial spe
i�
ation of the Haskell language and should be suitable for

writing programs and building implementations. It is not a tutorial on programming in

Haskell, so some familiarity with fun
tional languages is assumed. Being the �rst edition

of the spe
i�
ation, there may be some errors and in
onsisten
ies; beware.

The Next Stage

Haskell is a large and 
omplex language, be
ause it is designed for a wide spe
trum of

purposes. It also introdu
es a major new te
hni
al innovation, namely using type 
lasses

to handle overloading in a systemati
 way. This innovation permeates every aspe
t of the

language.

Haskell is bound to 
ontain infeli
ities and errors of judgement. During the forth-


oming year we wel
ome your 
omments, suggestions and 
riti
isms on the language, or its

presentation in the report. Together with your input and our own experien
e of using the

language, we plan to meet in about a year's time to resolve diÆ
ulties and further stabilise

the design.

A 
ommon mailing list for te
hni
al dis
ussion of Haskell 
an be rea
hed at either

haskell�
s.yale.edu or haskell�
s.glasgow.a
.uk. Errata sheets for this report will

be posted there. To subs
ribe, send a request to haskell-request�
s.glasgow.a
.uk

(European residents) or haskell-request�
s.yale.edu (residents elsewhere).

We thought it would be helpful to identify the aspe
ts of the language design that

seem to be most �nely balan
ed, and hen
e are the most likely 
andidates for 
hange when

we review the language. The following list summarises these areas. It will only be fully


omprehensible after you have read the report.

Mutually re
ursive modules. Mutual re
ursion among modules is unrestri
ted at pre-

sent, whi
h is obviously desirable from the programmer's point of view, but whi
h poses

signi�
ant 
hallenges to the 
ompilation system. In parti
ular, it is not suÆ
ient to start

with trivial interfa
es for ea
h module and iterate to a �xpoint, as this example shows:

module F( f ) where

import G

f [x℄ = g x

module G( g ) where

import F

g = f

If a 
ompilation system starts o� by giving F and G interfa
es that give the type signatures

f::a and g::b respe
tively, then 
ompiling the two modules alternately will not rea
h a
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�xed point. In general, a 
ompiler may need to analyse a set of mutually re
ursive modules

as a whole, rather than separately. This only happens if there is a type error, but it is

obviously undesirable behaviour.

Default methods. Se
tion 4.3.1 des
ribes how a 
lass de
laration may in
lude default

methods for some of its operations. We 
onsidered extending this so that a 
lass de
laration


ould in
lude default methods for operations of its super
lasses, whi
h override the super-


lass's default method. This looks like an attra
tive idea, whi
h will 
ertainly be 
onsidered

for a future revision.

Defaults for ambiguous types. Se
tion 4.3.4 des
ribes how ambiguous typings, whi
h

arise due to the type-
lass system, are resolved. Ideally, the 
hoi
e made should not matter.

For example, 
onsider the expression if (length xs > 3) then E1 else E2. It should

not matter whether the length is 
omputed in Int or Integer or even Float; a bad 
hoi
e


ould result in a program be
oming unde�ned due to over
ow, or a less eÆ
ient program,

but if a result is produ
ed it will be 
orre
t.

Our resolution rules strive only to resolve ambiguous types where the type 
hosen does

not \matter" in this sense, but we have not been entirely su

essful, for example where


oating point is 
on
erned. Further resear
h and pra
ti
al experien
e may suggest a better

set of rules.

Stati
 semanti
s of where bindings. In Haskell variables not bound to lambda ab-

stra
tions are not allowed to be overloaded in more than one way (Se
tion 4.4.2). This solves

two problems, whi
h are summarised below, but at the 
ost of restri
ting expressiveness.

Only experien
e will tell how mu
h of a problem this is for the programmer.

These are the two problems. First, the expression (x,x) where x = fa
torial 1000

looks as though x should only be 
omputed on
e, and this is the 
ase. If x were used at

di�erent overloadings, however, fa
torial 1000 would be 
omputed twi
e, on
e at ea
h

type. We have found examples where the loss of eÆ
ien
y is exponential in the size of

the program. Modest 
ompiler optimisations 
an often eliminate the problem, but we have

found no simple s
heme that 
an guarantee to do so. The restri
tion solves the problem by

ensuring that all uses of x are at the same overloading, and its evaluation 
an be shared as

usual.

Se
ond, a rather subtle form of type ambiguity (Se
tion 4.3.4) is eliminated by the

restri
tion to non-overloaded pattern bindings. An example is:

readNum s r = (n*r,s') where [(n,s')℄ = reads s

Here n::(Num a, Binary a) => a, s'::Binary a => Bin. If the de�nition of [(n,s')℄

is polymorphi
, the a's may be resolved as di�erent types.



CONTENTS vii

Overloaded 
onstants. Overloaded 
onstants (e.g. 1, whi
h has type Num a => a) are

extraordinarily 
onvenient when programming, but are the sour
e of several serious te
h-

ni
al problems, in
luding both of those mentioned in the two pre
eding items. One 
ould

eliminate overloaded 
onstants altogether; we 
onsidered this at length, and we are sure to

re
onsider it when we review the language.

Polymorphism in 
ase expressions. The type of a variables bound by a Standard

ML 
ase-expression is monomorphi
; we have made the same de
ision in Haskell (Se
-

tion 4.1.3). There is no te
hni
al reason why the type of su
h a variable should not be

polymorphi
; in su
h a 
ase, the translation between where expressions and 
ase expres-

sions would preserve the stati
 semanti
s.

We have erred on the side of 
onservatism, but this de
ision will be reviewed. If imple-

mented, su
h a 
hange would be upward-
ompatible.
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1 Introdu
tion

Haskell is a general purpose, purely fun
tional programming language in
orporating many

re
ent innovations in programming language resear
h, in
luding higher-order fun
tions,

non-stri
t semanti
s, stati
 polymorphi
 typing, user-de�ned algebrai
 data types, pattern-

mat
hing, list 
omprehensions, a module system, and a ri
h set of primitive data types,

in
luding lists, arrays, arbitrary and �xed pre
ision integers, and 
oating-point numbers.

Haskell is both the 
ulmination and solidi�
ation of many years of resear
h on fun
tional

languages|the design has been in
uen
ed by languages as old as ISWIM and as new as

Miranda.

Although the initial emphasis was on standardisation, Haskell also has several new

features that both simplify and generalise the design. For example,

1. Rather than using ad ho
 te
hniques for overloading, Haskell provides an expli
it

overloading fa
ility, integrated with the polymorphi
 type system, that allows the

pre
ise de�nition of overloading behaviour for any operator or fun
tion.

2. The 
onventional notion of \abstra
t data type" has been unbundled into two orthog-

onal 
omponents: data abstra
tion and information hiding.

3. Haskell has a 
exible I/O fa
ility that uni�es two popular styles of purely fun
tional

I/O|the stream model and the 
ontinuation model|and both styles 
an be mixed

within the same program. The system supports most of the standard operations

provided by 
onventional operating systems while retaining referential transparen
y

within a program.

4. Re
ognising the importan
e of arrays, Haskell has a family of multi-dimensional non-

stri
t immutable arrays whose spe
ial intera
tion with list 
omprehensions provides a


onvenient \array 
omprehension" syntax for de�ning arrays monolithi
ally.

This report de�nes the syntax for Haskell programs and an informal abstra
t seman-

ti
s for the meaning of su
h programs; the formal abstra
t semanti
s is in preparation.

We leave as implementation dependent the ways in whi
h Haskell programs are to be

manipulated, interpreted, 
ompiled, et
. This in
ludes su
h issues as the nature of bat
h

versus intera
tive programming environments, and the nature of error messages returned

for unde�ned programs (i.e. programs that formally evaluate to ?).

1.1 Program Stru
ture

In this se
tion, we des
ribe the abstra
t synta
ti
 and semanti
 stru
ture of Haskell, as

well as how it relates to the organisation of the rest of the report.

1. At the top-most level a Haskell program is a set of modules (des
ribed in Se
tion 5).

Modules provide a way to 
ontrol namespa
es and to re-use software in large programs.
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2. The top level of a module 
onsists of a 
olle
tion of de
larations, of whi
h there are

several kinds, all des
ribed in Se
tion 4. De
larations de�ne things su
h as ordinary

values, data types, type 
lasses, and �xity information.

3. At the next lower level are expressions, des
ribed in Se
tion 3. An expression denotes

a value and has a stati
 type; expressions are at the heart of Haskell programming

\in the small."

4. At the bottom level is Haskell's lexi
al stru
ture, de�ned in Se
tion 2. The lexi
al

stru
ture 
aptures the 
on
rete representation of Haskell programs in text �les.

This report pro
eeds bottom-up with respe
t to Haskell's synta
ti
 stru
ture.

The se
tions not mentioned above are Se
tion 6, whi
h des
ribes the standard built-

in datatypes in Haskell, and Se
tion 7, whi
h dis
usses the I/O fa
ility in Haskell

(i.e. how Haskell programs 
ommuni
ate with the outside world). Also, there are several

appendi
es des
ribing the standard prelude, the 
on
rete syntax, the semanti
s of I/O, and

the spe
i�
ation of derived instan
es.

1.2 The Haskell Kernel

Haskell has adopted many of the 
onvenient synta
ti
 stru
tures that have be
ome popular

in fun
tional programming. In all 
ases their formal semanti
s 
an be given via translation

into a proper subset of Haskell 
alled the Haskell kernel. It is essentially a slightly

sugared variant of the lambda 
al
ulus with a straightforward denotational semanti
s. The

translation of ea
h synta
ti
 stru
ture into the kernel is given as the syntax is introdu
ed.

This modular design fa
ilitates reasoning about Haskell programs and provides useful

guidelines for implementors of the language.

1.3 Values and Types

An expression evaluates to a value and has a stati
 type. Values and types are not mixed

in Haskell. However, the type system allows user-de�ned datatypes of various sorts,

and permits not only parametri
 polymorphism (using a traditional Hindley-Milner type

stru
ture) but also ad ho
 polymorphism, or overloading (using type 
lasses).

Errors in Haskell are semanti
ally equivalent to ?. Te
hni
ally, they are not distin-

guishable from non-termination, so the language in
ludes no me
hanism for dete
ting or

a
ting upon errors. Of 
ourse, implementations will probably try to provide useful infor-

mation about errors.

1.4 Namespa
es

There are six kinds of names in Haskell: those for variables and 
onstru
tors denote

values; those for type variables, type 
onstru
tors, and type 
lasses refer to entities related

to the type system; and module names refer to modules. There are three 
onstraints on

naming:
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1. Names for variables and type variables are identi�ers beginning with small letters; the

other four kinds of names are identi�ers beginning with 
apitals.

2. Constru
tor operators are operators beginning with \:"; variable operators are oper-

ators not beginning with \:".

3. An identi�er must not be used as the name of a type 
onstru
tor and a 
lass in the

same s
ope.

These are the only 
onstraints; for example, Int may simultaneously be the name of a

module, 
lass, and 
onstru
tor within a single s
ope.

Haskell provides a lexi
al syntax for in�x operators (either fun
tions or 
onstru
tors).

To emphasise that operators are bound to the same things as identi�ers, and to allow the two

to be used inter
hangeably, there is a simple way to 
onvert between the two: any fun
tion

or 
onstru
tor identi�er may be 
onverted into an operator by en
losing it in ba
kquotes,

and any operator may be 
onverted into an identi�er by en
losing it in parentheses. For

example, x + y is equivalent to (+) x y, and f x y is the same as x �f� y. These lexi
al

matters are dis
ussed further in Se
tion 2.

Examples of Haskell program fragments in running text are given in typewriter font:

z+1 where x = 1

y = 2

z = x+y

\Holes" in program fragments representing arbitrary pie
es of Haskell 
ode are written

in itali
s, as in if e

1

then e

2

else e

3

. Generally the itali
ised names will be mnemoni
,

su
h as e for expressions, d for de
larations, t for types, et
.

1.5 Layout

In the syntax given in the rest of the report, de
laration lists are always pre
eded by the

keyword where or of, and are en
losed within 
urly bra
es ({ }) with the individual de
-

larations separated by semi
olons (;). For example, the syntax of a where expression is:

exp where { de
l

1

; de
l

2

; : : : ; de
l

n

}

Haskell permits the omission of the bra
es and semi
olons by using layout to 
onvey

the same information. This allows both layout-sensitive and -insensitive styles of 
oding,

whi
h 
an be freely mixed within one program. Be
ause layout is not required, Haskell

programs may be me
hani
ally produ
ed by other programs.

The layout (or \o�-side") rule takes e�e
t whenever the open bra
e is omitted after the

keyword where or of. When this happens, the indentation of the next lexeme (whether or

not on a new line) is remembered and the omitted open bra
e is inserted (the whitespa
e

pre
eding the lexeme may in
lude 
omments). For ea
h subsequent line, if it 
ontains only

whitespa
e or is indented more, then the previous item is 
ontinued (nothing is inserted);
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if it is indented the same amount, then a new item begins (a semi
olon is inserted); and if

it is indented less, then the de
laration list ends (a 
lose bra
e is inserted). A 
lose bra
e is

also inserted whenever the synta
ti
 
ategory 
ontaining the de
laration list ends (i.e. if an

illegal lexeme is en
ountered at a point where a 
lose bra
e would be legal, a 
lose bra
e is

inserted). The layout rule will mat
h only those open bra
es that it has inserted; an open

bra
e that the user has inserted must be mat
hed by a 
lose bra
e inserted by the user.

Given these rules, a single newline may a
tually terminate several de
laration lists. Also,

these rules permit:

f x = exp1 where a = 1; b = 2

g y = exp2

making a, b and g all part of the same de
laration list.

To fa
ilitate the use of layout at the top level of a module (several modules may reside

in one �le), the keyword module and the end-of-�le token are assumed to o

ur in 
olumn

0 (whereas normally the �rst 
olumn is 1). Otherwise, all top-level de
larations would have

to be indented.

As an example, Figure 1 shows a (somewhat 
ontrived) module and Figure 2 shows

the result of applying the layout rule. Note in parti
ular: (a) the line beginning }};pop,

where the termination of the previous line invokes three appli
ations of the layout rule,


orresponding to the depth (3) of the nested where 
lauses, (b) the 
lose bra
e in the where


lause nested within the tuple, inserted be
ause the end of the tuple was dete
ted, and

(
) the 
lose bra
e at the very end, inserted be
ause of the 
olumn 0 indentation of the

end-of-�le token.

When 
omparing indentations for standard Haskell programs, a �xed-width font with

this tab 
onvention is assumed: tab stops are 8 
hara
ters apart (with the �rst tab stop

in 
olumn 9), and a tab 
hara
ter 
auses the insertion of enough spa
es (always � 1) to

align the 
urrent position with the next tab stop. Parti
ular implementations may alter

this rule to a

ommodate variable-width fonts and alternate tab 
onventions, but standard

Haskell programs (i.e. ones that are portable) must observe the rule.
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module ASta
k( Sta
k, push, pop, top, size ) where

data Sta
k a = Empty

| MkSta
k a (Sta
k a)

push :: a -> Sta
k a -> Sta
k a

push x s = MkSta
k x s

size :: Sta
k a -> Integer

size s = length (stkToLst s) where

stkToLst Empty = [℄

stkToLst (MkSta
k x s) = x:xs where xs = stkToLst s

pop :: Sta
k a -> (a, Sta
k a)

pop (MkSta
k x s) = (x, r where r = s) -- (pop Empty) is an error

top :: Sta
k a -> a

top (MkSta
k x s) = x -- (top Empty) is an error

Figure 1: A sample program

module ASta
k( Sta
k, push, pop, top, size ) where

{data Sta
k a = Empty

| MkSta
k a (Sta
k a)

;push :: a -> Sta
k a -> Sta
k a

;push x s = MkSta
k x s

;size :: Sta
k a -> Integer

;size s = length (stkToLst s) where

{stkToLst Empty = [℄

;stkToLst (MkSta
k x s) = x:xs where {xs = stkToLst s

}};pop :: Sta
k a -> (a, Sta
k a)

;pop (MkSta
k x s) = (x, r where {r = s}) -- (pop Empty) is an error

;top :: Sta
k a -> a

;top (MkSta
k x s) = x -- (top Empty) is an error

}

Figure 2: Sample program with layout expanded
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2 Lexi
al Stru
ture

In this se
tion, we des
ribe the low-level lexi
al stru
ture of Haskell. Most of the details

may be skipped in a �rst reading of the report.

2.1 Notational Conventions

These notational 
onventions are used for presenting syntax:

[pattern℄ optional

fpatterng zero or more repetitions

(pattern) grouping

pat

1

j pat

2


hoi
e

pat

fpat

0

g

di�eren
e|elements generated by pat

ex
ept those generated by pat

0

fibona

i terminal syntax in typewriter font

Be
ause the syntax in this se
tion des
ribes lexi
al syntax, all whitespa
e is expressed

expli
itly; there is no impli
it spa
e between juxtaposed symbols. BNF-like syntax is used

throughout, with produ
tions having the form:

nonterm ! alt

1

j alt

2

j : : : j alt

n

Care must be taken in distinguishingmeta-logi
al syntax su
h as j and [: : :℄ from 
on
rete

terminal syntax (given in typewriter font) su
h as | and [...℄, although usually the 
ontext

makes the distin
tion 
lear.

Haskell sour
e programs are 
urrently biased toward the ASCII 
hara
ter set, although

future Haskell standardisation e�orts will likely address broader 
hara
ter standards.

2.2 Lexi
al Program Stru
ture

program ! f lexeme j whitespa
e g

lexeme ! varid j 
onid j varop j 
onop j literal j spe
ial j reservedop j reservedid

literal ! integer j 
oat j 
har j string

spe
ial ! ( j ) j , j ; j [ j ℄ j _ j { j }

whitespa
e ! whitestu� fwhitestu� g

whitestu� ! newline j spa
e j tab j vertab j formfeed j 
omment j n
omment

newline ! a newline (system dependent)

spa
e ! a spa
e

tab ! a horizontal tab

vertab ! a verti
al tab

formfeed ! a form feed
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omment ! -- fanyg newline

n
omment ! {- fwhitespa
e j any

f{- j -}g

g -}

any ! graphi
 j spa
e j tab

graphi
 ! large j small j digit

j ! j " j # j $ j % j & j � j ( j ) j * j +

j , j - j . j / j : j ; j < j = j > j ? j �

j [ j \ j ℄ j ^ j _ j � j { j | j } j ~

small ! a j b j : : : j z

large ! A j B j : : : j Z

digit ! 0 j 1 j : : : j 9

Chara
ters not in the 
ategory graphi
 or whitestu� are not valid in Haskell programs

and should result in a lexing error.

Comments are valid whitespa
e . Ordinary 
omments begin with two 
onse
utive dashes

(--) and extend to the following newline. Nested 
omments are en
losed by {- and -} and


an be between any two lexemes. Thus any 
ontiguous portion of Haskell program text

may be turned into a 
omment, whether or not that portion 
ontains 
omments within it.

Nested 
omments also provide a 
onvenient method for implementing annotations.

2.3 Identi�ers and Operators

avarid ! (small fsmall j large j digit j � j _g)

freservedidg

varid ! avarid j (avarop)

a
onid ! large fsmall j large j digit j � j _g


onid ! a
onid j (a
onop)

reservedid ! 
ase j 
lass j data j default j deriving j else j hiding

j if j import j infix j infixl j infixr j instan
e j interfa
e

j module j of j renaming j then j to j type j where

An identi�er 
onsists of a letter followed by zero or more letters, digits, unders
ores, and

a
ute a

ents. Identi�ers are lexi
ally distinguished into two 
lasses: those that begin

with a small letter (variable identi�ers) and those that begin with a 
apital (
onstru
tor

identi�ers). Identi�ers are 
ase sensitive: name, naMe, and Name are three distin
t identi�ers

(the �rst two are variable identi�ers, the last is a 
onstru
tor identi�er).

avarop ! ( symbol fsymbol j :g )

freservedopg

j -

varop ! avarop j �avarid�

a
onop ! (: fsymbol j :g)

freservedopg


onop ! a
onop j �a
onid�

symbol ! ! j # j $ j % j & j * j + j . j / j < j = j > j ? j � j \ j ^ j | j ~

reservedop ! .. j :: j => j = j � j \ j | j ~
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An operator is either symboli
 or alphanumeri
. Symboli
 operators are formed from one

or more symbols, as de�ned above, and are lexi
ally distinguished into two 
lasses: those

that start with a 
olon (
onstru
tors) and those that do not (fun
tions).

Alphanumeri
 operators are formed by en
losing an identi�er between grave a

ents

(ba
kquote). Any variable or 
onstru
tor may be used as an operator in this way. If fun

is an identi�er (either variable or 
onstru
tor), then an expression of the form fun x y is

equivalent to x �fun� y . If no �xity de
laration is given for �fun� then it defaults to in�x

with highest pre
eden
e and left asso
iativity (see Se
tion 5.7).

Similarly, any symboli
 operator may be used as a (
urried) variable or 
onstru
tor by

en
losing it in parentheses. If op is an in�x operator, then an expression or pattern of the

form x op y is equivalent to (op) x y .

No spa
es are permitted in names su
h as �fun� and (op).

All operators are in�x, although there is a spe
ial syntax for pre�x negation (see Se
-

tion 3.2). All of the standard in�x operators are just pre-de�ned symbols and may be

rebound.

Although 
ase is reserved, 
ases is not. Similarly, although = is reserved, == and =~

are not. At ea
h point, the longest possible lexeme is read. Any kind of whitespa
e is also

a proper delimiter for lexemes.

In the remainder of the report six di�erent kinds of names will be used:

var ! varid (variables)


on ! 
onid (
onstru
tors)

tyvar ! avarid (type variables)

ty
on ! a
onid (type 
onstru
tors)

ty
ls ! a
onid (type 
lasses)

modid ! a
onid (modules)

Variables and type variables are represented by identi�ers beginning with small letters, and

the other four by identi�ers beginning with 
apitals; also, variables and 
onstru
tors have

in�x forms, the other four do not. Namespa
es are dis
ussed further in Se
tion 1.4.

2.4 Numeri
 Literals

integer ! digitfdigitg


oat ! integer.integer [e[-℄integer ℄

There are two distin
t kinds of numeri
 literals: integer and 
oating. A 
oating literal

must 
ontain digits both before and after the de
imal point; this ensures that a de
imal

point 
annot be mistaken for another use of the dot 
hara
ter. Negative numeri
 literals

are dis
ussed in Se
tion 3.2.
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2.5 Chara
ter and String Literals


har ! � (graphi


f� j \g

j spa
e j es
ape

f\&g

) �

string ! " fgraphi


f" j \g

j spa
e j es
ape j gapg "

es
ape ! \ ( 
hares
 j as
ii j integer j o o
titfo
titg j x hexitfhexitg )


hares
 ! a j b j f j n j r j t j v j \ j " j � j &

as
ii ! ^
ntrl j NUL j SOH j STX j ETX j EOT j ENQ j ACK

j BEL j BS j HT j LF j VT j FF j CR j SO j SI j DLE

j DC1 j DC2 j DC3 j DC4 j NAK j SYN j ETB j CAN

j EM j SUB j ESC j FS j GS j RS j US j SP j DEL


ntrl ! large j � j [ j \ j ℄ j ^ j _

gap ! \ ftab j spa
eg newline ftab j spa
eg \

hexit ! digit j A j B j C j D j E j F j a j b j 
 j d j e j f

o
tit ! 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7

Chara
ter literals are written between a
ute a

ents, as in �a�, and strings between

double quotes, as in "Hello".

Es
ape 
odes may be used in 
hara
ters and strings to represent spe
ial 
hara
ters. Note

that � may be used in a string, but must be es
aped in a 
hara
ter; similarly, " may be used

in a 
hara
ter, but must be es
aped in a string. \ must always be es
aped. The 
ategory


hares
 also in
ludes portable representations for the 
hara
ters \alert" (\a), \ba
kspa
e"

(\b), \form feed" (\f), \new line" (\n), \
arriage return" (\r), \horizontal tab" (\t), and

\verti
al tab" (\v).

Es
ape 
hara
ters for the ASCII 
hara
ter set, in
luding 
ontrol 
hara
ters su
h as \^X,

are also provided. Numeri
 es
apes su
h as \137 are used to designate the 
hara
ter with

(implementation dependent) de
imal representation 137; o
tal (e.g. \o137) and hexade
imal

(e.g. \x137) representations are also allowed. Numeri
 es
apes that are out-of-range of the

ASCII standard are unde�ned and thus non-portable.

Consistent with the \
onsume longest lexeme" rule, numeri
 es
ape 
hara
ters in strings


onsist of all 
onse
utive digits and may be of arbitrary length. Similarly, the one ambiguous

ASCII es
ape 
ode, "\SOH", is parsed as a string of length 1. The es
ape 
hara
ter \& is

provided as a \null 
hara
ter" to allow strings su
h as "\137\&9" and "\SO\&H" to be


onstru
ted (both of length two). Thus "\&" is equivalent to "" and the 
hara
ter �\&� is

disallowed. Further equivalen
es of 
hara
ters are de�ned in Se
tion 6.2.

A string may in
lude a \gap"|two ba
kslants en
losing one newline and any number of

blanks or spa
es|whi
h is ignored. This allows one to write long strings on more than one

line by writing a ba
kslant at the end of one line and at the start of the next. For example,

"Here is a ba
kslant \\ as well as \137, \

\a numeri
 es
ape 
hara
ter, and \^X, a 
ontrol 
hara
ter."

String literals are a
tually abbreviations for lists of 
hara
ters (see Se
tion 3.4).
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3 Expressions

In this se
tion, we des
ribe the syntax and informal semanti
s of Haskell expressions,

in
luding their translations into the Haskell kernel where appropriate.

exp ! aexp

j exp aexp (fun
tion appli
ation)

j exp

1

op exp

2

(operator appli
ation)

j - aexp (pre�x -)

j \ apat

1

: : : apat

n

[gd ℄ -> exp (lambda abstra
tion; n � 1 )

j if exp

1

then exp

2

else exp

3

(
onditional)

j exp where { de
ls } (where expression)

j 
ase exp of { alts } (
ase expression)

j exp :: [
ontext =>℄ atype (expression type signature)

aexp ! var (variable)

j 
on (
onstru
tor)

j literal

j () (unit)

j ( exp ) (parenthesised expression)

j ( exp

1

, : : : , exp

k

) (tuple; k � 2 )

j [ exp

1

, : : : , exp

k

℄ (list; k � 0 )

j [ exp

1

[, exp

2

℄ .. [exp

3

℄ ℄ (arithmeti
 sequen
e)

j [ exp | [qual ℄ ℄ (list 
omprehension)

op ! varop j 
onop

To disambiguate expressions, this pre
eden
e is established, from strongest to weakest:

fun
tion appli
ation

operator appli
ation (broken down into ten pre
eden
e levels|see Se
tion 5.7)


onditional expression

where expression

lambda abstra
tion

Expression type signatures are parsed as if :: were a left-asso
iative in�x operator with

pre
eden
e lower than any other operator. Negation is the only pre�x operator in Haskell;

it has the same pre
eden
e as fun
tion appli
ation. Sample parses using these rules are

shown below.
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This Parses as

f x + g y (f x) + (g y)

- x + y (-x) + y

x + y where {...} (x + y) where {...}

if e1 then e2 else e3 where {...} (if e1 then e2 else e3) where {...}

\ x -> e1 where {...} \ x -> (e1 where {...})

f x y :: Int (f x y) :: Int

\ x -> a+b :: Int \ x -> ((a+b) :: Int)

3.1 Curried Appli
ations and Lambda Abstra
tions

exp ! exp aexp

j \ apat

1

: : : apat

n

[gd ℄ -> exp (n � 1 )

gd ! | exp

Fun
tion appli
ation is written e

1

e

2

. Appli
ation asso
iates to the left, so the parentheses

may be omitted in (f x) y, for example. Be
ause e

1


ould be a 
onstru
tor, partial

appli
ations of 
onstru
tors are allowed.

Lambda abstra
tions are written \ p

1

: : : p

n

| g -> e, where the p

i

are patterns and

g is an optional guard (an expression whose type must be Bool). An expression su
h as

\x:xs->x is synta
ti
ally in
orre
t, and must be rewritten as \(x:xs)->x.

Translation: The lambda abstra
tion \ p

1

: : : p

n

| g -> e is equivalent to

\ x

1

: : : x

n

-> 
ase (x

1

, : : : , x

n

) of (p

1

, : : : , p

n

) | g -> e

where the x

i

are new identi�ers. Given this translation 
ombined with the semanti
s of


ase expressions and pattern-mat
hing des
ribed in Se
tion 3.10, if the pattern fails to

mat
h then the result is ?.

The type of a variable bound by a lambda abstra
tion is monomorphi
, as is always the


ase in the Hindley-Milner type system.

3.2 Operator Appli
ations

exp ! exp

1

op exp

2

j - aexp (pre�x -)

The form e

1

op e

2

is the obvious in�x appli
ation of binary operator op to expressions e

1

and e

2

.
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Although there are no pre�x operators in Haskell, the spe
ial form -e denotes pre�x

negation, and is simply syntax for negate e, where negate is as de�ned in the standard

prelude (see Table 1, page 52). Be
ause e1-e2 parses as an in�x appli
ation of the binary

operator -, one must write e1(-e2) for the alternative parsing. Similarly, (-) is syntax for

(\ x y -> x-y), as with any in�x operator, and does not denote (\ x -> -x)|one must

use negate for that.

Translation: e

1

op e

2

is equivalent to (op) e

1

e

2

. -e is equivalent to negate e

where negate, an operator in the 
lass Num, is as de�ned in the standard prelude.

3.3 Conditionals

exp ! if exp

1

then exp

2

else exp

3

A 
onditional expression has form if e

1

then e

2

else e

3

and returns the value of e

2

if the

value of e

1

is True, e

3

if e

1

is False, and ? otherwise.

Translation: if e

1

then e

2

else e

3

is equivalent to:


ase e

1

of { True -> e

2

; False -> e

3

}

where True and False are the two nullary 
onstru
tors from the type Bool, as de�ned

in the standard prelude.

3.4 Lists

aexp ! [ exp

1

, : : : , exp

k

℄ (k � 0 )

Lists are written [e

1

, : : : , e

k

℄, where k � 0 ; the empty list is written [℄. Standard

operations on lists are given in the standard prelude (see Appendix A).

Translation: [e

1

, : : : , e

k

℄ is equivalent to

e

1

: (e

2

: ( : : : (e

k

: [℄)))

where : and [℄ are 
onstru
tors for lists, as de�ned in the standard prelude (see Se
-

tion 6.4). The types of e

1

through e

k

must all be the same (
all it t), and the type of

the overall expression is [t℄ (see Se
tion 4.1.1).
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3.5 Tuples

aexp ! ( exp

1

, : : : , exp

k

) (k � 2 )

Tuples are written (e

1

, : : : , e

k

), and may be of arbitrary length k � 2 . Standard

operations on tuples are given in the standard prelude (see Appendix A).

Translation: (e

1

, : : : , e

k

) for k � 2 is an instan
e of a k-tuple as de�ned in the

standard prelude, and requires no translation. If t

1

through t

k

are the types of e

1

through e

k

, respe
tively, then the type of the resulting tuple is (t

1

, : : : , t

k

) (see Se
-

tion 4.1.1).

3.6 Unit Expressions and Parenthesised Expressions

aexp ! ()

j ( exp )

The form (e) is simply a parenthesised expression, and is equivalent to e. The form ()

has type () (see Se
tion 4.1.1); it is the only member of that type (it 
an be thought of as

the \nullary tuple")|see Se
tion 6.7.

Translation: (e) is equivalent to e.

3.7 Arithmeti
 Sequen
es

aexp ! [ exp

1

[, exp

2

℄ .. [exp

3

℄ ℄

The form [e

1

, e

2

.. e

3

℄ denotes an arithmeti
 sequen
e from e

1

in in
rements of e

2

� e

1

up to e

3

(if the in
rement is positive) or down to e

3

(if the in
rement is negative). An

in�nite list of e

1

's results if the in
rement is zero, and the empty list results if e

3

is less

than e

1

and the in
rement is positive, or if e

3

is greater than e

1

and the in
rement is

negative. If the 
omma and e

2

are omitted, then the in
rement is 1; if e

3

is omitted, then

the sequen
e is in�nite.

Arithmeti
 sequen
es may be de�ned over any type in 
lass Enum, in
luding Int, Integer,

and Char (see Se
tion 4.3.3). For example, ['a'..'z'℄ denotes the list of lower-
ase letters

in alphabeti
al order.
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Translation: Arithmeti
 sequen
es satisfy these identities:

[ e

1

.. ℄ = enumFrom e

1

[ e

1

,e

2

.. ℄ = enumFromThen e

1

e

2

[ e

1

..e

3

℄ = enumFromTo e

1

e

3

[ e

1

,e

2

..e

3

℄ = enumFromThenTo e

1

e

2

e

3

where enumFrom, enumFromThen, enumFromTo, and enumFromThenTo are operations in

the 
lass Enum as de�ned in the standard prelude (see Se
tion 4.3.1).

3.8 List Comprehensions

aexp ! [ exp | [qual ℄ ℄

qual ! qual

1

, qual

2

j pat <- exp

j exp

Quali�ers (qual) are either generators of the form p <- e, where p is a pattern (see Se
-

tion 3.12) of type t and e is an expression of type [t℄; or guards, whi
h are arbitrary

expressions of type Bool.

A list 
omprehension has the form [ e | q

1

, : : : , q

n

℄ and returns the list of elements

produ
ed by evaluating e in the su

essive environments 
reated by the nested, depth-�rst

evaluation of the generators in the quali�er list. Binding of variables o

urs a

ording to

the normal pattern-mat
hing rules (see Se
tion 3.12), and if a mat
h fails then that element

of the list is simply skipped over. Thus:

[ x | xs <- [ [(1,2),(3,4)℄, [(5,4),(3,2)℄ ℄,

(3,x) <- xs ℄

yields the list [4,2℄. If a quali�er is a guard, it must evaluate to True for the previous

pattern-mat
h to su

eed.
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Translation: List 
omprehensions satisfy these identities, whi
h may be used as a

translation into the kernel:

[ e | p <- l ℄ = map (\p -> e) l

[ e | b ℄ = if b then [e℄ else [℄

[ e | q

1

, q

2

℄ = 
on
at [ [ e | q

2

℄ | q

1

℄

where e ranges over expressions, p ranges over irrefutable patterns, l ranges over list-

valued expressions, b ranges over boolean expressions, and q

1

and q

2

range over non-

empty lists of quali�ers. If p is a refutable pattern then the identity:

[ e | p <- l ℄ = [ e | ~p <- [ x | x <- l, ok x℄ ℄

where ok p = True

ok _ = False

where x and ok are new identi�ers not appearing in e, p, or l . These four equations

uniquely de�ne list 
omprehensions.

3.9 Where Expressions

exp ! exp where { de
ls }

Where expressions have the general form e where { d

1

; : : : ; d

n

}, and introdu
e a

nested, lexi
ally-s
oped, mutually-re
ursive list of de
larations. The s
ope of the de
la-

rations is the expression e and the right hand side of the de
larations. De
larations are

des
ribed in Se
tion 4. Pattern bindings are mat
hed lazily as irrefutable patterns.

Translation: The dynami
 semanti
s of the expression e

0

where { d

1

; : : : ; d

n

}

is 
aptured by this translation: After removing all type signatures, ea
h de
laration d

i

is translated into an equation of the form p

i

= e

i

, where p

i

and e

i

are patterns and

expressions respe
tively, using the translation given in Se
tion 4.4.2. On
e done, these

identities hold, whi
h may be used as a translation into the kernel:

e

0

where {p

1

= e

1

; ...; p

n

= e

n

} = e

0

where (~p

1

,...,~p

n

) = (e

0

,...,e

n

)

e

0

where p = e

1

= 
ase e

1

of ~p -> e

0

when no variable in p appears free in e

1

e

0

where p = e

1

= e

0

where p = fix (\~p -> e

1

)

where fix is the least �xpoint operator. Note the use of the irrefutable patterns in

the se
ond and third rules. This same semanti
s applies to the top-level of a program

that has been translated into a where expression as des
ribed in Se
tion 5. The stati


semanti
s of where expressions is des
ribed in Se
tion 4.4.2.

3.10 Case Expressions

exp ! 
ase exp of { alts }
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alts ! alt

1

; : : : ; alt

n

(n � 1 )

alt ! pat [gd ℄ -> exp

gd ! | exp

A 
ase expression has the form


ase e of { p

1

| g

1

-> e

1

; ... ; p

n

| g

n

-> e

n

}

where ea
h 
lause p

i

| g

i

-> e

i


onsists of a pattern p

i

, an optional guard g

i

, and a body e

i

(an expression). There must be at least one 
lause, and ea
h pattern must be linear|no

variable is allowed to appear more than on
e. Ea
h body must have the same type, and the

type of the whole expression is that type.

A 
ase expression is evaluated by pattern-mat
hing the expression e against the indi-

vidual 
lauses. The mat
hes are tried sequentially, from top to bottom. The �rst su

essful

mat
h 
auses evaluation of the 
orresponding 
lause body, in the environment of the 
ase

expression extended by the bindings 
reated during the mat
hing of that 
lause. If no mat
h

su

eeds, the result is ?. Pattern mat
hing is des
ribed in Se
tion 3.12.

3.11 Expression Type-Signatures

exp ! aexp :: [
ontext =>℄ atype

Expression type-signatures are used to type an expression expli
itly and may be used to

resolve ambiguous typings due to overloading (see Se
tion 4.3.4). The value of the expression

is just that of aexp. As with normal type signatures (see Se
tion 4.4.1), the de
lared type

may be more spe
i�
 than the prin
ipal typing derivable from aexp, but it is an error to give

a typing that is more general than, or not 
omparable to, the prin
ipal typing. Also, every

type variable appearing in a signature is universally quanti�ed only over that signature.

This last 
onstraint implies that signatures su
h as:

\ x -> ([x℄ :: [a℄)

are not valid, sin
e this de
lares [x℄ to be of type (8 a)[a℄, whi
h is not a valid polymorphi


type (it 
ontains only ?, the empty list, and lists just 
ontaining ?). In 
ontrast, this is

valid:

(\ x -> [x℄) :: a -> [a℄

3.12 Pattern-Mat
hing

Patterns appear in lambda abstra
tions, fun
tion de�nitions, pattern bindings, list 
ompre-

hensions, and 
ase expressions. However, the �rst four of these ultimately translate into


ase expressions, so it suÆ
es to restri
t the de�nition of the semanti
s of pattern-mat
hing

to 
ase expressions.
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3.12.1 Patterns

Patterns have this syntax:

pat ! apat

j 
on apat

1

: : : apat

k

(arity 
on = k � 1 )

j pat

1


onop pat

2

(in�x 
onstru
tor)

j var + integer (su

essor pattern)

j [ - ℄ integer

apat ! var [ � apat ℄ (as pattern)

j 
on (arity 
on = 0 )

j integer j 
oat j 
har j string (literals)

j _ (wild
ard)

j () (unit pattern)

j ( pat ) (parenthesised pattern)

j ( pat

1

, : : : , pat

k

) (tuple patterns; k � 2 )

j [ pat

1

, : : : , pat

k

℄ (list patterns; k � 0 )

j ~ apat (irrefutable pattern)

The arity of a 
onstru
tor must mat
h the number of sub-patterns asso
iated with it; one


annot mat
h against a partially-applied 
onstru
tor.

Patterns of the form var�pat are 
alled as-patterns, and allow one to use var as a name

for the value being mat
hed by pat . For example,


ase e of

xs�(x:rest) -> if x==0 then rest else xs

is equivalent to:


ase e of

xs -> if x == 0 then rest else xs

where (x:rest) = xs

This transformation of a 
ase expression is always valid, and is assumed done prior to the

pattern-mat
hing semanti
s given below.

Patterns of the form _ are wild
ards and are useful when some part of a pattern is not

referen
ed on the right-hand-side. It is as if an identi�er not used elsewhere were put in its

pla
e. For example,


ase e of

[x,_,_℄ -> if x==0 then True else False

is equivalent to:


ase e of

[x,y,z℄ -> if x==0 then True else False

where y and z are identi�ers not used elsewhere. This translation is also assumed prior to

the semanti
s given below.
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In the pattern-mat
hing rules given below we distinguish two kinds of patterns: an

irrefutable pattern is either a variable, a wild
ard, or a pattern of form ~apat ; all other

patterns are refutable.

3.12.2 Informal semanti
s of pattern-mat
hing

Patterns are mat
hed against values. Attempting to mat
h a pattern 
an have one of three

results: it may fail ; it may su

eed, returning a binding for ea
h variable in the pattern; or

it may diverge (i.e. return ?). Pattern-mat
hing pro
eeds from left to right, and outside in,

a

ording to these rules:

1. Mat
hing a value v against the irrefutable pattern var always su

eeds and binds var

to v . Similarly, mat
hing v against the irrefutable pattern ~apat always su

eeds.

The free variables in apat are bound to the appropriate values if mat
hing v against

apat would otherwise su

eed, and to ? if mat
hing v against apat fails or diverges.

(Binding does not imply evaluation.)

Operationally, this means that no mat
hing is done on an irrefutable pattern until one

of the variables in the pattern is used. At that point the entire pattern is mat
hed

against the value, and if the mat
h fails or diverges, so does the overall 
omputation.

2. Mat
hing ? against a refutable pattern always diverges.

3. Mat
hing a non-? value 
an o

ur against two kinds of refutable patterns:

(a) Mat
hing a non-? value against a 
onstru
ted pattern fails if the outermost


onstru
tors are di�erent. If the 
onstru
tors are the same, the result of the

mat
h is the result of mat
hing the sub-patterns left-to-right: if all mat
hes

su

eed, the overall mat
h su

eeds; the �rst to fail or diverge 
auses the overall

mat
h to fail or diverge, respe
tively.

Constru
ted values 
onsist of those 
reated by pre�x or in�x 
onstru
tors, tuple

or list patterns, and strings (whi
h are lists of 
hara
ters). Also, literals (
hara
-

ters, positive and negative integers, and the unit value ()) are treated as nullary


onstru
tors.

(b) Mat
hing a non-? value n against a pattern of the form x+k (where x is a variable

and k is a positive integer literal) su

eeds if n � k , resulting in the binding of x

to n � k , and fails if n < k . For example, the Fibona

i fun
tion may be de�ned

as follows:

fib n = 
ase n of

0 -> 1

1 -> 1

n+2 -> fib n + fib (n+1)

Sin
e n must be bound to a positive value, fib diverges for a negative argument,

and exa
tly one of the equations mat
hes any non-negative argument.
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Aside from the obvious stati
 type 
onstraints (for example, it is a stati
 error to mat
h

a 
hara
ter against an integer), these stati
 
lass 
onstraints hold: an integer literal pattern


an only be mat
hed against a value in the 
lass Num; a 
oating literal pattern 
an only be

mat
hed against a value in the 
lass Fra
tional; and a n+k pattern 
an only be mat
hed

against a value in the 
lass Integral.

Here are some simple examples:

1. If the pattern [1,2℄ is mat
hed against [0,?℄, then 1 fails to mat
h against 0, and

the result is a failed mat
h. But if [1,2℄ is mat
hed against [?,0℄, then attempting

to mat
h 1 against ? 
auses the mat
h to diverge.

2. These examples demonstrate refutable vs. irrefutable mat
hing:

(\ ~(x,y) -> 0) ? ) 0

(\ (x,y) -> 0) ? ) ?

(\ ~[x℄ -> 0) [℄ ) 0

(\ ~[x℄ -> x) [℄ ) ?

(\ ~[x,~(a,b)℄ -> x) [0,?℄ ) 0

(\ ~[x, (a,b)℄ -> x) [0,?℄ ) ?

(\ (x:xs) -> x:x:xs) ? ) ?

(\ ~(x:xs) -> x:x:xs) ? ) ?:?:?

Top level patterns in lambda expressions and 
ase expressions, and the set of top level

patterns in fun
tion or operator bindings, may have an asso
iated guard. A guard is a

boolean expression that is evaluated only after all of the arguments have been su

essfully

mat
hed, and it must be true for the overall pattern-mat
h to su

eed. The s
ope of the

guard is the same as the right-hand-side of the lambda expression, 
ase expression 
lause,

or fun
tion de�nition to whi
h it is atta
hed.

The guard semanti
s has an obvious in
uen
e on the stri
tness 
hara
teristi
s of a

fun
tion or 
ase expression. In parti
ular, an otherwise irrefutable pattern may be evaluated

due to the presen
e of a guard. For example, in

f ~(x,y,z) [a℄ | a==y = 1

both a and y will be evaluated.

3.12.3 Formal semanti
s of pattern-mat
hing

The semanti
s of all other 
onstru
ts whi
h use pattern-mat
hing is de�ned by giving iden-

tities that relate them to 
ase expressions.

The semanti
s of 
ase expressions are given as a series of identities that they satisfy.

Figure 3 shows the identities: e, e

0

and e

i

are arbitrary expressions; g and g

i

are boolean-

valued expressions; p and p

i

are patterns; x and x

i

are variables; K and K

0

are 
onstru
tors

(in
luding tuple 
onstru
tors); and k is an integer literal.
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ase e

0

of {p

1

| g

1

-> e

1

; : : : ; p

n

| g

n

-> e

n

}

= 
ase e

0

of

p

1

| g

1

-> e

1

_ -> : : : 
ase e

0

of

p

n

| g

n

-> e

n

_ -> error "Unexpe
ted 
ase"


ase e

0

of {p | g -> e; _ -> e

0

}

= 
ase e

0

of {p -> if g then e else e

0

; _ -> e

0

}


ase e

0

of {~p -> e; _ -> e

0

}

= 
ase e

0

of

x

0

-> 
ase (
ase x

0

of p -> x

1

) of

x

1

-> : : : 
ase (
ase x

n

of p -> x

n

) of

x

n

-> e

(when x

1

; : : : ; x

n

are all the variables in p, and

x

0

is a new variable not free in e)


ase e

0

of {x�p -> e; _ -> e

0

}

= 
ase e

0

of {x -> 
ase x of {p -> e ; _ -> e

0

}}


ase e

0

of {_ -> e; _ -> e

0

}

= e


ase e

0

of {Kp

1

: : : p

n

-> e; _ -> e

0

}

= 
ase e

0

of

Kx

1

: : : x

n

-> 
ase x

1

of

p

1

-> : : : 
ase x

n

of

p

n

-> e

_ -> e

0

: : :

_ -> e

0

_ -> e

0

(when x

1

; : : : ; x

n

are new variables not in p

1

; : : : ; p

n

or free in e

1

; : : : ; e

n

)


ase e

0

of {k -> e; _ -> e

0

}

= if (k == e

0

) then e else e

0


ase e

0

of {x+k -> e; _ -> e

0

}

= if (e

0

>= k) then (
ase (e

0

-k) of {x -> e}) else e

0


ase e

0

of {x -> e; _ -> e

0

}

= 
ase e

0

of {x -> e}


ase e

0

of {x -> e}

= (\x -> e) e

0


ase (K

0

e

1

: : : e

m

) of {K x

1

: : : x

n

-> e; _ -> e

0

}

= e

0

(when K and K

0

are distin
t 
onstru
tors of arity n and m respe
tively)


ase (K e

1

: : : e

n

) of {K x

1

: : : x

n

-> e; _ -> e

0

}

= 
ase e

1

of { x

1

-> : : : 
ase e

n

of { x

n

-> e } : : :}

(when K is a 
onstru
tor of arity n)

Figure 3: Semanti
s of Case Expressions
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Using all but the last two identities in Figure 3 in a left-to-right manner yields a trans-

lation into a subset of general 
ase expressions, 
alled simple 
ase expressions. The �rst

identity mat
hes a general sour
e-language 
ase expression, regardless of whether it a
tually

in
ludes guards|if no guards are written, then True is substituted for the g

i

. Subsequent

identities manipulate the resulting 
ase expression into simpler and simpler forms. The

semanti
s of simple 
ase expressions is given by the last two identities.

When used as a translation, the identities in Figure 3 will generate a very ineÆ
ient

program. This 
an be �xed by using further 
ase or where expressions, but doing so would


lutter the identities, whi
h are intended only to 
onvey the semanti
s.

These identities all preserve the stati
 semanti
s. The third rule from last uses a lambda

rather than a where; this indi
ates that variables bound by 
ase are monomorphi
ally typed

(Se
tion 4.1.3).
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4 De
larations and Bindings

In this se
tion, we des
ribe the syntax and informal semanti
s of Haskell de
larations.

module ! module modid [exports℄ where body

j body

body ! { [impde
ls ;℄ [�xde
ls ;℄ topde
ls }

j { impde
ls }

topde
ls ! topde
l

1

; : : : ; topde
l

n

(n � 1 )

topde
l ! type [
ontext =>℄ simple = type

j data [
ontext =>℄ simple = 
onstrs [deriving (ty
ls j (ty
lses))℄

j 
lass [
ontext =>℄ 
lass [where { 
de
ls }℄

j instan
e [
ontext =>℄ ty
ls inst [where { de
ls }℄

j default (type j (type

1

, : : : , type

n

)) (n � 0 )

j de
l

de
ls ! de
l

1

; : : : ; de
l

n

(n � 1 )

de
l ! vars :: [
ontext =>℄ type

j valdef

The de
larations in the synta
ti
 
ategory topde
ls are only allowed at the top level of

a Haskell module (see Se
tion 5), whereas de
ls may be used either at the top level or in

nested s
opes (i.e. those within a where expression).

For exposition, we divide the de
larations into three groups: user-de�ned datatypes, 
on-

sisting of type and data de
larations (Se
tion 4.2); type 
lasses and overloading, 
onsisting

of 
lass, instan
e, and default de
larations (Se
tion 4.3); and nested de
larations, 
on-

sisting of value bindings and type signatures (Se
tion 4.4). The module de
laration, along

with import and in�x de
larations, is des
ribed in Se
tion 5.

Haskell has several primitive datatypes that are \hard-wired" (su
h as integers and

arrays), but most \built-in" datatypes are de�ned in the standard prelude with normal

Haskell 
ode, using type and data de
larations (see Se
tion 4.2). These \built-in"

datatypes are des
ribed in detail in Se
tion 6.

4.1 Overview of Types and Classes

Haskell uses a traditional Hindley-Milner polymorphi
 type system to provide a stati


type semanti
s [5, 9℄, but the type system has been extended with type 
lasses (or just


lasses) that provide a stru
tured way to introdu
e overloaded fun
tions. This is the major

te
hni
al innovation in the Haskell language.

A 
lass de
laration (Se
tion 4.3.1) introdu
es a new type 
lass and the overloaded

operations that must be supported by any type that is an instan
e of that 
lass. An

instan
e de
laration (Se
tion 4.3.2) de
lares that a type is an instan
e of a 
lass and
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in
ludes the de�nitions of the overloaded operations|
alled methods|instantiated on the

named type.

For example, suppose we wish to overload the operations (+) and negate on types Int

and Float. We introdu
e a new type 
lass 
alled Num:


lass Num a where -- simplified 
lass de
laration for Num

(+) :: a -> a -> a

negate :: a -> a

This de
laration may be read \a type a is an instan
e of the 
lass Num if there are (over-

loaded) operations (+) and negate, of the appropriate types, de�ned on it."

We may then de
lare Int and Float to be instan
es of this 
lass:

instan
e Num Int where -- simplified instan
e of Num Int

x + y = addInt x y

negate x = negateInt x

instan
e Num Float where -- simplified instan
e of Num Float

x + y = addFloat x y

negate x = negateFloat x

where addInt, negateInt, addFloat, and negateFloat are assumed in this 
ase to be

primitive fun
tions, but in general 
ould be any user-de�ned fun
tion. The �rst de
laration

above may be read \Int is an instan
e of the 
lass Num as witnessed by these de�nitions

(i.e. methods) for (+) and negate."

4.1.1 Syntax of Types

type ! atype

j type

1

-> type

2

j ty
on atype

1

: : : atype

k

(arity ty
on = k � 1 )

atype ! tyvar

j ty
on (arity ty
on = 0 )

j () (unit type)

j ( type ) (parenthesised type)

j ( type

1

, : : : , type

k

) (tuple type; k � 2 )

j [ type ℄

tyvar ! avarid

ty
on ! a
onid

A type expression is built in the usual way from type variables, fun
tion types, type


onstru
tors, tuple types, and list types. Type variables are identi�ers beginning with a

lower-
ase letter and type 
onstru
tors are identi�ers beginning with an upper-
ase letter.

A type is one of:
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1. A fun
tion type having form t

1

-> t

2

. Fun
tion arrows asso
iate to the right.

2. A 
onstru
ted type having form T t

1

: : : t

k

, where T is a type 
onstru
tor of arity k .

3. A tuple type having form (t

1

, : : : , t

k

) where k � 2 . It denotes the type of k -tuples

with the �rst 
omponent of type t

1

, the se
ond 
omponent of type t

2

, and so on (see

Se
tions 3.5 and 6.5).

4. A list type has the form [t℄. It denotes the type of lists with elements of type t (see

Se
tions 3.4 and 6.4).

5. The trivial type having form (). It denotes the \degenerate tuple" type, and has

exa
tly one value, also written () (see Se
tions 3.6 and 6.7).

6. A parenthesised type having form (t), identi
al to the type t .

Although the tuple, list, and trivial types have spe
ial syntax, they are not di�erent

from user-de�ned types with equivalent fun
tionality.

Expressions and types have a 
onsistent syntax. If t

i

is the type of expression or pattern

e

i

, then the expressions \ e

1

-> e

2

, [e

1

℄, and (e

1

; e

2

) have the types t

1

-> t

2

, [t

1

℄, and

(t

1

; t

2

), respe
tively.

4.1.2 Syntax of Class Assertions and Contexts


ontext ! 
lass

j ( 
lass

1

, : : : , 
lass

n

) (n � 1 )


lass ! ty
ls tyvar

ty
ls ! a
onid

tyvar ! avarid

A 
lass assertion has form ty
ls tyvar , and indi
ates the membership of the parameterised

type tyvar in the 
lass ty
ls . A 
lass identi�er begins with a 
apital letter.

A 
ontext 
onsists of one or more 
lass assertions, and has the general form

( C

1

u

1

; : : : ; C

n

u

n

)

where C

1

; : : : ; C

n

are 
lass identi�ers, and u

1

; : : : ; u

n

are type variables; the parentheses

may be omitted when n = 1 . In general, we use 
 to denote a 
ontext and we write 
 => t

to indi
ate the type t restri
ted by the 
ontext 
 (where type variables in 
 are s
oped only

over 
 => t). For 
onvenien
e, we write 
 => t even if the 
ontext 
 is empty, although in

this 
ase the 
on
rete syntax 
ontains no =>.
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4.1.3 Semanti
s of Types and Classes

In this subse
tion, we provide informal details of the type system. (Wadler and Blott [17℄

dis
uss type 
lasses further.)

A type is a monotype if it 
ontains no type variables, and is monomorphi
 if it 
ontains

type variables but is not polymorphi
 (in Milner's original terminology, it is monomorphi


if it 
ontains no generi
 type variables).

A phrase of the form e :: 
 => t is 
alled a typing, and is valid if in the 
urrent envi-

ronment it is a well-typing. Typings are related by a generalisation order (spe
i�ed below);

the most general well-typing is 
alled the prin
ipal typing.

Haskell's extended Hindley-Milner type system 
an infer the prin
ipal typing of all

expressions, in
luding the proper use of overloaded operations (although 
ertain ambiguous

overloadings 
ould arise, as des
ribed in Se
tion 4.3.4). Therefore, expli
it typings (
alled

type signatures) are optional (see Se
tions 3.11 and 4.4.1).

A well-typing e :: 
 => t depends on the type environment that gives typings for the

free variables in e. An instantiation of a well-typing is a typing that results from substituting

types for some of the free type variables; the validity of an instantiation also depends on

a 
lass environment that de
lares whi
h types are members of what 
lass (a type be
omes

a member of a 
lass only via the presen
e of a (possibly derived) instan
e de
laration).




1

=> t

1

is a valid instantiation of the typing 


2

=> t

2

if and only if there is a substitution

S su
h that:

� t

1

is identi
al to S (t

2

).

� Whenever 


1

holds in the 
lass environment, S (


2

) also holds.

This notion of instantiation 
aptures the generalisation order on types mentioned earlier.

The main point about 
ontexts above is that, given the typing x :: 
 => t , the presen
e

of C u in the 
ontext 
 expresses the 
onstraint that u may be instantiated as t

0

within

the type expression t only if t

0

is a member of the 
lass C . For example, 
ontexts appear

in type and data de
larations, where they have the typi
al form

type 
 => T u

1

... u

k

= ...

data 
 => T u

1

... u

k

= ...

The 
ontext portion of ea
h of these de
larations de
lares that a type (T t

1

: : : t

k

) is only

valid where 
[t

1

=u

1

; : : : ; t

k

=u

k

℄ holds.

As an example, 
onsider:

type (Num a) => Point a = (a, a)

origin :: Point Integer

origin = (0, 0)

s
ale :: (Num a) => a -> Point a -> Point a

s
ale w (x,y) = (w*x, w*y)
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The typing for origin is valid be
ause Num Integer holds, and the typing for s
ale is

valid be
ause Point a is in the s
ope of the 
ontext Num a. On the other hand,

s
ale :: a -> Point a -> Point a

is not a valid typing, be
ause Point a is not in the s
ope of a 
ontext asserting Num a.

4.2 User-De�ned Datatypes

In this se
tion, we des
ribe type synonyms (type de
larations) and algebrai
 datatypes

(data de
larations). These de
larations may only appear at the top level of a module.

In the 
on
rete syntax of these de
larations there is an optional 
ontext, with syntax

\
ontext =>", related to overloading and type 
lasses. In this se
tion, we give syntax for

but ignore semanti
s of 
ontexts, returning to them in Se
tion 4.3.

4.2.1 Algebrai
 Data Type De
larations

topde
l ! data [
ontext =>℄ simple = 
onstrs [deriving (ty
ls j (ty
lses))℄

simple ! ty
on tyvar

1

: : : tyvar

k

(arity ty
on = k � 0 )


onstrs ! 
onstr

1

| : : : | 
onstr

n

(n � 1 )


onstr ! 
on atype

1

: : : atype

k

(arity 
on = k � 0 )

j type

1


onop type

2

(in�x 
onop)

ty
lses ! ty
ls

1

, : : : , ty
ls

n

(n � 0 )

The pre
eden
e for 
onstr is the same as that for expressions|normal 
onstru
tor appli-


ation has higher pre
eden
e than in�x 
onstru
tor appli
ation (thus a : Foo a parses as

a : (Foo a)).

An algebrai
 datatype de
laration introdu
es a new type and 
onstru
tors over that

type and has the form:

data T u

1

: : : u

k

= K

1

t

11

: : : t

1k

1

| � � � | K

n

t

n1

: : : t

nk

n

de�ning a new type 
onstru
tor T with 
onstituent data 
onstru
tors K

1

; : : : ; K

n

whose

typings are:

K

i

:: t

i1

-> � � � ->t

ik

i

->(T u

1

: : : u

k

)

The type variables u

1

through u

k

must be distin
t and are s
oped only over the right-hand-

side of the de
laration; it is a stati
 error for any other type variable to appear on the

right-hand-side.

The visibility of a datatype's 
onstru
tors (i.e. the \abstra
tness" of the datatype) out-

side of the module in whi
h the datatype is de�ned is 
ontrolled by the form of the datatype's

name in the export list as des
ribed in Se
tion 5.6.

The optional deriving part of a data de
laration has to do with derived instan
es, and

is des
ribed in Se
tion 4.3.3.
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4.2.2 Type Synonym De
larations

topde
l ! type [
ontext =>℄ simple = type

simple ! ty
on tyvar

1

: : : tyvar

k

(arity ty
on = k � 0 )

A type synonym de
laration introdu
es a new type that is equivalent to an old type and

has the form

type T u

1

: : : u

k

= t

whi
h introdu
es a new type 
onstru
tor, T . The type (T t

1

: : : t

k

) is equivalent to the

type t [t

1

=u

1

; : : : ; t

k

=u

k

℄. The type variables u

1

through u

k

must be distin
t and are s
oped

only over t ; it is a stati
 error for any other type variable to appear in t .

Although re
ursive and mutually re
ursive datatypes are allowed, this is not so for type

synonyms, unless an algebrai
 datatype intervenes. For example,

type Re
 a = [Cir
 a℄

data Cir
 a = Tag [Re
 a℄

is allowed, whereas

type Re
 a = [Cir
 a℄ -- ILLEGAL

type Cir
 a = [Re
 a℄ --

is not. Similarly, type Re
 a = [Re
 a℄ is not allowed.

4.3 Type Classes and Overloading

4.3.1 Class De
larations

topde
l ! 
lass [
ontext =>℄ 
lass [where { 
de
ls }℄


de
ls ! 
de
l

1

; : : : ; 
de
l

n

(n � 1 )


de
l ! vars :: type

j valdef


lass ! ty
ls tyvar

ty
ls ! a
onid

tyvar ! avarid

vars ! var

1

, : : : , var

n

(n � 1 )

A 
lass de
laration introdu
es a new 
lass and the operations on it. A 
lass de
laration

has the form:


lass 
 => C u where { v

1

:: t

1

; : : : ; v

n

:: t

n

;

valdef

1

; : : : ; valdef

m

}

This introdu
es a new 
lass name C ; the type variable u is unique to, and only s
oped

within, the immediate 
lass de
laration. The 
ontext 
 spe
i�es the super
lasses of C , as
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des
ribed below. The de
laration also introdu
es new operations v

1

; : : : ; v

n

, whose s
ope

extends outside the 
lass de
laration, with typings:

v

i

:: C u => t

i

Note the impli
it 
ontext in the typings for ea
h v

i

. Two 
lasses in s
ope at the same time

may not share any of the same operations.

Default methods for any of the v

i

may be in
luded in the 
lass de
laration as a normal

valdef ; no other de�nitions are permitted. The default method for v

i

is used if no binding

for it is given in a parti
ular instan
e de
laration (see Se
tion 4.3.2).

Figure 4 shows some standard Haskell 
lasses, in
luding the use of super
lasses; note

the 
lass in
lusion diagram on the right. For example, Eq is a super
lass of Ord, and thus

in any 
ontext Ord a is equivalent to (Eq a, Ord a).

A 
lass de
laration with no where part may be useful for 
ombining a 
olle
tion of


lasses into a larger one that inherits all of the operations in the original ones. For example,


lass (Ord a, Text a, Binary a) => Data a

In su
h a 
ase, if a type is an instan
e of all super
lasses, it is not automati
ally an instan
e

of the sub
lass, even though the sub
lass has no immediate operations. The instan
e

de
laration must be given expli
itly, and it must have an empty where part as well.

The super
lass relation must not be 
y
li
; i.e. it must form a dire
ted a
y
li
 graph.

4.3.2 Instan
e De
larations

topde
l ! instan
e [
ontext =>℄ ty
ls inst [where { de
ls }℄

inst ! ty
on (arity ty
on = 0 )

j ( ty
on tyvar

1

: : : tyvar

k

) (arity ty
on = k > 0 )

j ( tyvar

1

, : : : , tyvar

k

) k � 2

j ()

j [ tyvar ℄

j tyvar

1

-> tyvar

2

ty
ls ! a
onid

An instan
e de
laration introdu
es an instan
e of a 
lass. Let


lass 
 => C u where { v

1

:: t

1

; : : : ; v

n

:: t

n

}

be a 
lass de
laration. The general form of the 
orresponding instan
e de
laration is:

instan
e 


0

=> C (T u

1

: : : u

k

) where { d }

where k � 0 and T is not a type synonym. The 
ontext 


0

must imply the 
ontext


[(T u

1

: : : u

k

)=u℄, and d may 
ontain bindings (i.e. methods) only for v

1

through v

n

.
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lass Eq a where

(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)


lass (Eq a) => Ord a where

(<), (<=), (>=), (>) :: a -> a -> Bool

max, min :: a -> a -> a

x < y = x <= y && x /= y

x >= y = y <= x

x > y = y < x

max x y | x >= y = x

| y >= x = y

min x y | x <= y = x

| y <= x = y


lass Text a where

showsPre
 :: Int -> a -> String -> String

readsPre
 :: Int -> String -> [(a,String)℄

showList :: [a℄ -> String -> String -- Eq Text Binary

readList :: String -> [([a℄,String)℄ -- |

-- Ord

showList = ... -- see Appendix A.7 -- |

readList = ... -- see Appendix A.7 -- Ix

-- |


lass Binary a where -- Enum

showBin :: a -> Bin -> Bin --

readBin :: Bin -> (a,Bin) -- (Cf. Figures 7-9)


lass (Ord a) => Ix a where

range :: (a,a) -> [a℄

index :: (a,a) -> a -> Int

inRange :: (a,a) -> a -> Bool


lass (Ix a) => Enum a where

enumFrom :: a -> [a℄ -- [n..℄

enumFromThen :: a -> a -> [a℄ -- [n,n'..℄

enumFromTo :: a -> a -> [a℄ -- [n..m℄

enumFromThenTo :: a -> a -> a -> [a℄ -- [n,n'..m℄

enumFromTo n m = takeWhile ((>=) m) (enumFrom n)

enumFromThenTo n n' m = takeWhile

((if n' >= n then (>=) else (<=)) m)

(enumFromThen n n')

Figure 4: Standard Classes and Asso
iated Fun
tions
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No 
ontexts may appear in d , sin
e they are implied: any signature de
laration in d will

have the form v :: t , abbreviating v :: 


0

=> t . Ea
h v

i

has typing:

v

i

:: 


0

=> (t

i

[(T u

1

: : : u

k

)=u℄)

If no method is given for some v

i

then the default method in the 
lass de
laration is

used (if present); if su
h a default does not exist then v

i

is impli
itly bound to the 
ompletely

unde�ned fun
tion (of the appropriate type) and no stati
 error results.

The 
onstraint on 


0

implies that if a datatype T is de�ned by:

data 
 => T a = ...

then an instan
e of T over some 
lass C must in
lude the 
ontext, as in:

instan
e 
 => C (T a) where ...

An instan
e de
laration that makes the type T to be an instan
e of 
lass C is 
alled

a C-T instan
e de
laration and is subje
t to these stati
 restri
tions:

� A C-T instan
e de
laration may only appear either in the module in whi
h C is

de
lared or in the module in whi
h T is de
lared, and only where both C and T are

in s
ope.

� A type may not be de
lared as an instan
e of a parti
ular 
lass more than on
e in the

same s
ope.

Examples of instan
e de
larations may be found in the next se
tion on derived in-

stan
es.

4.3.3 Derived Instan
es

As mentioned in Se
tion 4.2.1, data de
larations 
ontain an optional deriving form. If

the form is in
luded, then derived instan
e de
larations are automati
ally generated for the

datatype in ea
h of the named 
lasses and all of their super
lasses.

Derived instan
es provide 
onvenient 
ommonly-used operations for user-de�ned data-

types. For example, derived instan
es for datatypes in the 
lass Eq de�ne the operations ==

and /=, freeing the programmer from the need to de�ne them.

The only 
lasses for whi
h derived instan
es are allowed are Eq, Ord, Ix, Enum, Text,

and Binary, all de�ned in Figure 4. The pre
ise details of how the derived instan
es are

generated for ea
h of these 
lasses are provided in Appendix D, in
luding a spe
i�
ation of

when su
h derived instan
es are possible (whi
h is important for the following dis
ussion).

If it is not possible to derive an instan
e de
laration over a 
lass named in a deriving

form, then a stati
 error results. For example, not all datatypes 
an properly support



4.3 Type Classes and Overloading 31

operations in Enum. It is also a stati
 error to expli
itly give an instan
e de
laration for

one that is also derived. These rules also apply to the super
lasses of the 
lass in question.

On the other hand, if the deriving form is omitted from a data de
laration, then

instan
e de
larations are derived for the datatype in as many of the six 
lasses mentioned

above as is possible (see Appendix D); that is, no stati
 error will result if the instan
e

de
larations 
annot be generated.

If no derived instan
e de
larations for a datatype are wanted, then the empty deriving

form deriving () must be given in the data de
laration for that type.

4.3.4 Defaults for Overloaded Operations

topde
l ! default (type j (type

1

, : : : , type

n

)) (n � 0 )

A problem inherent with overloading is the possibility of ambiguous typing. For example,

using the read and show fun
tions de�ned in Appendix D, and supposing that just Int and

Bool are members of Text, then the expression

show x where x = read "..." -- ILLEGAL

is ambiguous|the typings for show and read,

show :: (Text a) => a -> String

read :: (Text a) => String -> a


ould be satis�ed by instantiating a as either Int in both 
ases, or Bool. Su
h expressions

in Haskell are 
onsidered ill-typed, a stati
 error.

We say that an expression e is ambiguously overloaded if in its typing e :: 
 => t , 



ontains a type variable a that does not o

ur in t and a is not bound in the type environment

(if a is part of the type of a bound lambda variable, for example, it will be bound in the

type environment).

For example, the earlier expression involving show and read is ambiguously overloaded

sin
e its typing is (Text a) => String, whereas in the de�nition of show itself:

show x = showsPre
 0 x ""

no expression is ambiguous; showsPre
 0 x "" has the typing (Text a) => String, but

it is unambiguous be
ause a refers to the type of the bound variable x.

Overloading ambiguity, although rare, 
an only be 
ir
umvented by input from the user.

One way is through the use of expression type-signatures as des
ribed in Se
tion 3.11. For

example, for the ambiguous expression given earlier, one 
ould write:

show (x::Bool) where x = read "..."

whi
h disambiguates the typing.

Ambiguities in the 
lass Num are most 
ommon, so Haskell provides a se
ond way to

resolve them|with a default de
laration:

default (t

1

, : : : , t

n

)
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where n � 0 (the parentheses may be omitted when n = 1 ), and ea
h t

i

must be a monotype

for whi
h Num t

i

holds. In situations where an ambiguous typing is dis
overed, an ambiguous

type variable is defaultable if at least one of its 
lasses is a numeri
 
lass and if all of its


lasses are either numeri
 
lasses or standard 
lasses. (Figures 7{9, pages 53{55, show

the numeri
 
lasses, and Figure 4, page 29, shows the standard 
lasses.) Ea
h defaultable

variable is repla
ed by the �rst type in the default list that is an instan
e of all the ambiguous

variable's 
lasses. It is a stati
 error if no su
h type is found.

Only one default de
laration is permitted per module, and its e�e
t is limited to that

module. If no default de
laration is given in a module then it defaults to:

default (Int, Double)

The empty default de
laration default ()must be given to turn o� all defaults in a module.

4.4 Nested De
larations

The following de
larations may be used in any de
laration list, in
luding the top level of a

module.

4.4.1 Type Signatures

de
l ! vars :: [
ontext =>℄ type

vars ! var

1

, : : : , var

n

(n � 1 )

A type signature spe
i�es types for variables, possibly with respe
t to a 
ontext. A type

signature has the form:

x

1

; : : : ; x

n

:: 
 => t

whi
h is equivalent to independently asserting:

x

i

:: 
 => t

for ea
h i from 1 to n. Ea
h x

i

must have a value binding in the same de
laration list that


ontains the type signature; i.e. it is illegal to give a type signature for a variable bound in

an outer s
ope. Also, every type variable appearing in a signature is universally quanti�ed

only over that signature. This last 
onstraint implies that signatures su
h as:

f x = ys where ys :: [a℄ -- ILLEGAL

ys = [x℄ --

are not valid, sin
e this de
lares ys to be of type (8 a) [a℄, whi
h is not a valid polymorphi


type (it 
ontains only ?, the empty list, and lists just 
ontaining ?). In 
ontrast:

f x = ys where ys = [x℄

f :: a -> [a℄

is valid. The s
ope of a type variable is limited to the type signature that 
ontains it.
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A type signature for x may be more spe
i�
 than the prin
ipal typing derivable from

the value binding of x (see Se
tion 4.1.3), but it is an error to give a typing that is more

general than, or in
omparable to, the prin
ipal typing. If a more spe
i�
 typing is given

then all o

urren
es of the variable must be used at the more spe
i�
 typing or at a more

spe
i�
 typing still.

For example, if we de�ne

sqr x = x*x

then the prin
ipal typing is sqr :: (Num a) => a -> a, whi
h allows appli
ations su
h as

sqr 5 or sqr 0.1. It is also legal to de
lare a more spe
i�
 typing, su
h as

sqr :: Int -> Int

but now appli
ations su
h as sqr 0.1 are illegal. Typings su
h as

sqr :: (Num a, Num b) => a -> b -- ILLEGAL

sqr :: a -> a --

are illegal, as they are more general than the prin
ipal typing.

4.4.2 Fun
tion and Pattern Bindings

de
l ! valdef

valdef ! lhs = exp

j lhs gdfun

lhs ! pat

j var apat

1

: : : apat

k

(k � 1 )

j apat

1

varop apat

2

j ( apat

1

varop apat

2

) apat

3

: : : apat

k

(k � 3 )

gdfun ! gd = exp [gdfun℄

gd ! | exp

We distinguish two 
ases within this syntax: a pattern binding o

urs when lhs is pat ;

otherwise, it is 
alled a fun
tion binding. Either binding may appear at the top-level of a

module or within a where 
lause.

Fun
tion bindings. A fun
tion binding binds a variable to a fun
tion value. Its general

form is:

x p

11

: : : p

1k

[g

1

℄ = e

1

: : :

x p

m1

: : : p

mk

[g

m

℄ = e

m
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All of the equations making up one fun
tion de�nition must appear together and must have

the same number of patterns. If only the guard 
hanges from the immediately pre
eding

equation then the fun
tion name and patterns may be omitted. For example,

f (x:xs) | x==0 = 0

| x<0 = -1

| x>0 = 1

is an abbreviation for

f (x:xs) | x==0 = 0

f (x:xs) | x<0 = -1

f (x:xs) | x>0 = 1

Alternative syntax is provided for binding fun
tional values to in�x operators. For

example, these two fun
tion de�nitions are equivalent:

plus x y z = x+y+z

(x �plus� y) z = x+y+z

Translation: The general binding form for fun
tions is semanti
ally equivalent to the

equation (i.e. simple pattern binding):

x = \ x

1

x

2

::: x

k

-> 
ase (x

1

, :::, x

k

) of (p

11

; : : : ; p

1k

) [g

1

℄ -> e

1

: : :

(p

m1

; : : : ; p

mk

) [g

m

℄ -> e

m

where the x

i

are new identi�ers.

Pattern bindings. A pattern binding binds variables to values. A simple pattern binding

has form p = e. In both a where 
lause and at the top level of a program, the pattern

p is mat
hed \lazily" as an irrefutable pattern by default (as if there were an impli
it ~ in

front of it). See the translation in Se
tion 3.9.

The general form of a pattern binding is:

p | g

1

= e

1

| g

2

= e

2

:::

| g

m

= e

m

Note: the simple form p = e is equivalent to p | True = e.

Translation: The pattern binding above is semanti
ally equivalent to this simple

pattern binding:

p = if g

1

then e

1

else

if g

2

then e

2

else

:::

if g

m

then e

m

else error ""
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Stati
 semanti
s of fun
tion and pattern bindings. The stati
 semanti
s of the

fun
tion and pattern bindings of a where expression (in
luding that of the top-level of a

program that has been translated into a where expression as des
ribed in Se
tion 5) is as

follows.

In general the stati
 semanti
s is given by the normal Hindley-Milner inferen
e rules, ex-


ept that a dependen
y analysis transformation is �rst performed to enhan
e polymorphism.

Exhaustive appli
ation of the following rules 
apture this dependen
y analysis:

2

(1) The order of de
larations in where 
lauses is irrelevant.

(2) e where {d

1

; d

2

} = ( e where {d

2

} ) where {d

1

}

(when no identi�er bound in d

2

appears free in d

1

)

Apart from one important ex
eption to be 
overed below, the extension of the Hindley-

Milner type system to type 
lasses allows variables bound in a where to be both polymorphi


and overloaded. This 
ontrasts with a variable bound by a lambda abstra
tion, whose type

must be monomorphi
 and hen
e may not be overloaded (Se
tion 3.1). (This extends to

type 
lasses a well-known restri
tion imposed by the Hindley-Milner type system.) Two


ases must be distinguished:

� Variables bound dire
tly to lambda abstra
tions are typed exa
tly as des
ribed above.

This in
ludes all fun
tion bindings and also all pattern bindings taking the form

v = \p

1

: : : p

n

-> e, where v is a variable. The latter two forms are equivalent, so

are both typed in the same way.

� Variables not bound dire
tly to a lambda abstra
tion

3

may be polymorphi
 and over-

loaded, but must also obey the rule: variables not bound dire
tly to lambda abstra
tions

must not be used at more than one distin
t overloading. An immediate 
onsequen
e is

that overloaded variables not bound dire
tly to lambda abstra
tions 
annot be exported,

be
ause, on
e exported, there is no way to 
he
k the required 
ondition.

The single-overloading rule 
an be de�ned as: the type of a variable not bound dire
tly

to a lambda abstra
tion is monomorphi
 in any type variables 
onstrained by a 
ontext.

4

All

non-overloaded bindings are fully polymorphi
 in the usual way, and overloaded variables

not bound dire
tly to lambda abstra
tions are polymorphi
 in type variables not 
onstrained

by a 
ontext.

This de�nition gives an example of the e�e
t of the rule:

f x = (y,y) where y = fa
torial 1000

The type inferred for f is Num b => a -> (b,b), not (Num b,Num 
) => a -> (b,
); the

2

Exhaustive appli
ation of these rules 
auses a transformation similar to that in Peyton Jones' book [12℄,

ex
ept that where 
lauses are used uniformly, instead of a 
ombination of \let" and \letre
" 
lauses.

3

This in
ludes de�nitions su
h as (f,g) = (\x.x,\y.True). Here, f and g do not 
ount as being bound

dire
tly to lambda abstra
tions, be
ause the left-hand side of the de�nition is not a simple variable.

4

Noti
e the use of monomorphi
, rather than monotyped (see Se
tion 4.1.3). It is not ne
essary that the

type be �xed at 
ompile time, merely that the variable is only used at a single overloading.
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two 
omponents of the pair returned 
an only be used at the same overloading. This avoids

the unpleasant possibility that fa
torial 1000 might be 
omputed twi
e, on
e at ea
h

overloading.

This rule is restri
tive only where a truly overloaded 
onstant is required (usually at the

top level); for example,

module F( fa
1000 ) where

fa
1000 = fa
torial 1000

The limitation may be over
ome in two main ways. fa
1000 may be given a monotype su
h

as Integer by using a type signature, in whi
h 
ase ea
h use of fa
1000 must be repla
ed

by (fromInteger fa
1000); alternatively, the de�nition may be 
hanged into a fun
tion

de�nition:

module F( fa
1000 ) where

fa
1000 () = fa
torial 1000

in whi
h 
ase uses of fa
1000 must be repla
ed by (fa
1000 ()). Both alternatives 
or-

re
tly indi
ate that some re
omputation may take pla
e.
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5 Modules

A module de�nes a 
olle
tion of values, data types, type synonyms, 
lasses, et
. (see Se
-

tion 4), and exports some of these resour
es, making them available to other modules. We

use the term entity to refer to the values, types, and 
lasses de�ned in and perhaps exported

from a module.

A Haskell program is a 
olle
tion of modules, one of whi
h must be 
alled Main and

must export the value main. The value of the program is the value of the identi�er main in

module Main, and main must have type Dialogue (see Se
tion 7).

Modules may referen
e other modules via expli
it import de
larations, ea
h giving the

name of a module to be imported, spe
ifying its entities to be imported, and optionally

renaming some or all of them. Modules may be mutually re
ursive.

The name-spa
e for modules is 
at, with ea
h module being asso
iated with a unique

module name (whi
h are Haskell identi�ers beginning with a 
apital letter; i.e. a
onid).

There are two distinguished modules, PreludeCore and Prelude, both dis
ussed in Se
-

tion 5.4.

5.1 Overview

5.1.1 Interfa
es and Implementations

A module 
onsists of an interfa
e and an implementation of that interfa
e.

The interfa
e of a module provides 
omplete information about the stati
 semanti
s of

that module, in
luding type signatures, 
lass de�nitions, and type de
larations for the var-

ious entities made available by the module. This information is 
omplete in this sense: If

a module M imports modules M

1

; : : : ;M

n

, then only the interfa
es of M

1

; : : : ;M

n

need be

examined in order to perform stati
 
he
king on the implementation of M. No implementa-

tions of M

1

; : : : ;M

n

need to exist, nor need any further interfa
es be 
onsulted. Interfa
es

are dis
ussed in Se
tion 5.3.

An implementation \�lls in" the information about a module missing from the interfa
e.

For example, for ea
h value given a type signature in the interfa
e the implementation either

imports a module that de�nes the value or de�nes the value itself. Implementations are

dis
ussed in Se
tion 5.2.

5.1.2 Original Names

It may be that a parti
ular entity is imported into a module by more than one route|for

example, be
ause it is exported by two modules both of whi
h are imported by a third mod-

ule. It is important that benign name-
lashes of this form are allowed, but that a

idental

name-
lashes are dete
ted and reported as errors. This is done as follows.

Ea
h entity (
lass, type 
onstru
tor, value, et
.) has an original name that is a pair


onsisting of the name of the module in whi
h it was originally de
lared, and the name it
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was given in that de
laration. The original name is 
arried with the entity wherever it is

exported. Two entities are the same if and only if they have the same original name.

Renaming does not a�e
t the original name; it is a purely synta
ti
 operation that

a�e
ts only the name by whi
h the entity is 
urrently known. For example, if a 
lass is

renamed and a type is de
lared to be an instan
e of the newly-named 
lass, then it is also

an instan
e of the original 
lass|there is just one 
lass, whi
h happens to be known by

di�erent names in di�erent parts of the program. Also, �xity is a property of the original

name of an identi�er or operator and is not a�e
ted by renaming; the new name has the

same �xity as the old one.

5.1.3 Closure

The implementation together with the interfa
es of the modules it imports must be stati-


ally 
losed a

ording to this rule: every value, type, or 
lass referred to in the text of an

implementation together with the interfa
es that it imports, must be de
lared in the imple-

mentation or in one of the imported interfa
es.

It is an error for a module to export a 
olle
tion of entities that 
annot possibly be
ome


losed. For example, if a module A de
lares both the type T and a value t of type T, it may

not export t without also exporting T.

However, the 
losure 
ondition applies on import, not on export. For example, if another

module B imported T from module A, and de
lared another value s of type T, it may export

s without exporting T|but any module importing B must also import the type T by some

other route, for example by also importing A.

5.1.4 The Compilation System

The task of 
he
king 
onsisten
y between interfa
es and implementations must be done by

the 
ompilation system.

Haskell does not spe
ify any parti
ular asso
iation between implementations and in-

terfa
es on the one hand, and �les on the other; nor does it spe
ify how implementations

and interfa
es are produ
ed. These matters are determined by the 
ompilation system, and

many variations are possible, depending on the programming environment. For example, a


ompilation system 
ould insist that ea
h implementation and ea
h interfa
e reside alone

in a �le, and that the module name is the same as that of the �le, with the implementation

and interfa
e distinguished by a suÆx.

Similarly, a 
ompilation system may require the programmer to write the interfa
e, or

it may derive the interfa
e from examination of the implementation, or some hybrid of the

two. Haskell is de�ned so that, given the interfa
es of all imported modules, it is always

possible to perform a 
omplete stati
 
he
k on the implementation, and, if it is well-typed,

to derive its unique interfa
e automati
ally. However, given a set of mutually re
ursive

implementations, the 
ompilation system may have to examine several modules at on
e to

derive the interfa
es, whi
h will still be unique with one ex
eption: be
ause of the shorthand
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for exporting all entities from an imported module, the set of exports may not be unique.

Any set satisfying the 
onsisten
y 
onstraints is a valid solution for a well-typed Haskell

program, but if an implementation automati
ally derives the interfa
e it must derive the

smallest set of exports.

For optimisation a
ross module boundaries, a 
ompilation system may need more infor-

mation than is provided by the standard interfa
e as de�ned in this report.

5.2 Module Implementations

A module implementation de�nes a mutually re
ursive s
ope 
ontaining de
larations for

value bindings, data types, type synonyms, 
lasses, et
. (see Se
tion 4).

module ! module modid [exports℄ where body

j body

body ! { [impde
ls ;℄ [�xde
ls ;℄ topde
ls }

j { impde
ls }

modid ! a
onid

impde
ls ! impde
l

1

; : : : ; impde
l

n

(n � 1 )

topde
ls ! topde
l

1

; : : : ; topde
l

n

(n � 1 )

A module implementation begins with a header: the keyword module, the module name,

and a list of entities (en
losed in round parentheses) to be exported. The header is followed

by an optional list of import de
larations that spe
ify modules to be imported, optionally

restri
ting and renaming the imported bindings. This is followed by an optional list of

�xity de
larations and the module body. The module body is simply a list of top-level

de
larations (topde
ls), as des
ribed in Se
tion 4.

An abbreviated form of module is permitted, whi
h 
onsists only of the module body.

If this is used, the header is assumed to be module Main where. It is inadvisable for a


ompilation system to permit an abbreviated module to appear in the same �le as some

unabbreviated modules.

5.2.1 Export Lists

exports ! ( export

1

, : : : , export

n

) (n � 1 )

export ! varid

j ty
on

j ty
on (..)

j ty
on ( 
onid

1

, : : : , 
onid

n

) (n � 1 )

j ty
ls (..)

j ty
ls ( varid

1

, : : : , varid

n

) (n � 0 )

j modid ..
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An export list identi�es the entities to be exported by a module de
laration. A module

implementation may only export an entity that it de
lares, or that it imports from some

other module. If the export list is omitted, all values, types and 
lasses de�ned in the

module are exported, but not those that are imported.

Entities in an export list may be named as follows:

1. Ordinary values, whether de
lared in the implementation body or imported, may be

named by giving the name of the value as a varid. Operators should be en
losed in

parentheses to turn them into varid's.

2. A type synonym T de
lared by a type de
laration may be named by simply giving

the name of the type.

3. An algebrai
 data type T with 
onstru
torsK

1

; : : : ;K

n

de
lared by a data de
laration

may be named in one of three ways:

� The form T names the type but not the 
onstru
tors. The ability to export a

type without its 
onstru
tors allows the 
onstru
tion of abstra
t data types (see

Se
tion 5.6).

� The form T(K

1

, : : : ,K

n

), where all and only the 
onstru
tors are listed without

dupli
ations, names the type and all its 
onstru
tors.

� The abbreviated form T(..) also names the type and all its 
onstru
tors.

Data 
onstru
tors may not be named in export lists in any other way.

4. A 
lass C with operations f

1

; : : : ; f

n

de
lared in a 
lass de
laration may be named

in one of two ways, both of whi
h name the 
lass together with all its operations:

� The form C(f

1

, : : : ,f

n

), where all and only the operations in that 
lass are

listed without dupli
ations.

� The abbreviated form C(..).

Operators in a 
lass may not be named in export lists in any other way.

5. The set of all entities brought into s
ope (after renaming) from a module m by one

or more import de
larations may be named by the form m.., whi
h is equivalent to

listing all of the entities imported from the module. For example,

module Queue( Sta
k.., enqueue, dequeue ) where

import Sta
k

...

Here the module Queue uses the module name Sta
k in its export list to abbreviate

all the entities imported from Sta
k. It is a stati
 error to have 
ir
ular dependen
ies

between imports/exports using this naming 
onvention. For example, the following is

not allowed:
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module X( Y.. ) -- ILLEGAL

import Y --

x = 1 --

module Y( X.. ) --

import X --

y = 1 --

5.2.2 Import De
larations

impde
l ! import modid [impspe
℄ [renaming renamings℄

impspe
 ! ( import

1

, : : : , import

n

) (n � 0 )

j hiding ( import

1

, : : : , import

n

) (n � 1 )

import ! varid

j ty
on

j ty
on (..)

j ty
on ( 
onid

1

, : : : , 
onid

n

) (n � 1 )

j ty
ls (..)

j ty
ls ( varid

1

, : : : , varid

n

) (n � 0 )

renamings ! ( renaming

1

, : : : , renaming

n

) (n � 1 )

renaming ! name

1

to name

2

name ! varid j 
onid

The entities exported by a module may be brought into s
ope in another module with

an import de
laration at the beginning of the module. The import de
laration names

the module to be imported, optionally spe
i�es the entities to be imported, and optionally

provides renamings for imported entities. A single module may be imported by more than

one import de
laration.

Exa
tly whi
h entities are to be imported 
an be spe
i�ed in one of three ways:

1. The set of entities to be imported 
an be spe
i�ed expli
itly by listing them in paren-

theses. Items in the list have the same form as those in export lists, ex
ept that the

modid abbreviation is not permitted.

The list must name a subset of the entities exported by the imported module. The

list may be empty, in whi
h 
ase nothing is imported; this is espe
ially useful in the


ase of the module Prelude (see Se
tion 5.4.3).

2. Spe
i�
 entities 
an be ex
luded by using the form hiding( import

1

,:::,import

n

),

whi
h spe
i�es that all entities exported by the named module should be imported

apart from those named in the list.

3. Finally, if impspe
 is omitted then all the entities exported by the spe
i�ed module

are imported.

Some or all of the imported entities may be renamed, thus allowing them to be known

by a new name in the importing s
ope (see Se
tion 5.1.2). This is done using the renaming
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keyword, with a renaming of the form oldname to newname. All renaming is subje
t to

the 
onstraint that ea
h name in a s
ope must refer to exa
tly one entity; however, a single

entity may be given more than one name.

5.3 Module Interfa
es

Every module has an interfa
e 
ontaining all the information needed to do stati
 
he
ks

on any importing module. All stati
 
he
ks on a module implementation 
an be done by

inspe
ting its text and the interfa
es of the modules it imports.

interfa
e ! interfa
e modid where ibody

ibody ! { [iimpde
ls ;℄ [�xes ;℄ itopde
ls }

j { iimpde
ls }

iimpde
ls ! iimpde
l

1

; : : : ; iimpde
l

n

(n � 1 )

iimpde
l ! import modid ( import

1

, : : : , import

n

)

[renaming renamings℄ (n � 1 )

itopde
ls ! itopde
l

1

; : : : ; itopde
l

n

(n � 1 )

itopde
l ! type [
ontext =>℄ simple = type

j data [
ontext =>℄ simple [= 
onstrs℄ [deriving (ty
ls j (ty
lses))℄

j 
lass [
ontext =>℄ 
lass [where { i
de
ls }℄

j instan
e [
ontext =>℄ ty
ls inst

j vars :: [
ontext =>℄ type

i
de
ls ! i
de
l

1

; : : : ; i
de
l

n

(n � 1 )

i
de
l ! vars :: type

The syntax of interfa
e is similar to that of module, ex
ept:

� There is no export list: everything in the interfa
e is exported.

� import de
larations have a slightly di�erent purpose from those in implementations

(see Se
tion 5.3.2). The list of entities to be imported is always spe
i�ed expli
itly.

� data de
larations appear without their 
onstru
tors if these are not exported.

� There is no implementation part to instan
e de
larations.

� Value de
larations do not appear at all; for exported values, type signatures take their

pla
e.

5.3.1 Consisten
y

The interfa
e and implementation of a module must obey 
ertain 
onstraints. (In the

following, the phrase \in the implementation" refers to something either de
lared within

the implementation or imported by it.)
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1. Every entity given a de
laration in an interfa
e must either have an import de
laration

for the entity in the interfa
e (the import spe
i�es the module that de�nes it) or have a

de�nition of the entity in the implementation. Furthermore, if an interfa
e A imports

an entity X from module B (perhaps renaming it), then the interfa
e for B must de�ne

X but not import it.

2. A 
lass, type synonym, algebrai
 data type, or value appears in the interfa
e exa
tly

when its name appears in the implementation's export list or, if the export list is

omitted, when it is de
lared in the implementation.

3. A type signature appears in the interfa
e for every value that the implementation

exports. This type signature must be the same as that in the implementation (see

Se
tion 4.1.3), where the latter is obtained from the expli
it type signature in the im-

plementation (when present) or is the most general type inferred from the de
laration

of the value.

4. A type de
laration in an interfa
e must be identi
al to that in the implementation.

5. A 
lass de
laration in an interfa
e must be identi
al to that in the implementation,

ex
ept that default-method de
larations are omitted.

6. If the 
onstru
tors of a data type are not to be exported, then the data de
laration

in the interfa
e di�ers from that in the implementation by omitting everything after

(and in
luding) the = sign. If the data de
laration in the implementation uses the

derivingme
hanism to derive instan
e de
larations for the type, a separate instan
e

de
laration must appear in the interfa
e for ea
h 
lass of whi
h the type is made an in-

stan
e of. However, the information that 
ertain instan
es are derived is hidden when

the 
onstru
tors are hidden, sin
e in this 
ase the type is abstra
t (see Se
tion 5.6).

7. If the 
onstru
tors of a data de
laration are to be exported, then the data de
laration

in the interfa
e is identi
al to that in the implementation in
luding the deriving part.

5

8. If a C-T instan
e is de
lared in a module or imported by it, then the instan
e de
la-

ration appears in the interfa
e (omitting the where part) if either C is exported or T

is exported. Instan
e de
larations are not named expli
itly in export or import lists.

This rule ensures that, if C and T are both in s
ope, then the (unique) C-T instan
e

de
laration will also be in s
ope.

6

No expli
it instan
e de
laration should appear in the interfa
e for instan
es that are

spe
i�ed by the deriving part of a data de
laration in the interfa
e.

9. A �xity de
laration appears in an interfa
e exa
tly when (a) a type signature for the

value is also given in the interfa
e (either by itself or as part of a 
lass de
laration)

and (b) the identi
al �xity de
laration appears either in the implementation or in an

imported interfa
e.

5

It is important to retain the information about whi
h instan
es are derived and whi
h are not, be
ause

the importing module \knows" more about derived instan
es.

6

The reverse also applies. For example, suppose that a new type T is de
lared and made an instan
e

of an imported 
lass C. The instan
e de
laration will be exported along with T , and so the 
losure rule

(Se
tion 5.1.3) will require that C is also in s
ope in every importing s
ope.
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This example illustrates most of these 
onstraints; �rst, the interfa
e:

interfa
e A where

infixr 4 �sameShape�

data BinTree a = Empty | Bran
h a (BinTree a) (BinTree a)


lass Tree a where

sameShape :: a -> a -> Bool

instan
e Tree (BinTree a)

sum :: Num a => BinTree a -> a

Now the implementation:

module A( BinTree(..), Tree(..), sum ) where

infixr 4 �sameShape�

-- �sameShape� is an operation of 
lass C below

data BinTree a = Empty | Bran
h a (BinTree a) (BinTree a)


lass Tree a where

sameShape :: a -> a -> Bool

t1 �sameShape� t2 = False -- Default method

instan
e Tree (BinTree a) where

Empty �sameShape� Empty = True

(Bran
h _ t1 t2) �sameShape� (Bran
h _ t1' t2')

= (t1 �sameShape� t1') && (t2 �sameShape� t2')

t1 �sameShape� t2 = False

sum Empty = 0

sum (Bran
h n t1 t2) = n + sum t1 + sum t2

5.3.2 Imports and Original Names

The original-name information is 
arried in the interfa
e �le using import de
larations in

a spe
ial way.

Suppose that a module A exports an entity x; the interfa
e for A will 
ontain stati


information about x. If x was originally de�ned in A, then this is all that appears. But,

suppose that x was imported by A from some other module B and that x was originally

de�ned in module C with name y; this de
laration must appear in the interfa
e for A:

import C(y) renaming ( y to x )

No referen
e to B remains in the interfa
e. The import de
laration in the interfa
e serves

only to 
onvey to the importing module the original name of x, and does not imply that

module B's interfa
e must be 
onsulted when reading module A's interfa
e. Multiple imports

from a single original module may optionally be grouped in a single import de
laration in

the interfa
e.

A module may export a value whose typing involves a type and/or 
lass that is not

exported. (Any importing module would have to import the type or 
lass by some other
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route.) Nevertheless, it is still required that the interfa
e 
ontain the import de
laration

required to give the original name of the type or 
lass.

In summary, for every entity e1 mentioned in the interfa
e of a module M whose original

name is e2 in module N, M's interfa
e must 
ontain the import de
laration

import N(e2) renaming ( e2 to e1 )

The word \mentioned" in
ludes mention in the type signature of an exported value, as

dis
ussed above.

5.4 Standard Prelude

Many of the features ofHaskell are de�ned inHaskell itself, as a large library of standard

data types, 
lasses and fun
tions, 
alled the \standard prelude." In Haskell, the stan-

dard prelude is spe
i�ed as two distin
t modules (in the te
hni
al sense of this 
hapter),

PreludeCore and Prelude.

PreludeCore and Prelude di�er from other modules in that their interfa
es, and the

semanti
s of the entities de�ned by those interfa
es, are part of the Haskell language

de�nition. This means, for example, that a 
ompiler may optimise 
alls to fun
tions in the

standard prelude, be
ause it knows their semanti
s as well as their interfa
e.

Ea
h of these modules are stru
tured into sub-modules. To avoid name-
lashes with

these sub-modules, user-de�ned module names must not begin with the pre�x Prelude.

5.4.1 The PreludeCore Module

The PreludeCore module 
ontains all the algebrai
 data types, type synonyms, 
lasses and

instan
e de
larations spe
i�ed by the standard prelude.

PreludeCore is always impli
itly imported, so it is not possible to import only part of

it or to rename any of the entities that it de�nes.

The semanti
s of the entities de�ned by PreludeCore is spe
i�ed by an implemen-

tation written in Haskell, in Appendix A.2. A Haskell system need not implement

PreludeCore in this way. The interfa
e for PreludeCore may be inferred from the imple-

mentation in Appendix A.2.

Some data types (su
h as Int) and fun
tions (su
h as addition of Ints) 
annot be

spe
i�ed dire
tly in Haskell. This is expressed in the PreludeCore implementation by

importing these built-in types and values from PreludeBuiltin. The semanti
s of the

built-in data types and fun
tions is given as English text in Appendix A.1.

The implementation for PreludeCore is in
omplete in its treatment of tuples: there

should be an in�nite family of instan
e de
larations for tuples, but the implementation only

gives a s
heme.

The alert reader may noti
e that the implementation of PreludeCore given in Ap-

pendix A.2 uses some fun
tions de�ned in Prelude (see next se
tion). There is no 
on
i
t,

PreludeCore and Prelude are mutually re
ursive.
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5.4.2 The Prelude Module

The Prelude module 
ontains all the value de
larations in the standard prelude.

The Prelude module is imported automati
ally if and only if it is not imported with an

expli
it import de
laration. This provision for expli
it import allows values de�ned in the

standard prelude to be renamed or not imported at all.

The semanti
s of the entities in Prelude is spe
i�ed by an implementation of Prelude

written in Haskell, given in Appendix A. As for PreludeCore, a Haskell system may

implement the Prelude module as it pleases, provided it maintains the semanti
s in Ap-

pendix A. The interfa
e 
an be inferred from this implementation.

5.4.3 Shadowing Prelude Names and Non-Standard Preludes

The rules about the standard prelude have been 
ast so that it is possible to use standard

prelude names for non-standard purposes; however, every module that does so will have an

import de
laration that makes this non-standard usage expli
it. For example:

module A where

import Prelude hiding (map)

map f x = x f

Module A rede�nes map, but it must indi
ate this by importing Prelude without map.

Furthermore, A exports map, but every module that imports map from A must also hide map

from Prelude just as A does. Thus there is little danger of a

identally shadowing standard

prelude names.

It is possible to 
onstru
t and use a di�erent Prelude module:

module B where

import Prelude()

import MyPrelude

...

B imports nothing from Prelude, but the expli
it import Prelude de
laration prevents the

automati
 import of Prelude. import MyPrelude brings the non-standard prelude into

s
ope. As before, the standard prelude names are hidden expli
itly.
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5.5 Example

As an example, here are two small modules:

module A( Tree(..), depth ) where

data Tree a = Leaf a | Bran
h (Tree a) (Tree a)

depth (Leaf a) = 0

depth (Bran
h xt yt) = (depth xt �max� depth yt) + 1

module B( leaves ) where

import A

leaves (Leaf a) = [a℄

leaves (Bran
h xt yt) = leaves xt ++ leaves yt

Module A must export Tree be
ause it exports depth, and Tree 
ould not be made visible

in any other way. However, B is not required to export Tree, sin
e a module importing B


ould import A in order to satisfy the 
losure 
onstraints.

Modules may be used to 
ombine the resour
es of other modules. For example, one

might use renaming to make trees available to Fren
h speakers:

module C( Arbre(..), fond, feuilles ) where

import A renaming ( Tree to Arbre, Leaf to Feuille, Bran
h to Bran
he,

depth to fond )

import B renaming ( leaves to feuilles )

5.6 Abstra
t Data Types

The ability to export a data type without its 
onstru
tors allows the 
onstru
tion of abstra
t

data types (ADTs). For example, an ADT for sta
ks 
ould be de�ned as:

module Sta
k( StkType, push, pop, empty ) where

data StkType a = EmptyStk | Stk a (StkType a)

push x s = Stk x s

pop (Stk _ s) = s

empty = EmptyStk

Modules importing Sta
k 
annot 
onstru
t values of type StkType be
ause they do not

have a

ess to the 
onstru
tors of the type.

It is also possible to build an ADT on top of an existing type by using a data de
laration

with a single 
onstru
tor with only one �eld. For example, sta
ks 
an be de�ned with lists:

module Sta
k( StkType, push, pop, empty ) where

data StkType a = Stk [a℄

push x (Stk s) = Stk (x:s)

pop (Stk (x:s)) = Stk s

empty = Stk [℄

Note 1. Every ADT must be a module (but a Haskell 
ompilation system may allow

multiple modules in a single �le).
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Note 2. Using a single-
onstru
tor single-�eld data de
laration to 
reate an isomorphi


type introdu
es an unwanted extra element to the new type, namely (Stk ?), with the

risk of an a

ompanying small ineÆ
ien
y in the implementation.

5.7 Fixity De
larations

�xde
ls ! �x

1

; : : : ; �x

n

(n � 1 )

�x ! infixl [digit ℄ ops

j infixr [digit ℄ ops

j infix [digit ℄ ops

ops ! op

1

, : : : , op

n

(n � 1 )

op ! varop j 
onop

A �xity de
laration gives the �xity and binding pre
eden
e of a set of operators. Fixity

de
larations must appear only at the start of a module

7

and may only be given for identi�ers

de�ned in that module. Fixity de
larations 
annot subsequently be overridden, and an

identi�er 
an only have one �xity de�nition.

There are three kinds of �xity, non-, left- and right-asso
iativity (infix, infixl, and

infixr, respe
tively), and ten pre
eden
e levels, 0 through 9 (level 0 binds least tightly,

and level 9 binds most tightly). If the digit is omitted, level 9 is assumed. Any operator

la
king a �xity de
laration is assumed to be infixl 9.

Fixity de
larations allow parentheses to be dropped in these expressions when the asso-


iated 
onditions are satis�ed (in this table infix stands for any infix, infixl, or infixr

de
laration):

(x op

1

y) op

2

z infix d

1

op

1

, infix d

2

op

2

, d

1

> d

2

(x op

1

y) op

2

z infixl d

1

op

1

, infixl d

2

op

2

, d

1

= d

2

x op

1

(y op

2

z ) infix d

1

op

1

, infix d

2

op

2

, d

1

< d

2

x op

1

(y op

2

z ) infixr d

1

op

1

, infixr d

2

op

2

, d

1

= d

2

The phrase \x op

1

y op

2

z", where we have infixl d

1

op

1

, infixr d

2

op

2

, and d

1

= d

2

,

is ambiguous and generates a parsing error.

Fixity is a property of the original name of an identi�er or operator (see Se
tion 5.1.2).

Fixity is not a�e
ted by renaming; the new name has the same �xity as the old one.

7

This is to avoid parsing problems that arise when �xity de
larations appear lexi
ally after the operators

to whi
h they refer.
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data Bool = False | True

(&&), (||) :: Bool -> Bool -> Bool

True && x = x

False && x = False

True || x = True

False || x = x

not :: Bool -> Bool

not True = False

not False = True

otherwise :: Bool

otherwise = True

Figure 5: Standard fun
tions on booleans

6 Basi
 Types

6.1 Booleans

The boolean type Bool is an enumeration; Figure 5 shows its de�nition and standard

fun
tions &&, ||, not, and otherwise.

6.2 Chara
ters and Strings

The 
hara
ter type Char is an enumeration, and 
onsists of 256 values, of whi
h the �rst

128 are the ASCII 
hara
ter set. The lexi
al syntax for 
hara
ters is de�ned in Se
tion 2.5;


hara
ter literals are nullary 
onstru
tors in the datatype Char. The standard prelude

provides an instan
e de
laration for Char in 
lass Enum and two fun
tions relating 
hara
ters

to Ints in the range [0; 255℄:

ord :: Char -> Int


hr :: Int -> Char

An ASCII-based implementation must treat 
ertain pairs of 
hara
ters as equivalent

(re
e
ted in the behaviour of == and in pattern-mat
hing). In parti
ular, (1) numeri


es
ape 
hara
ters, ASCII es
ape 
hara
ters, and 
ontrol 
hara
ters should be 
onsidered

equivalent to the degree implied by the ASCII standard, and (2) these pairs of 
hara
ters

are equivalent: \a and \BEL, \b and \BS, \f and \FF, \r and \CR, \t and \HT, \v and \VT,

and \n and \LF.

A string is a list of 
hara
ters:

type String = [Char℄
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Strings may be abbreviated using the lexi
al syntax des
ribed in Se
tion 2.5. For example,

"A string" abbreviates

[�A�,� �,�s�,�t�,�r�, �i�,�n�,�g�℄

6.3 Fun
tions

Fun
tions are de�ned via lambda abstra
tions and fun
tion de�nitions. Besides appli
ation,

an in�x 
omposition operator is de�ned:

(.) :: (b -> 
) -> (a -> b) -> a -> 


(f . g) x = f (g x)

The fun
tion until applies a fun
tion to an initial value zero or more times until the result

satis�es a given predi
ate:

until :: (a -> Bool) -> (a -> a) -> a -> a

until p f x | p x = x

| otherwise = until p f (f x)

6.4 Lists

Lists are des
ribed in Se
tion 3.4. See the standard prelude (Appendix A) for the de�nitions

of the standard list fun
tions. Arithmeti
 sequen
es and list 
omprehensions, two 
onvenient

syntaxes for spe
ial kinds of lists, are des
ribed in Se
tions 3.7 and 3.8, respe
tively.

6.5 Tuples

Tuples are de�ned in Se
tion 3.5. Six fun
tions, named zip, zip3, : : :, zip7, are provided

by the standard prelude. These produ
e lists of n-tuples from n lists, for 2 � n � 7. The

resulting lists are as long as the shortest argument list; ex
ess elements of other argument

lists are ignored.

6.6 Binary Datatype

The Bin datatype is a primitive abstra
t datatype in
luding the value nullBin (the empty

or nullary binary value), and the predi
ate isNullBin (whi
h returns True when applied to

nullBin and False when applied to all other values of type Bin). Also, derived instan
es of

the Binary 
lass generate de�nitions for showBin and readBin, as des
ribed in Se
tion 4.3.3

and Appendix D. The Bin datatype is used primarily for eÆ
ient and transparent I/O, as

des
ribed in Se
tion 7.

6.7 Unit Datatype

The unit datatype () has one member, the nullary 
onstru
tor () (and thus an overloading

of syntax)|see also Se
tion 3.6.
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Figure 6: Numeri
 
lass in
lusions (
f. Figure 4, page 29)

6.8 Numbers

6.8.1 Introdu
tion

Haskell provides several kinds of numbers; the numeri
 types and the operations upon

them have been heavily in
uen
ed by Common Lisp [14℄ and S
heme [13℄. Numeri
 fun
tion

names and operators are usually overloaded, using several type 
lasses with an in
lusion

relation shown in Figure 6 (
f. Figure 4, page 29). (Some 
lasses are immediate sub
lasses

of two other 
lasses; there are pairs of 
lasses with a nontrivial interse
tion.) The 
lass Num

of numeri
 types is a sub
lass of Eq, sin
e all numbers may be 
ompared for equality; its

sub
lass Real is also a sub
lass of Ord, sin
e the other 
omparison operations apply to all but


omplex numbers. The 
lass Integral 
ontains both �xed- and arbitrary-pre
ision integers;

the 
lass Fra
tional 
ontains all nonintegral types; and the 
lass Floating 
ontains all


oating-point types, both real and 
omplex.

Table 1 lists the standard numeri
 types. The type Int is a �xed-pre
ision type, 
overing

at least the range [�2

29

+1; 2

29

�1℄. The range 
hosen by an implementation must either be

symmetri
 about zero or 
ontain one more negative value than positive (to a

ommodate

twos-
omplement representation) and should be large enough to serve as array indi
es.

The 
onstants minInt and maxInt (Figure 8, page 54) de�ne the limits of Int in ea
h

implementation. Float is a 
oating-point type, also implementation-de�ned; it is desirable

that this type be at least equal in range and pre
ision to the IEEE single-pre
ision type.

Similarly, Double should 
over IEEE double-pre
ision. An implementation may provide

other numeri
 types, su
h as additional pre
isions of integer and 
oating-point. The results

of ex
eptional 
onditions (su
h as over
ow or under
ow) on the �xed-pre
ision numeri


types are unde�ned; an implementation may 
hoose error (?, semanti
ally), a trun
ated
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Typing Class Des
ription

Integer Integral Arbitrary-pre
ision integers

Int Integral Fixed-pre
ision integers

(Integral a) => Ratio a RealFra
 Rational numbers

Float RealFloat Real 
oating-point, single pre
ision

Double RealFloat Real 
oating-point, double pre
ision

(RealFloat a) => Complex a Floating Complex 
oating-point

Table 1: Standard numeri
 types

value, or a spe
ial value su
h as in�nity, inde�nite, et
.

The interfa
e text (Se
tion 5.3) asso
iated with the standard numeri
 
lasses, types, and

operations is shown in Figures 7{9.

6.8.2 Numeri
 Literals

The syntax of numeri
 literals is given in Se
tion 2.4. An integer literal represents the ap-

pli
ation of the fun
tion fromInteger to the appropriate value of type Integer. Similarly,

a 
oating literal stands for an appli
ation of fromRational to a value of type Rational

(that is, Ratio Integer). Given the typings:

fromInteger :: (Num a) => Integer -> a

fromRational :: (Fra
tional a) => Rational -> a

integer and 
oating literals have the typings (Num a) => a and (Fra
tional a) => a,

respe
tively. Numeri
 literals are de�ned in this indire
t way so that they may be interpreted

as values of any appropriate numeri
 type. For example, fromInteger for 
omplex numbers

is de�ned as follows:

fromInteger n = fromInteger n :+ 0

See Se
tion 4.3.4 for a dis
ussion of overloading ambiguity.

6.8.3 Constru
ted Numbers

There are two kinds of numeri
 types formed by data 
onstru
tors: namely, Ratio and

Complex. For ea
h Integral type t, there is a type Ratio t of rational pairs with 
omponents

of type t. (The type name Rational is a synonym for Ratio Integer.) Similarly, for ea
h

real 
oating-point type t, Complex t is a type of 
omplex numbers with real and imaginary


omponents of type t.

The operator (%) forms the ratio of two integral numbers. The fun
tions numerator and

denominator extra
t the 
omponents of a ratio; these are in redu
ed form with a positive

denominator.
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lass (Eq a) => Num a where

(+), (-), (*) :: a -> a -> a

negate :: a -> a

abs, signum :: a -> a

fromInteger :: Integer -> a

x - y = x + negate y


lass (Num a, Ord a) => Real a where

toRational :: a -> Rational


lass (Real a) => Integral a where

div, rem, mod :: a -> a -> a

divRem :: a -> a -> (a,a)

even, odd :: a -> Bool

toInteger :: a -> Integer

x `div` y = q where (q,r) = divRem x y

x `rem` y = r where (q,r) = divRem x y

x `mod` y = if signum x == - (signum y) then r + y else r

where r = x `rem` y

even x = x `rem` 2 == 0

odd = not . even


lass (Num a) => Fra
tional a where

(/) :: a -> a -> a

fromRational :: Rational -> a


lass (Fra
tional a) => Floating a where

pi :: a

exp, log, sqrt :: a -> a

(**), logBase :: a -> a -> a

sin, 
os, tan :: a -> a

asin, a
os, atan :: a -> a

sinh, 
osh, tanh :: a -> a

asinh, a
osh, atanh :: a -> a

x ** y = exp (log x * y)

logBase x y = log y / log x

sqrt x = x ** 0.5

tan x = sin x / 
os x

tanh x = sinh x / 
osh x


lass (Real a, Fra
tional a) => RealFra
 a where

properFra
tion :: a -> (Integer,a)

approxRational :: a -> a -> Rational

Figure 7: Numeri
 
lasses and related operations
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lass (RealFra
 a, Floating a) => RealFloat a where

floatRadix :: a -> Integer

floatDigits :: a -> Int

floatRange :: a -> (Int,Int)

de
odeFloat :: a -> (Integer,Int)

en
odeFloat :: Integer -> Int -> a

exponent :: a -> Int

signifi
and :: a -> a

s
aleFloat :: Int -> a -> a

exponent x = if m == 0 then 0 else n + floatDigits x

where (m,n) = de
odeFloat x

signifi
and x = en
odeFloat m (- (floatDigits x))

where (m,_) = de
odeFloat x

s
aleFloat k x = en
odeFloat m (n+k)

where (m,n) = de
odeFloat x

instan
e Integral Int

instan
e Integral Integer

minInt, maxInt :: Int

fromIntegral :: (Integral a, Num b) => a -> b

g
d, l
m :: (Integral a) => a -> a-> a

(^) :: (Num a, Integral b) => a -> b -> a

(^^) :: (Fra
tional a, Integral b) => a -> b -> a

data (Integral a) => Ratio a

type Rational = Ratio Integer

instan
e (Integral a) => RealFra
 (Ratio a)

(%) :: (Integral a) => a -> a -> Ratio a

numerator, denominator :: (Integral a) => Ratio a -> a

instan
e RealFloat Float

instan
e RealFloat Double

fromRealFra
 :: (RealFra
 a, Fra
tional b) => a -> b

trun
ate, round :: (RealFra
 a, Integral b) => a -> b


eiling, floor :: (RealFra
 a, Integral b) => a -> b

atan2 :: (RealFloat a) => a -> a -> a

Figure 8: Numeri
 
lasses and related operations (
ontinued)
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data (RealFloat a) => Complex a = a :+ a deriving (Eq, Binary, Text)

instan
e (RealFloat a) => Floating (Complex a)

realPart, imagPart :: (RealFloat a) => Complex a -> a


onjugate :: (RealFloat a) => Complex a -> Complex a

mkPolar :: (RealFloat a) => a -> a -> Complex a


is :: (RealFloat a) => a -> Complex a

polar :: (RealFloat a) => Complex a -> (a,a)

magnitude, phase :: (RealFloat a) => Complex a -> a

Figure 9: Numeri
 
lasses and related operations (
ontinued)

Complex numbers are an algebrai
 type:

data (RealFloat a) => Floating (Complex a) = a :+ a

The 
onstru
tor (:+) forms a 
omplex number from its real and imaginary re
tangular


omponents. A 
omplex number may also be formed from polar 
omponents of magnitude

and phase by the fun
tion mkPolar. The fun
tion 
is produ
es a 
omplex number from an

angle t :


is t = 
os t :+ sin t

Put another way, 
is t is a 
omplex value with magnitude 1 and phase t (modulo 2�).

The fun
tion polar takes a 
omplex number and returns a (magnitude, phase) pair

in 
anoni
al form: The magnitude is nonnegative, and the phase, in the range (��; �℄; if

the magnitude is zero, then so is the phase. Several 
omponent-extra
tion fun
tions are

provided:

realPart (x:+y) = x

imagPart (x:+y) = y

magnitude z = r where (r,t) = polar z

phase z = t where (r,t) = polar z

Also de�ned on 
omplex numbers is the 
onjugate fun
tion:


onjugate (x:+y) = x:+(-y)

6.8.4 Arithmeti
 and Number-Theoreti
 Operations

The in�x operations (+), (*), (-) and the unary fun
tion negate (whi
h 
an also be written

as a pre�x minus sign; see se
tion 3.2) apply to all numbers. The operations div, rem, and

mod apply only to integral numbers, while the operation (/) applies only to fra
tional ones.

The div and rem operations satisfy the law:

(x �div� y)*y + (x �rem� y) == x
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The result of x �div� y has the same sign as x * y and is trun
ated toward zero. The

modulo fun
tion di�ers from the remainder fun
tion when the signs of the dividend and

divisor di�er, the remainder always having the sign of the dividend, and the modulo having

the sign of the divisor. For example,

-13 �rem� 4 == -1

-13 �mod� 4 == 3

13 �rem� -4 == 1

13 �mod� -4 == -3

The divRem operation takes a dividend and a divisor as arguments and returns a (quotient,

remainder) pair:

divRem x y = (x �div� y, x �rem� y)

Also available on integers are the even and odd predi
ates:

even x = x �rem� 2 == 0

odd = not . even

Finally, there are the greatest 
ommon divisor and least 
ommon multiple fun
tions: g
d

x y is the greatest integer that divides both x and y. l
m x y is the smallest positive integer

that both x and y divide.

6.8.5 Exponentiation and Logarithms

The one-argument exponential fun
tion exp and the logarithm fun
tion log a
t on 
oating-

point numbers and use base e. logBase a x returns the logarithm of x in base a. sqrt

returns the prin
ipal square root of a 
oating-point number. There are three two-argument

exponentiation operations: (^) raises any number to a nonnegative integer power, (^^)

raises a fra
tional number to any integer power, and (**) takes two 
oating-point argu-

ments. The value of x^0 or x^^0 is 1 for any x, in
luding zero; 0**y is unde�ned.

6.8.6 Magnitude and Sign

A number has a magnitude and a sign. The fun
tions abs and signum apply to any number

and satisfy the law:

abs x * signum x == x

For real numbers, these fun
tions are de�ned by:

abs x | x >= 0 = x

| x < 0 = -x

signum x | x > 0 = 1

| x == 0 = 0

| x < 0 = -1
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For 
omplex numbers, the de�nitions are di�erent:

abs z = magnitude z :+ 0

signum z�(x:+y) = x/r :+ y/r where r = magnitude z

That is, abs z is a number with the magnitude of z, but oriented in the positive real

dire
tion, whereas signum z has the phase of z, but unit magnitude. (abs for a 
omplex

number di�ers from magnitude only in type. See Se
tion 6.8.3.)

6.8.7 Trigonometri
 Fun
tions

The 
ir
ular and hyperboli
 sine, 
osine, and tangent fun
tions and their inverses are pro-

vided for 
oating-point numbers. A version of ar
tangent taking two real 
oating-point

arguments is also provided: For real 
oating x and y, atan2 y x di�ers from atan (y/x)

in that its range is (��; �℄ rather than (��=2; �=2) (be
ause the signs of the arguments

provide quadrant information), and that it is de�ned when x is zero.

The pre
ise de�nition of the above fun
tions is as in Common Lisp [14℄, whi
h in turn

follows Pen�eld's proposal for APL [11℄. See these referen
es for dis
ussions of bran
h 
uts,

dis
ontinuities, and implementation.

6.8.8 Coer
ions and Component Extra
tion

The 
eiling, floor, trun
ate, and round fun
tions ea
h take a real fra
tional argument

and return an integral result. 
eiling x returns the least integer not less than x, and

floor x, the greatest integer not greater than x. trun
ate x yields the integer nearest x

between 0 and x, in
lusive. round x returns the nearest integer to x, the even integer if x

is equidistant between two integers.

The fun
tion properFra
tion takes a real fra
tional number x and returns a pair 
om-

prising x as a proper fra
tion: an Integer with the same sign as x and a fra
tion with

the same type and sign as x and with absolute value less than 1. The 
eiling, floor,

trun
ate, and round fun
tions 
an be de�ned in terms of this one.

Two fun
tions 
onvert numbers to type Rational: toRational returns the rational

equivalent of its real argument with full pre
ision; approxRational takes two real fra
-

tional arguments and returns an approximation to the �rst within the toleran
e given by

the se
ond. Subje
t to the toleran
e 
onstraint, the result has the smallest denominator

possible.

The operations of 
lass RealFloat allow eÆ
ient, ma
hine-independent a

ess to the


omponents of a 
oating-point number. The fun
tions floatRadix, floatDigits, and

floatRange give the parameters of a 
oating-point type: the radix of the representation,

the number of digits of this radix in the signi�
and, and the lowest and highest values the

exponent may assume, respe
tively. The fun
tion de
odeFloat applied to a real 
oating-

point number returns the signi�
and expressed as an Integer and an appropriately s
aled

exponent (an Int). If de
odeFloat x yields (m,n), then x is equal in value to mb

n

,

where b is the 
oating-point radix, and furthermore, either m and n are both zero or
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else b

d�1

� m < b

d

, where d is the value of floatDigits x. en
odeFloat performs the

inverse of this transformation. The fun
tions signifi
and and exponent together provide

the same information as de
odeFloat, but rather than an Integer, signifi
and x yields

a value of the same type as x, s
aled to lie in the open interval (�1 ; 1 ). exponent 0 is zero.

s
aleFloat multiplies a 
oating-point number by an integer power of the radix. These

identities hold:

toRational x == if e < 0 then m % b^(-e) else m*b^e % 1

where b = floatRadix x

(m,e) = de
odeFloat x

x == en
odeFloat m e where (m,e) = de
odeFloat x

Also available are the following 
oer
ion fun
tions:

fromIntegral :: (Integral a, Num b) => a -> b

fromRealFra
 :: (RealFra
 a, Fra
tional b) => a -> b

6.9 Arrays

Haskell provides indexable arrays, whi
h may be thought of as fun
tions whose domains

are isomorphi
 to 
ontiguous subsets of the integers. Fun
tions restri
ted in this way 
an

be implemented eÆ
iently; in parti
ular, a programmer may reasonably expe
t rapid a

ess

to the 
omponents. To ensure the possibility of su
h an implementation, arrays are treated

as data, not as general fun
tions.

Types that are instan
es of 
lass Ix (see Se
tion 4.3.2) may be indi
es of arrays; a

one-dimensional array might have index type Int, a two-dimensional array (Int,Char)

et
.

6.9.1 Array Constru
tion

If a is an index type and b is any type, the type of arrays with indi
es in a and elements in

b is written Array a b. An array may be 
reated by the fun
tion array:

array :: (Ix a) => (a,a) -> [Asso
 a b℄ -> Array a b

data Asso
 a b = a := b

The �rst argument of array is a pair of bounds, ea
h of the index type of the array. These

bounds are the lowest and highest indi
es in the array, in that order. For example, a one-

origin ve
tor of length 10 has bounds (1,10), and a one-origin 10 by 10 matrix has bounds

((1,1),(10,10)).

The se
ond argument of array is a list of asso
iations of the form index := value.

Typi
ally, this list will be expressed as a 
omprehension. An asso
iation i := x de�nes

the value of the array at index i to be x. The array is unde�ned if any index in the list is

out of bounds. If any two asso
iations in the list have the same index, the value at that

index is unde�ned. Be
ause the indi
es must be 
he
ked for these errors, array is stri
t in

the bounds argument and in the indi
es of the asso
iation list, but nonstri
t in the values.

Thus, re
urren
es su
h as the following are possible:
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-- S
aling an array of numbers by a given number:

s
ale :: (Num a, Ix b) => a -> Array b a -> Array b a

s
ale x a = array b [i := a!i * x | i <- range b℄

where b = bounds a

-- Inverting an array that holds a permutation of its indi
es

invPerm :: (Ix a) => Array a a -> Array a a

invPerm a = array b [a!i := i | i <- range b℄

where b = bounds a

-- The inner produ
t of two ve
tors

inner :: (Ix a, Num b) => Array a b -> Array a b -> b

inner v w = if b == bounds w

then sum [v!i * w!i | i <- range b℄

else error "in
onformable arrays for inner produ
t"

where b = bounds v

Figure 10: Array examples

a = array (1,100) ((1 := 1) : [i := i * a!(i-1) | i <- [2..100℄℄)

Not every index within the bounds of the array need appear in the asso
iation list, but the

values asso
iated with indi
es that do not appear will be unde�ned. Figure 10 shows some

examples that use the Array 
onstru
tor.

(!) denotes array subs
ripting; the bounds fun
tion applied to an array returns its

bounds:

(!) :: (Ix a) => Array a b -> a -> b

bounds :: (Ix a) => Array a b -> (a,a)

The fun
tions indi
es, elems, and asso
s, when applied to an array, return lists of the

indi
es, elements, or asso
iations, respe
tively, in index order:

indi
es:: (Ix a) => Array a b -> [a℄

indi
es = range . bounds

elems:: (Ix a) => Array a b -> [b℄

elems a = [a!i | i <- indi
es a℄

asso
s: (Ix a) => Array a b -> [Asso
 a b℄

asso
s a = [ i := a!i | i <- indi
es a℄

An array may be 
onstru
ted from a pair of bounds and a list of values in index order using

the fun
tion listArray:

listArray:: (Ix a) => (a,a) -> [b℄ -> Array a b

listArray bnds xs = Array bnds (zipWith (:=) (range bnds) xs)
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6.9.2 A

umulated Arrays

Another array 
reation fun
tion, a

umArray, relaxes the restri
tion that a given index may

appear at most on
e in the asso
iation list, using an a

umulating fun
tion whi
h 
ombines

the values of asso
iations with the same index [10, 16℄:

a

umArray::(Ix a) => (b->
->b) -> b -> (a,a) -> [Asso
 a 
℄ -> Array a b

The �rst argument of a

umArray is the a

umulating fun
tion; the se
ond is an initial

value; the remaining two arguments are a bounds pair and an asso
iation list, as for the

array fun
tion. For example, given a list of values of some index type, hist produ
es a

histogram of the number of o

urren
es of ea
h index within a spe
i�ed range:

hist :: (Ix a, Num b) => (a,a) -> [a℄ -> Array a b

hist bnds is = a

umArray (+) 0 bnds [i := 1 | i<-is, inRange bnds i℄

If the a

umulating fun
tion is stri
t, then a

umArray is stri
t in the values, as well as the

indi
es, in the asso
iation list. Thus, unlike ordinary arrays, a

umulated arrays should not

in general be re
ursive.

6.9.3 In
remental Array Updates

(//) :: (Ix a) => Array a b -> Asso
 a b -> Array a b

a

um :: (Ix a) => (b -> 
 -> b) -> Array a b -> [Asso
 a 
℄ -> Array a b

The operator (//) takes an array and an Asso
 pair and returns an array identi
al to

the left argument ex
ept for one element spe
i�ed by the right argument. a

um f takes

an array and an asso
iation list and a

umulates pairs from the list into the array with the

a

umulating fun
tion f . Thus a

umArray 
an be de�ned using a

um:

a

umArray f z b = a

um f (array b [i := z | i <- range b℄)

6.9.4 Derived Arrays

The two fun
tions amap and ixmap derive new arrays from existing ones; they may be

thought of as providing fun
tion 
omposition on the left and right, respe
tively, with the

mapping that the original array embodies:

amap :: (Ix a) => (b -> 
) -> Array a b -> Array a 


amap f a = array b [i := f (a!i) | i <- range b℄

where b = bounds a

ixmap :: (Ix a,Ix a') => (a',a') -> (a'->a) -> Array a b -> Array a' b

ixmap bnds f a = array bnds [i := a ! f i | i <- range bnds℄

amap is the array analogue of the map fun
tion on lists, while ixmap allows for transforma-

tions on array indi
es. Figure 11 shows some examples.
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-- A re
tangular subarray

subArray :: (Ix a) => (a,a) -> Array a b -> Array a b

subArray bnds = ixmap bnds (\i->i)

-- A row of a matrix

row :: (Ix a, Ix b) => a -> Array (a,b) 
 -> Array b 


row i x = ixmap (l',u') (\j->(i,j)) x where ((l,l'),(u,u')) = bounds x

-- Diagonal of a square matrix

diag :: (Ix a) => Array (a,a) b -> Array a b

diag x = ixmap (l,u) (\i->(i,i)) x

where ((l,l'),(u,u')) | l == l' && u == u' = bounds x

-- Proje
tion of first 
omponents of an array of pairs

firstArray :: (Ix a) => Array a (b,
) -> Array a b

firstArray = amap (\(x,y)->x)

Figure 11: Derived array examples

6.10 Errors

All errors in Haskell are semanti
ally equivalent to ?. error:: String -> a takes a

string argument and returns ?. An appli
ation of error terminates evaluation of the

program and displays the string as appropriate.
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7 Input/Output

Haskell's I/O system is based on the view that a program 
ommuni
ates to the outside

world via streams of messages: a program issues a stream of requests to the operating system

and in return re
eives a stream of responses. Sin
e a stream in Haskell is only a lazy list,

a Haskell program has the type:

type Dialogue = [Response℄ -> [Request℄

The datatypes Response and Request are de�ned below. Intuitively, [Response℄ is an

ordered list of responses and [Request℄ is an ordered list of requests; the nth response is

the operating system's reply to the nth request.

With this view of I/O, there is no need for any spe
ial-purpose syntax or 
onstru
ts for

I/O; the I/O system is de�ned entirely in terms of how the operating system responds to

a program with the above type|i.e. what response it issues for ea
h request. An abstra
t

spe
i�
ation of this behaviour is de�ned by giving a de�nition of the operating system as

a fun
tion that takes as input an initial state and a 
olle
tion of Haskell programs, ea
h

with the above type. This spe
i�
ation appears in Appendix C, using standard Haskell

syntax augmented with a single non-deterministi
 merge operator.

One 
an de�ne a 
ontinuation-based version of I/O in terms of a stream-based version.

Su
h a de�nition is provided in Se
tion 7.5. The spe
i�
 I/O requests available in ea
h

style are identi
al; what di�ers is the way they are expressed. This means that programs

in either style may be 
ombined with a well-de�ned semanti
s. In both 
ases arbitrary I/O

requests within 
onventional operating systems may be indu
ed while retaining referential

transparen
y within a Haskell program.

The required requests for a valid implementation are:
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data Request =

-- file system requests:

ReadFile Name

| WriteFile Name String

| AppendFile Name String

| ReadBinFile Name

| WriteBinFile Name Bin

| AppendBinFile Name Bin

| DeleteFile Name

| StatusFile Name

-- 
hannel system requests:

| ReadChan Name

| AppendChan Name String

| ReadBinChan Name

| AppendBinChan Name Bin

| StatusChan Name

-- environment requests:

| E
ho Bool

| GetArgs

| GetEnv Name

| SetEnv Name String

type Name = String

stdin = "stdin"

stdout = "stdout"

stderr = "stderr"

stde
ho = "stde
ho"

Con
eptually the above requests 
an be organised into three groups: those relating to the

�le system 
omponent of the operating system (the �rst eight), those relating to the 
hannel

system (the next �ve), and those relating to the environment (the last four).

The �le system is fairly 
onventional: a mapping of �le names to 
ontents. The 
han-

nel system 
onsists of a 
olle
tion of 
hannels, examples of whi
h in
lude standard input

(stdin), standard output (stdout), standard error (stderr), and standard e
ho (stde
ho)


hannels. A 
hannel is a one-way 
ommuni
ation medium|it either 
onsumes values from

the program (via AppendChan or AppendBinChan) or produ
es values for the program (by

responding to ReadChan or ReadBinChan). Channels 
ommuni
ate to and from agents (a


on
ept made more pre
ise in Appendix C). Examples of agents in
lude line printers, disk


ontrollers, networks, and human beings. As an example of the latter, the user is normally

the 
onsumer of standard output and the produ
er of standard input. Channels 
annot be

deleted, nor is there a notion of 
reating a 
hannel.



64 7 INPUT/OUTPUT

Apart from these required requests, several optional requests are des
ribed in Ap-

pendix C.1. Although not required for a valid Haskell implementation, they may be

useful in parti
ular implementations.

Requests to the �le system are in general order-dependent; if i > j then the response

to the ith request may depend on the jth request. In the 
ase of the 
hannel system the

nature of the dependen
ies is di
tated by the agents. In all 
ases external e�e
ts may also

be felt \between" internal e�e
ts.

Responses are de�ned by:

data Response = Su

ess

| Str String

| Bn Bin

| Failure IOError

data IOError = WriteError String

| ReadError String

| Sear
hError String

| FormatError String

| OtherError String

The response to a request is either Su

ess, when no value is returned; Str s [Bn b℄, when

a string [binary℄ value s [b℄ is returned; or Failure e, indi
ating failure with I/O error e.

The nature of a failure is de�ned by the IOError datatype, whi
h 
aptures the most


ommon kinds of errors. The String 
omponents of these errors are implementation depen-

dent, and may be used to re�ne the des
ription of the error (for example, for ReadError, the

string might be "file lo
ked", "a

ess rights violation", et
.). An implementation

is free to extend IOError as required.

7.1 I/O Modes

The I/O requests ReadFile, WriteFile, AppendFile, ReadChan, and AppendChan all work

with text values|i.e. strings. Any value whose type is an instan
e of the 
lass Text may be

written to a �le (or 
ommuni
ated on a 
hannel) by using the appropriate output request

if it is �rst 
onverted to a string, using shows (see Se
tion 4.3.3). Similarly, reads 
an be

used with the appropriate input request to read su
h a value from a �le (or a 
hannel). This

is text mode I/O.

For both eÆ
ien
y and transparen
y, Haskell also supports a 
orresponding set of

binary I/O requests|ReadBinFile, WriteBinFile, AppendBinFile, ReadBinChan, and

AppendBinChan. showBin and readBin are using analogously to shows and reads (see

Se
tion 4.3.3) for values whose types are instan
es of the 
lass Binary (see Se
tion 6.6).

Binary mode I/O ensures transparen
y within an implementation|i.e. \what is read

is what was written." Implementations on 
onventional ma
hines will probably be able to
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realise binary mode more eÆ
iently than text mode. On the other hand, the Bin datatype

itself is implementation dependent, and thus binary mode should not be used as a method

to ensure transparen
y between implementations.

In the remainder of this se
tion, various aspe
ts of text mode will be dis
ussed, in
luding

the behaviour of standard 
hannels su
h as stdin and stdout.

7.1.1 Transparent Chara
ter Set

The transparent 
hara
ter set is de�ned by:

the 52 upper
ase and lower
ase alphabeti
 
hara
ters

the 10 de
imal digits

the 32 graphi
 
hara
ters:

! " # $ % & � ( ) * + , - . / : ; < = > ? � [ \ ℄ ^ _ � { | } ~

the spa
e 
hara
ter

(This is identi
al to the any synta
ti
 
ategory de�ned in Se
tion 2.2, with tab ex
luded.)

A transparent line is a list of no more than 254 transparent 
hara
ters followed by a

\n 
hara
ter (i.e. no more than 255 
hara
ters in total). A transparent string is the �nite


on
atenation of zero or more transparent lines.

Haskell's text mode for �les is transparent whenever the string being used is transpar-

ent. An implementation must ensure that a transparent string written to a �le in text mode

is identi
al to the string read ba
k from the same �le in text mode (assuming there were no

intervening external e�e
ts).

The transparent 
hara
ter set is restri
ted be
ause of the in
onsistent treatment of text

�les by operating systems. For example, some systems translate the newline 
hara
ter

\n into CR/LF, and others into just CR or just LF|so none of these 
hara
ters 
an be in

the transparent 
hara
ter set. Similarly, some systems trun
ate lines ex
eeding a 
ertain

length, others do not. Haskell's transparent string is intended to provide a useful degree

of portability of text �le manipulating programs. Of 
ourse, an implementation is free to

guarantee a higher degree of transparen
y than that de�ned here (su
h as longer lines or

more 
hara
ter types).

Besides this de�nition of text mode transparen
y, the standard input and output 
han-

nels 
arry with them notions of standard presentation and a

eptan
e, as de�ned below.

7.1.2 Presentation

Standard text mode presentation guarantees a minimum kind of presentable output on stan-

dard output devi
es; thus it is only de�ned for AppendChan using the 
hannels stdout,

stderr, and stde
ho. Abstra
tly, these 
hannels are assumed to be atta
hed to a sequen
e

of re
tangular grids of 
hara
ters 
alled pages; ea
h page 
onsists of a number of lines and


olumns, with the �rst line presented at the \top" and the �rst 
olumn presented to the

\left." The width of a 
olumn is assumed to be 
onstant. (On a paper printing devi
e,
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we expe
t an abstra
t page to 
orrespond to a physi
al page; on a terminal display, it will


orrespond to whatever abstra
tion is presented by the terminal, but at a minimum the

terminal should support display of at least one full page.)

Chara
ters obtained from AppendChan requests are written sequentially into these pages

starting at the top left hand 
orner of the �rst page. The 
hara
ters are written in order

horizontally a
ross the page until a newline 
hara
ter (\n) is pro
essed, at whi
h point the

subsequent 
hara
ters are written starting in 
olumn one of line two, and so on. If a form

feed 
hara
ter (\f) is pro
essed, writing starts at the top left hand 
orner of the se
ond

page, and so on.

Maximum line length and page length for the output 
hannels stdout, stde
ho, and

stderr may be obtained via the StatusChan request as des
ribed in Se
tion 7.3. These

are implementation-dependent 
onstants, but must be at least 40 
hara
ters and 20 lines,

respe
tively. AppendChan may indu
e a FormatError if either of these limits is ex
eeded.

Presentation of the transparent 
hara
ter set may be in any readable font. Presentation

of \n and \f is as de�ned above. Presentation of any other 
hara
ter is not de�ned|

presentation of su
h a 
hara
ter may invalidate standard presentation of all subsequent


hara
ters. An implementation, of 
ourse, may guarantee other forms of useful presentation

beyond what is spe
i�ed here.

To fa
ilitate pro
essing of text to and from standard input/output 
hannels, the auxiliary

fun
tions shown in Figure 12 are provided in the standard prelude.

7.1.3 A

eptan
e

Standard text mode a

eptan
e guarantees a minimum kind of 
hara
ter input from standard

input devi
es; thus it is only de�ned for ReadChan using the 
hannel stdin. Abstra
tly,

stdin is assumed to be atta
hed to a keyboard. The only requirement of the keyboard is

that it have keys to support the transparent 
hara
ter set plus the newline (\n) 
hara
ter.

7.1.4 E
hoing

The 
hannel stde
ho is assumed 
onne
ted to the display asso
iated with the devi
e to

whi
h stdin is 
onne
ted. It may be possible for stdout and stde
ho to be 
onne
ted to

the same devi
e, but this is not required. It may be possible in some operating systems to

redire
t stdout to a �le while still displaying information to the user on stde
ho.

The E
ho request (des
ribed in Se
tion 7.4) 
ontrols e
hoing of stdin on stde
ho. When

e
hoing is enabled, 
hara
ters typed at the terminal 
onne
ted to stdin are e
hoed onto

stde
ho, with optional implementation-spe
i�
 line-editing fun
tions available. The list of


hara
ters returned by a read request to stdin should be the result of this pro
essing. As

an entire line may be erased by the user, a program will not see any of the line until a \n


hara
ter is typed.

A display may re
eive data from four di�erent sour
es: e
hoing from stdin, and expli
it

output to stde
ho, stdout, and stderr. The result is an interleaving of these 
hara
ter
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span, break :: (a -> Bool) -> [a℄ -> ([a℄,[a℄)

span p xs = (takeWhile p xs, dropWhile p xs)

break p = span (not . p)

lines :: String -> [String℄

lines "" = [℄

lines s = l : (if null s' then [℄ else lines (tail s'))

where (l, s') = break ((==) '\n') s

words :: String -> [String℄

words s = 
ase dropWhile isSpa
e s of

"" -> [℄

s' -> w : words s''

where (w, s'') = break isSpa
e s'

unlines :: [String℄ -> String

unlines ls = 
on
at (map (\l -> l ++ "\n") ls)

unwords :: [String℄ -> String

unwords [℄ = ""

unwords [w℄ = w

unwords (w:ws) = w ++ 
on
at (map ((:) ' ') ws)

Figure 12: Auxiliary Fun
tions for Text Pro
essing of Standard Output
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streams, but it is not an arbitrary one, be
ause of two 
onstraints: (1) expli
it output (via

AppendChan) must appear as the 
on
atenation of the individual streams; i.e. they 
annot

be interleaved (this is 
onsistent with the hyperstri
t nature of AppendChan), and (2) if

e
hoing is on, 
hara
ters from stdin that a program depends on for some I/O request must

appear on the display before that I/O o

urs. These 
onstraints permit a user to type

ahead, but prevent a system from printing a reply before e
hoing the user's request.

7.2 File System Requests

In this se
tion, ea
h request is des
ribed using the stream model|the 
orresponding be-

haviour using the 
ontinuation model should be obvious. Optional requests, not required

of a valid Haskell implementation, are des
ribed in Appendix C.1.

�

ReadFile name

ReadBinFile name

Returns the 
ontents of �le name treated as a text [binary℄ �le. If su

essful, the

response will be of the form Str s [Bn b℄, where s [b℄ is a string [binary℄ value. If

the �le is not found, the response Failure (Sear
hError string) is indu
ed; if

it is unreadable for some other reason, the Failure (ReadError string) error is

indu
ed.

�

WriteFile name string

WriteBinFile name bin

Writes string [bin℄ to �le name. If the �le does not exist, it is 
reated. If it already

exists, it is overwritten. A su

essful response has form Su

ess; the only failure

possible has the form Failure (WriteError string).

Both of these requests are \hyperstri
t" in their se
ond argument: no response is

returned until the entire list of values is 
ompletely evaluated.

�

AppendFile name string

AppendBinFile name bin

Identi
al to WriteFile [WriteBinFile℄, ex
ept that (1) the string [bin℄ argument is

appended to the 
urrent 
ontents of the �le named name; (2) if the I/O mode does not

mat
h the previous mode with whi
h name was written, the behaviour is not spe
i�ed;

and (3) if the �le does not exist, the response Failure (Sear
hError string) is in-

du
ed. All other errors have form Failure (WriteError string), and both requests

are hyperstri
t in their se
ond argument.



7.3 Channel System Requests 69

�

DeleteFile name

Deletes �le name, with su

essful response Su

ess. If the �le does not exist, the

response Failure (Sear
hError string) is indu
ed. If it 
annot be deleted for some

other reason, a response of the form Failure (WriteError string) is indu
ed.

�

StatusFile name

Indu
es Failure (Sear
hError string) if an obje
t name does not exist, otherwise

indu
es Str status where status is a string 
ontaining, in this order: (1) either �t�,

�b�, �d�, or �u� depending on whether the obje
t is a text �le, binary �le, dire
tory,

or something else, respe
tively (if text and binary �les 
annot be distinguished, �f�

indi
ates either text or binary �le); (2) �r� if the obje
t is readable by this program,

�-� if not; and (3) �w� if the obje
t is writable by this program, �-� if not. For example

"dr-" denotes a dire
tory that 
an be read but not written. An implementation is

free to append more status information to this string.

Note 1. A proper implementation of ReadFile or ReadBinFilemay have to make 
opies

of �les in order to preserve referential transparen
y|a su

essful read of a �le returns a

lazy list whose 
ontents should be preserved, despite future writes to or deletions of that

�le, even if the lazy list has not yet been 
ompletely evaluated.

Note 2. Given the two juxtaposed requests:

[ ..., WriteFile name 
ontents1, ReadFile name, ... ℄

with the 
orresponding responses:

[ ..., Su

ess, Str 
ontents2, ... ℄

then 
ontents1 == 
ontents2 if 
ontents1 is a transparent string, assuming that there

were no external e�e
ts. A similar result would hold if the binary versions were used.

7.3 Channel System Requests

Channels are inherently di�erent from �les|they 
ontain ephemeral streams of data as

opposed to persistent stationary values. The most 
ommon 
hannels are standard input

(stdin), standard output (stdout), standard error (stderr), and standard e
ho (stde
ho);

these four are the only required 
hannels in a valid implementation.

�

ReadChan name
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ReadBinChan name

Opens 
hannel name for input. A su

essful response returns the 
ontents of the


hannel as a lazy stream of 
hara
ters [a binary value℄. If the 
hannel does not exist

the response Failure (Sear
hError string) is indu
ed; all other errors have form

Failure (ReadError string).

Unlike �les, on
e a ReadChan or ReadBinChan request has been issued for a parti
ular


hannel, it 
annot be issued again for the same 
hannel in that program. This re
e
ts

the ephemeral nature of its 
ontents and prevents a serious spa
e leak.

�

AppendChan name string

AppendBinChan name bin

Writes string [bin℄ to 
hannel name. The semanti
s is as for AppendFile, ex
ept:

(1) the se
ond argument is appended to whatever was previously written (if any-

thing); (2) if AppendChan and AppendBinChan are both issued to the same 
hannel,

the resulting behaviour is not spe
i�ed; (3) if the 
hannel does not exist, the re-

sponse Failure (Sear
hError string) is indu
ed; and (4) if the maximum line

or page length of stdout, stderr, or stde
ho is ex
eeded, the response Failure

(FormatError string) is indu
ed (see Se
tion 7.1.2). All other errors have form

Failure (WriteError string). Both requests are hyperstri
t in their se
ond argu-

ment.

�

StatusChan name

Indu
es Failure (Sear
hError string) if 
hannel name does not exist, otherwise

indu
es Str status where status is a string 
ontaining implementation-dependent

information about the named 
hannel. The only information required of a valid im-

plementation is that for the output 
hannels stdout, stde
ho, and stderr: the be-

ginning of the status string must 
ontain two integers separated by a spa
e, the �rst

integer indi
ating the maximum line length (in 
hara
ters) allowed on the 
hannel,

the se
ond indi
ating the maximum page length (in lines) allowed (see Se
tion 7.1.2).

A zero length implies that there is no bound.

7.4 Environment Requests

�

E
ho bool

E
ho True enables e
hoing of stdin on stde
ho; E
ho False disables it (see Se
-

tion 7.1.4). Either Su

ess or Failure (OtherError string) is indu
ed.
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The e
ho mode 
an only be set on
e by a parti
ular program, and it must be done

before any I/O involving stdin. If no E
ho request is made, the default is True

(i.e. e
hoing enabled).

�

GetArgs

Indu
es the response Str str, where str is a 
on
atenation of the program's 
om-

mand line arguments separated by \n's.

�

GetEnv name

Returns the value of environment variable name. If su

essful, the response will be

of the form Str s, where s is a string. If the environment variable does not exist, a

Sear
hError is indu
ed.

�

SetEnv name string

Sets environment variable name to value string, with response Su

ess. If the envi-

ronment variable does not exist, it is 
reated.

7.5 Continuation-based I/O

Haskell supports an alternative style of I/O 
alled 
ontinuation-based I/O. Under this

model, a Haskell program still has type [Response℄->[Request℄, but instead of the user

manipulating the requests and responses dire
tly, a 
olle
tion of transa
tions de�ned in a


ontinuation style, 
aptures the e�e
t of ea
h request/response pair.

Transa
tions are fun
tions. For ea
h request Req there 
orresponds a transa
tion req, as

shown in Figure 13. For example, ReadFile indu
es either a failure response Failure msg

or su

ess response Str 
ontents. In 
ontrast the transa
tion readFile would be used in


ontinuation-based I/O, as for example,

readFile name (\ msg -> errorTransa
tion)

(\ 
ontents -> su

essTransa
tion)

where the se
ond and third arguments are the failure 
ontinuation and su

ess 
ontinuation,

respe
tively. If the transa
tion fails then the error 
ontinuation is applied to the error

message; if it su

eeds then the su

ess 
ontinuation is applied to the 
ontents of the �le.

The following type synonyms and auxiliary fun
tions are de�ned for 
ontinuation-based

I/O:
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type Dialogue = [Response℄ -> [Request℄

type Su

Cont = Dialogue

type StrCont = String -> Dialogue

type BinCont = Bin -> Dialogue

type FailCont = IOError -> Dialogue

strDispat
h fail su

 (resp:resps) =


ase resp of Str val -> su

 val resps

Failure msg -> fail msg resps

binDispat
h fail su

 (resp:resps) =


ase resp of Bn val -> su

 val resps

Failure msg -> fail msg resps

su

Dispat
h fail su

 (resp:resps) =


ase resp of Su

ess -> su

 resps

Failure msg -> fail msg resps

abort :: FailCont

abort err = done

exit :: FailCont

exit err = appendChan stdout msg abort done

where msg = 
ase err of ReadError s -> s

WriteError s -> s

Sear
hError s -> s

FormatError s -> s

OtherError s -> s

let :: a -> (a -> b) -> b

let x k = k x

print :: (Text a) => a -> Dialogue

print x = appendChan stdout (show x) abort done

prints :: (Text a) => a -> String -> Dialogue

prints x s = appendChan stdout (shows x s) abort done

intera
t :: (String -> String) -> Dialogue

intera
t f = readChan stdin abort

(\x -> appendChan stdout (f x) abort done)
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done :: Dialogue

readFile :: Name -> FailCont -> StrCont -> Dialogue

writeFile :: Name -> String -> FailCont -> Su

Cont -> Dialogue

appendFile :: Name -> String -> FailCont -> Su

Cont -> Dialogue

readBinFile :: Name -> FailCont -> BinCont -> Dialogue

writeBinFile :: Name -> Bin -> FailCont -> Su

Cont -> Dialogue

appendBinFile :: Name -> Bin -> FailCont -> Su

Cont -> Dialogue

deleteFile :: Name -> FailCont -> Su

Cont -> Dialogue

statusFile :: Name -> FailCont -> StrCont -> Dialogue

readChan :: Name -> FailCont -> StrCont -> Dialogue

appendChan :: Name -> String -> FailCont -> Su

Cont -> Dialogue

readBinChan :: Name -> FailCont -> BinCont -> Dialogue

appendBinChan :: Name -> Bin -> FailCont -> Su

Cont -> Dialogue

statusChan :: Name -> FailCont -> StrCont -> Dialogue

e
ho :: Bool -> FailCont -> Su

Cont -> Dialogue

getArgs :: FailCont -> StrCont -> Dialogue

getEnv :: Name -> FailCont -> StrCont -> Dialogue

setEnv :: Name -> String -> FailCont -> Su

Cont -> Dialogue

done resps = [℄

readFile name fail su

 resps = --similarly for readBinFile

(ReadFile name) : strDispat
h fail su

 resps

writeFile name 
ontents fail su

 resps = --similarly for writeBinFile

(WriteFile name 
ontents) : su

Dispat
h fail su

 resps

appendFile name 
ontents fail su

 resps = --similarly for appendBinFile

(AppendFile name 
ontents) : su

Dispat
h fail su

 resps

deleteFile name fail su

 resps =

(DeleteFile name) : su

Dispat
h fail su

 resps

statusFile name fail su

 resps = --similarly for statusChan

(StatusFile name) : strDispat
h fail su

 resps

readChan name fail su

 resps = --similarly for readBinChan

(ReadChan name) : strDispat
h fail su

 resps

appendChan name 
ontents fail su

 resps = --similarly for appendBinChan

(AppendChan name 
ontents) : su

Dispat
h fail su

 resps

e
ho bool fail su

 resps =

(E
ho bool) : su

Dispat
h fail su

 resps

getArgs fail su

 resps =

GetArgs : strDispat
h fail su

 resps

getEnv name fail su

 resps =

(GetEnv name) : strDispat
h fail su

 resps

setEnv name 
ontents fail su

 resps =

(SetEnv name 
ontents) : su

Dispat
h fail su

 resps

Figure 13: Transa
tions of 
ontinuation-based I/O.
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7.6 A Small Example

Both of the following programs prompt the user for the name of a �le, and then look up and

display the 
ontents of the �le on standard-output. The �lename as typed by the user is

also e
hoed. The �rst program uses the stream-based style (note the irrefutable patterns):

main ~(Su

ess : ~((Str userInput) : ~(Su

ess : ~(r4 : _)))) =

[ AppendChan stdout "please type a filename\n",

ReadChan stdin,

AppendChan stdout name,

ReadFile name,

AppendChan stdout (
ase r4 of Str 
ontents -> 
ontents

Failure ioerror -> "
an't open file")

℄ where (name : _) = lines userInput

The se
ond program uses the 
ontinuation-based style:

main = appendChan stdout "please type a filename\n" abort (

readChan stdin abort (\ userInput ->

let (lines userInput) (\ (name : _) ->

appendChan stdout name abort (

readFile name (\ ioerror -> appendChan stdout

"
an't open file" abort done)

(\ 
ontents ->

appendChan stdout 
ontents abort done)))))

Many more examples and a general dis
ussion of both forms of I/O may be found in a

report by Hudak and Sundaresh [6℄.
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A Standard Prelude

In this appendix the entire Haskell prelude is given. It is organised into a root module

and eight sub-modules.
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A.1 Prelude PreludeBuiltin
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A.2 Prelude PreludeCore

-- Standard types, 
lasses, and instan
es

module PreludeCore (

Eq((=), (/=)),

Ord((<), (<=), (>=), (>), max, min),

Num((+), (-), (*), negate, abs, signum, fromInteger),

Integral(divRem, div, rem, mod, even, odd, toInteger),

Fra
tional((/), fromRational),

Floating(pi, exp, log, sqrt, (**), logBase,

sin, 
os, tan, asin, a
os, atan,

sinh, 
osh, tanh, asinh, a
osh, atanh),

Real(toRational),

RealFra
(properFra
tion, approxRational),

RealFloat(floatRadix, floatDigits, floatRange,

en
odeFloat, de
odeFloat, exponent, signifi
and, s
aleFloat),

Ix(range, index, inRange),

Enum(enumFrom, enumFromThen, enumFromTo, enumFromThenTo),

Text(readsPre
, showsPre
, readList, showList),

Binary(readBin, showBin),

-- List type: [_℄((:), [℄)

-- Tuple types: (_,_), (_,_,_), et
.

-- Trivial type: ()

Bool(True, False),

Char, Int, Integer, Float, Double, Bin,

Ratio, Complex((:+)), Asso
((:=)), Array,

String, Rational ) where

import PreludeBuiltin

import PreludeText(Text(readsPre
, showsPre
, readList, showList))

import PreludeRatio(Ratio, Rational)

import PreludeComplex

import PreludeArray(Asso
(:=), Array)

import PreludeIO(Name, Request, Response, IOError,

Dialogue, Su

Cont, StrCont, BinCont, FailCont)

infixr 8 **

infixl 7 *

infix 7 /, `div`, `rem`, `mod`

infixl 6 +, -

infixr 3 :

infix 2 ==, /=, <, <=, >=, >
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-- Equality and Ordered 
lasses


lass Eq a where

(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)


lass (Eq a) => Ord a where

(<), (<=), (>=), (>):: a -> a -> Bool

max, min :: a -> a -> Bool

x < y = x <= y && x /= y

x >= y = y <= x

x > y = y < x

max x y | x >= y = x

| y >= x = y

min x y | x <= y = x

| y <= x = y

-- Numeri
 
lasses


lass (Eq a) => Num a where

(+), (-), (*) :: a -> a -> a

negate :: a -> a

abs, signum :: a -> a

fromInteger :: Integer -> a

x - y = x + negate y


lass (Num a, Ord a) => Real a where

toRational :: a -> Rational


lass (Real a) => Integral a where

div, rem, mod :: a -> a -> a

divRem :: a -> a -> (a,a)

even, odd :: a -> Bool

toInteger :: a -> Integer

x `div` y = q where (q,r) = divRem x y

x `rem` y = r where (q,r) = divRem x y

x `mod` y = if signum x == - (signum y) then r + y else r

where r = x `rem` y

even x = x `rem` 2 == 0

odd = not . even
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lass (Num a) => Fra
tional a where

(/) :: a -> a -> a

fromRational :: Rational -> a


lass (Fra
tional a) => Floating a where

pi :: a

exp, log, sqrt :: a -> a

(**), logBase :: a -> a -> a

sin, 
os, tan :: a -> a

asin, a
os, atan :: a -> a

sinh, 
osh, tanh :: a -> a

asinh, a
osh, atanh :: a -> a

x ** y = exp (log x * y)

logBase x y = log y / log x

sqrt x = x ** 0.5

tan x = sin x / 
os x

tanh x = sinh x / 
osh x


lass (Real a, Fra
tional a) => RealFra
 a where

properFra
tion :: a -> (Integer,a)

approxRational :: a -> a -> Rational


lass (RealFra
 a, Floating a) => RealFloat a where

floatRadix :: a -> Integer

floatDigits :: a -> Int

floatRange :: a -> (Int,Int)

de
odeFloat :: a -> (Integer,Int)

en
odeFloat :: Integer -> Int -> a

exponent :: a -> Int

signifi
and :: a -> a

s
aleFloat :: Int -> a -> a

exponent x = if m == 0 then 0 else n + floatDigits x

where (m,n) = de
odeFloat x

signifi
and x = en
odeFloat m (- (floatDigits x))

where (m,_) = de
odeFloat x

s
aleFloat k x = en
odeFloat m (n+k)

where (m,n) = de
odeFloat x
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-- Index and Enumeration 
lasses


lass (Ord a) => Ix a where

range :: (a,a) -> [a℄

index :: (a,a) -> a -> Int

inRange :: (a,a) -> a -> Bool


lass (Ix a) => Enum a where

enumFrom :: a -> [a℄ -- [n..℄

enumFromThen :: a -> a -> [a℄ -- [n,n'..℄

enumFromTo :: a -> a -> [a℄ -- [n..m℄

enumFromThenTo :: a -> a -> a -> [a℄ -- [n,n'..m℄

enumFromTo n m = takeWhile ((>=) m) (enumFrom n)

enumFromThenTo n n' m

= takeWhile ((if n' >= n then (>=) else (<=)) m)

(enumFromThen n n')

-- Binary 
lass


lass Binary a where

readBin :: Bin -> (a,Bin)

showBin :: a -> Bin -> Bin

-- Boolean type

data Bool = False | True

-- Chara
ter type

instan
e Eq Char where


 == 
' = ord 
 == ord 
'

instan
e Ord Char where


 <= 
' = ord 
 <= ord 
'

instan
e Ix Char where

range (
,
') = [
..
'℄

index (
,
') 
i = ord 
i - ord 


inRange (
,
') 
i = ord 
 <= i && i <= ord 
'

where i = ord 
i
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instan
e Enum Char where

enumFrom 
 = map 
hr [ord 
 ..℄

enumFromThen 
 
' = map 
hr [ord 
, ord 
' ..℄

type String = [Char℄

-- Standard Integral types

instan
e Eq Int where

(==) = primEqInt

instan
e Eq Integer where

(==) = primEqInteger

instan
e Ord Int where

(<=) = primLeInt

instan
e Ord Integer where

(<=) = primLeInteger

instan
e Num Int where

(+) = primPlusInt

negate = primNegInt

(*) = primMulInt

abs = absReal

signum = signumReal

fromInteger = primIntegerToInt

instan
e Num Integer where

(+) = primPlusInteger

negate = primNegInteger

(*) = primMulInteger

abs = absReal

signum = signumReal

fromInteger x = x

absReal x | x >= 0 = x

| otherwise = - x

signumReal x | x == 0 = 0

| x > 0 = 1

| otherwise = -1
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instan
e Real Int where

toRational x = toInteger x % 1

instan
e Real Integer where

toRational x = x % 1

instan
e Integral Int where

divRem = primDivRemInt

toInteger = primIntToInteger

instan
e Integral Integer where

divRem = primDivRemInteger

toInteger x = x

instan
e Ix Int where

range (m,n) = [m..n℄

index (m,n) i = i - m

inRange (m,n) i = m <= i && i <= n

instan
e Ix Integer where

range (m,n) = [m..n℄

index (m,n) i = fromInteger (i - m)

inRange (m,n) i = m <= i && i <= n

instan
e Enum Int where

enumFrom n = enumFromBy n 1

enumFromThen n m = enumFromBy n (m - n)

instan
e Enum Integer where

enumFrom n = enumFromBy n 1

enumFromThen n m = enumFromBy n (m - n)

enumFromBy n k = n : enumFromBy (n+k) k

-- Standard Floating types

instan
e Eq Float where

(==) = primEqFloat

instan
e Eq Double where

(==) = primEqDouble

instan
e Ord Float where

(<=) = primLeFloat
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instan
e Ord Double where

(<=) = primLeDouble

instan
e Num Float where

(+) = primPlusFloat

negate = primNegFloat

(*) = primMulFloat

abs = absReal

signum = signumReal

fromInteger n = en
odeFloat n 0

instan
e Num Double where

(+) = primPlusDouble

negate = primNegDouble

(*) = primMulDouble

abs = absReal

signum = signumReal

fromInteger n = en
odeFloat n 0

instan
e Real Float where

toRational = floatingToRational

instan
e Real Double where

toRational = floatingToRational

floatingToRational x = (m%1)*(b%1)^^n

where (m,n) = de
odeFloat x

b = floatRadix x

instan
e Fra
tional Float where

(/) = primDivFloat

fromRational = rationalToFloating

instan
e Fra
tional Double where

(/) = primDivDouble

fromRational = rationalToFloating

rationalToFloating x = fromInteger (numerator x)

/ fromInteger (denominator x)



84 A STANDARD PRELUDE

instan
e Floating Float where

pi = primPiFloat

exp = primExpFloat

log = primLogFloat

sqrt = primSqrtFloat

sin = primSinFloat


os = primCosFloat

tan = primTanFloat

asin = primAsinFloat

a
os = primA
osFloat

atan = primAtanFloat

sinh = primSinhFloat


osh = primCoshFloat

tanh = primTanhFloat

asinh = primAsinhFloat

a
osh = primA
oshFloat

atanh = primAtanhFloat

instan
e Floating Double where

pi = primPiDouble

exp = primExpDouble

log = primLogDouble

sqrt = primSqrtDouble

sin = primSinDouble


os = primCosDouble

tan = primTanDouble

asin = primAsinDouble

a
os = primA
osDouble

atan = primAtanDouble

sinh = primSinhDouble


osh = primCoshDouble

tanh = primTanhDouble

asinh = primAsinhDouble

a
osh = primA
oshDouble

atanh = primAtanhDouble

instan
e RealFra
 Float where

properFra
tion = floatProperFra
tion

approxRational = floatApproxRational

instan
e RealFra
 Double where

properFra
tion = floatProperFra
tion

approxRational = floatApproxRational
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floatProperFra
tion x = if n >= 0

then (m * b^n, 0)

else (m', fromInteger k / fromInteger d)

where (m,n) = de
odeFloat x

b = floatRadix x

(m',k) = divRem m d

d = b^(-n)

floatApproxRational x eps =


ase withinEps of

r:r':_ | denominator r == denominator r' -> r'

r:_ -> r

where withinEps = dropWhile (\r -> abs (fromRational r - x) > eps)

(approximants p q)

(p,q) = if n < 0 then (m, b^(-n)) else (m*b^n, 1)

(m,n) = de
odeFloat x

b = toInteger (floatRadix x)

instan
e RealFloat Float where

floatRadix _ = primFloatRadix

floatDigits _ = primFloatDigits

floatRange _ = (primFloatMinExp,primFloatMaxExp)

de
odeFloat = primDe
odeFloat

en
odeFloat = primEn
odeFloat

instan
e RealFloat Double where

floatRadix _ = primDoubleRadix

floatDigits _ = primDoubleDigits

floatRange _ = (primDoubleMinExp,primDoubleMaxExp)

de
odeFloat = primDe
odeDouble

en
odeFloat = primEn
odeDouble

instan
e Ix Float where

range (x,y) = [x..y℄

index (x,y) i = floor (i - x)

inRange (x,y) i = x <= i && i <= y

instan
e Ix Double where

range (x,y) = [x..y℄

index (x,y) i = floor (i - x)

inRange (x,y) i = x <= i && i <= y

instan
e Enum Float where

enumFrom x = enumFromBy x 1

enumFromThen x y = enumFromBy x (y - x)
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instan
e Enum Double where

enumFrom x = enumFromBy x 1

enumFromThen x y = enumFromBy x (y - x)
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A.3 Prelude PreludeRatio
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A.4 Prelude PreludeComplex

-- Complex Numbers

module PreludeComplex ( Complex(:+) ) where

infix 6 :+

data (RealFloat a) => Complex a = a :+ a deriving (Eq,Binary,Text)

instan
e (RealFloat a) => Num (Complex a) where

(x:+y) + (x':+y') = (x+x') :+ (y+y')

(x:+y) - (x':+y') = (x-x') :+ (y-y')

(x:+y) * (x':+y') = (x*x'-y*y') :+ (x*y'+y*x')

negate (x:+y) = negate x :+ negate y

abs z = magnitude z :+ 0

signum 0 = 0

signum z�(x:+y) = x/r :+ y/r where r = magnitude z

fromInteger n = fromInteger n :+ 0

instan
e (RealFloat a) => Fra
tional (Complex a) where

(x:+y) / (x':+y') = (x*x''+y*y'') / d :+ (y*x''-x*y'') / d

where x'' = s
aleFloat k x'

y'' = s
aleFloat k y'

k = - (max (exponent x') (exponent y'))

d = x'*x'' + y'*y''

fromRational a = fromRational a :+ 0
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instan
e (RealFloat a) => Floating (Complex a) where

pi = pi :+ 0

exp (x:+y) = expx * 
os y :+ expx * sin y

where expx = exp x

log z = log (magnitude z) :+ phase z

sqrt 0 = 0

sqrt z�(x:+y) = u :+ (if y < 0 then -v else v)

where (u,v) = if x < 0 then (v',u') else (u',v')

v' = abs y / (u'*2)

u' = sqrt ((magnitude z + abs x) / 2)

sin (x:+y) = sin x * 
osh y :+ 
os x * sinh y


os (x:+y) = 
os x * 
osh y :+ sin x * sinh y

tan (x:+y) = (sinx*
oshy:+
osx*sinhy)/(
osx*
oshy:+sinx*sinhy)

where sinx = sin x


osx = 
os x

sinhy = sinh y


oshy = 
osh y

sinh (x:+y) = 
os y * sinh x :+ sin y * 
osh x


osh (x:+y) = 
os y * 
osh x :+ (- (sin y) * sinh x)

tanh (x:+y) = (
osy*sinhx:+siny*
oshx)/(
osy*
oshx:+(-siny*sinhx))

where siny = sin y


osy = 
os y

sinhx = sinh x


oshx = 
osh x

asin z�(x:+y) = y':+(-x')

where (x':+y') = log ((-y:+x) + sqrt (1 - z*z))

a
os z�(x:+y) = y'':+(-x'')

where (x'':+y'') = log (z + ((-y'):+x'))

(x':+y') = sqrt (1 - z*z)

atan z�(x:+y) = y':+(-x')

where

(x':+y') = log (((-y+1):+x) * sqrt (1/(1+z*z)))

asinh z = log (z + sqrt (1+z*z))

a
osh z = log (z + (z+1) * sqrt ((z-1)/(z+1)))

atanh z = log ((z+1) * sqrt (1 - 1/(z*z)))
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A.5 Prelude PreludeList
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A.6 Prelude PreludeArray
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A.7 Prelude PreludeText

module PreludeText (

Text(readsPre
,showsPre
,readList,showList),

ReadS, ShowS, reads, shows, show, read, lex,

showChar, showString, readParen, showParen ) where

type ReadS a = String -> [(a,String)℄

type ShowS = String -> String


lass Text a where

readsPre
 :: Int -> ReadS a

showsPre
 :: Int -> a -> ShowS

readList :: ReadS [a℄

showList :: [a℄ -> ShowS

readList = readParen False

(\r -> [pr | ("[",s) <- [lex r℄, pr <- readl s℄)

where readl s = [([℄,t) | ("℄",t) <- [lex s℄℄ ++

[(x:xs,v) | (x,t) <- reads s,

(",",u) <- [lex t℄,

(xs,v) <- readl u ℄

showList xs = showChar '[' . showl xs

where showl [℄ = showChar '℄'

showl (x:xs) = shows x . showChar ',' . showl xs

reads :: (Text a) => ReadS a

reads = readsPre
 0

shows :: (Text a) => a -> ShowS

shows = showsPre
 0

read :: (Text a) => String -> a

read s = x

where [x℄ = [x | (x,t) <- reads s, ("","") <- [lex t℄℄

show :: (Text a) => a -> String

show x = shows x ""

showChar :: Char -> ShowS

showChar = (:)

showString :: String -> ShowS

showString = (++)

showParen :: Bool -> ShowS -> ShowS

showParen b p = if b then showChar '(' . p . showChar ')' else p
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readParen :: Bool -> ReadS a -> ReadS a

readParen b g = if b then mandatory else optional

where optional r = g r ++ mandatory r

mandatory r = [(x,u) | ("(",s) <- [lex r℄,

(x,t) <- optional s,

(")",u) <- [lex t℄ ℄

lex :: String -> (String,String)

lex "" = ("","")

lex ('-':'>':s) = ("->",s)

lex ('-':s) = ("-",s)

lex r�(
:s) =

if isSpa
e 
 then lex (dropWhile isSpa
e s)

else if isAlpha 
 then span isIdChar r

else if isSingleSym 
 then ([
℄,s)

else if isMultiSym 
 then span isMultiSym r

else if isDigit 
 then lexNum r

else if 
 == '\'' then ('\'' : 
h ++ "'", u)

where {(
h,t) = lexLitChar s; '\'':u = t}

else if 
 == '"' then ('"':str, t)

where (str,t) = lexString s

else error "bad 
hara
ter"

where

isIdChar 
 = isAlphanum 
 || 
 == '_' || 
 == '\''

isSingleSym 
 = 
 `in` ",;()[℄{}_"

isMultiSym 
 = 
 `in` "!�#$%&*+-./<=>?\\^|~"

lexNum r = (ds++f, t) where (ds,s) = span isDigit r

(f,t) = lexFra
Exp s

lexFra
Exp ('.':r) = ('.':ds++e, t)

where (ds,s) = lexDigits r

(e, t) = lexExp s

lexFra
Exp s = ("",s)

lexExp ('e':'-':r) = ("e-"++ds, s) where (ds,s) = lexDigits r

lexExp ('e':r) = ('e':ds, s) where (ds,s) = lexDigits r

lexExp s = ("",s)

lexDigits r�(d:_) | isDigit d = span isDigit r

lexString ('"':s) = ("\"", s)

lexString s = (
h++str, u)

where (
h,t) = lexLitChar s

(str,u) = lexString t
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lexLitChar :: String -> (String,String)

lexLitChar ('\\':s) = ('\\':es
, t)

where (es
,t) = lexEs
 s

lexEs
 (
:s) | 
 `in` "abfnrtv\\\"'&" = ([
℄,s)

lexEs
 ('^':
:s) | isUpper 
 = (['^',
℄, s)

lexEs
 ('N':'U':'L':s) = ("NUL", s)

lexEs
 ('S':'O':'H':s) = ("SOH", s)

lexEs
 ('S':'T':'X':s) = ("STX", s)

lexEs
 ('E':'T':'X':s) = ("ETX", s)

lexEs
 ('E':'O':'T':s) = ("EOT", s)

lexEs
 ('E':'N':'Q':s) = ("ENQ", s)

lexEs
 ('A':'C':'K':s) = ("ACK", s)

lexEs
 ('B':'E':'L':s) = ("BEL", s)

lexEs
 ('B':'S':s) = ("BS", s)

lexEs
 ('H':'T':s) = ("HT", s)

lexEs
 ('L':'F':s) = ("LF", s)

lexEs
 ('V':'T':s) = ("VT", s)

lexEs
 ('F':'F':s) = ("FF", s)

lexEs
 ('C':'R':s) = ("CR", s)

lexEs
 ('S':'O':s) = ("SO", s)

lexEs
 ('S':'I':s) = ("SI", s)

lexEs
 ('D':'L':'E':s) = ("DLE", s)

lexEs
 ('D':'C':'1':s) = ("DC1", s)

lexEs
 ('D':'C':'2':s) = ("DC2", s)

lexEs
 ('D':'C':'3':s) = ("DC3", s)

lexEs
 ('D':'C':'4':s) = ("DC4", s)

lexEs
 ('N':'A':'K':s) = ("NAK", s)

lexEs
 ('S':'Y':'N':s) = ("SYN", s)

lexEs
 ('E':'T':'B':s) = ("ETB", s)

lexEs
 ('C':'A':'N':s) = ("CAN", s)

lexEs
 ('E':'M':s) = ("EM", s)

lexEs
 ('S':'U':'B':s) = ("SUB", s)

lexEs
 ('E':'S':'C':s) = ("ESC", s)

lexEs
 ('F':'S':s) = ("FS", s)

lexEs
 ('G':'S':s) = ("GS", s)

lexEs
 ('R':'S':s) = ("RS", s)

lexEs
 ('U':'S':s) = ("US", s)

lexEs
 ('S':'P':s) = ("SP", s)

lexEs
 ('D':'E':'L':s) = ("DEL", s)

lexEs
 r�(d:s) | isDigit d = span isDigit r

lexEs
 ('o':s) = ('o':os, t)

where (os,t) = nonempty

(\
 -> 
 >= '0' &&


 <= '7' )
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lexEs
 ('x':s) = ('x':xs, t)

where (xs,t) = nonempty

(\
 -> isDigit 
 ||


 >= 'A' &&


 <= 'F' )

lexEs
 r�(
:s) | isSpa
e 
 = (sp++"\\", u)

where

(sp,t) = span isSpa
e s

('\\',u) = t

nonempty p r�(
:s) | p 
 = span p r

lexLitChar (
:s) = ([
℄,s)

-- Trivial type

instan
e Text () where

readsPre
 p = readParen False

(\r -> [((),t) | ("(",s) <- [lex r℄,

(")",t) <- [lex s℄ ℄ )

showsPre
 p () = showString "()"

-- Chara
ter type

instan
e Text Char where

readsPre
 p = readParen False

(\r -> [(
,t) | ('\'':s,t)<-[lex r℄,

(
,_) <-[readLitChar s℄℄)

showsPre
 p '\'' = showString "'\\''"

showsPre
 p 
 = showChar '\'' . showLitChar 
 . showChar '\''

readList = readParen False (\r -> [(
s,t) | ('"':s, t) <- [lex r℄,

pr <- readl s℄)

where readl s = [("",t) | '"':t <- [s℄ ℄ ++

[(
:
s,u) | (
 ,t) <- readLitChar s,

(
s,u) <- readl u ℄

showList 
s = showChar '"' . showl 
s

where showl "" = showChar '"'

showl ('\'':
s) = showString "\\'" . showl 
s

showl (
:
s) = showLitChar 
 . showl 
s
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readLitChar :: ReadS Char

readLitChar s = if ignore 
h then readLitChar t else [(
harVal 
h, t)℄

where

(
h,t) = lexLitChar s

ignore "\\&" = True

ignore ('\\':
:_) | isSpa
e 
 = True

ignore _ = False


harVal ('\\':es
) = es
Val es



harVal [
℄ = 


es
Val "a" = '\a'

es
Val "b" = '\b'

es
Val "f" = '\f'

es
Val "n" = '\n'

es
Val "r" = '\r'

es
Val "t" = '\t'

es
Val "v" = '\v'

es
Val "\\" = '\\'

es
Val "\"" = '"'

es
Val "'" = '\''

es
Val ('^':[
℄) = 
hr (ord 
 - 64)

es
Val "NUL" = '\NUL'

es
Val "SOH" = '\SOH'

es
Val "STX" = '\STX'

es
Val "ETX" = '\ETX'

es
Val "EOT" = '\EOT'

es
Val "ENQ" = '\ENQ'

es
Val "ACK" = '\ACK'

es
Val "BEL" = '\BEL'

es
Val "BS" = '\BS'

es
Val "HT" = '\HT'

es
Val "LF" = '\LF'

es
Val "VT" = '\VT'

es
Val "FF" = '\FF'

es
Val "CR" = '\CR'

es
Val "SO" = '\SO'

es
Val "SI" = '\SI'

es
Val "DLE" = '\DLE'

es
Val "DC1" = '\DC1'

es
Val "DC2" = '\DC2'

es
Val "DC3" = '\DC3'

es
Val "DC4" = '\DC4'
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es
Val "NAK" = '\NAK'

es
Val "SYN" = '\SYN'

es
Val "ETB" = '\ETB'

es
Val "CAN" = '\CAN'

es
Val "EM" = '\EM'

es
Val "SUB" = '\SUB'

es
Val "ESC" = '\ESC'

es
Val "FS" = '\FS'

es
Val "GS" = '\GS'

es
Val "RS" = '\RS'

es
Val "US" = '\US'

es
Val "SP" = '\SP'

es
Val "DEL" = '\DEL'

es
Val r�(d:s) | isDigit d = 
hr n

where [(n,_)℄ = readDe
 r

es
Val ('o':s) = 
hr n

where [(n,_)℄ = readO
t s

es
Val ('x':s) = 
hr n

where [(n,_)℄ = readHex s

showLitChar :: Char -> ShowS

showLitChar '\\' = showString "\\\\"

showLitChar 
 | isPrint 
 = showChar 


showLitChar '\a' = showString "\\a"

showLitChar '\b' = showString "\\b"

showLitChar '\f' = showString "\\f"

showLitChar '\n' = showString "\\n"

showLitChar '\r' = showString "\\r"

showLitChar '\t' = showString "\\t"

showLitChar '\v' = showString "\\v"

showLitChar 
 = showChar '\\' . showInt (ord 
) . 
ont

where 
ont s�(
:
s) | isDigit 
 = "\\&" ++ s


ont s = s

readDe
, readO
t, readHex :: (Integral a) => ReadS a

readDe
 = readInt 10 isDigit (\d -> ord d - ord '0')

readO
t = readInt 8 (\
 -> 
 >= 0 && 
 <= 7) (\d -> ord d - ord '0')

readHex = readInt 16 (\
 -> isDigit 
 || 
 >= 'A' && 
 <= 'F')

(\d -> if isDigit d then ord d - ord '0'

else ord d - ord 'A' + 10)
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readInt :: (Integral a) => a -> (Char -> Bool) -> (Char -> a) -> ReadS a

readInt radix isDig digToInt s =

[(foldl (\n d -> n * radix + digToInt d) digToInt d, r)

| (d:ds,r) <- [span isDig s℄ ℄

showInt :: (Integral a) => a -> ShowS

showInt n = if n < 0 then showChar '-' . showInt' (-n) else showInt' n

where showInt' n r = 
hr (ord '0' + d) :

if n' > 0 then showInt' n' r else r

where (n',d) = divRem n 10

-- Standard integral types

instan
e Text Int where

readsPre
 = readIntegral

showsPre
 = showIntegral

instan
e Text Integer where

readsPre
 = readIntegral

showsPre
 = showIntegral

readIntegral p = readParen False read'

where read' r = [(-n,t) | ("-",s) <- [lex r℄,

(n,t) <- [read'' s℄ ℄

read'' r = [(n,s) | (ds,s) <- [lex r℄,

(n,"") <- readDe
 ds℄

showIntegral p n = showParen (n < 0 && p > 6) (showInt n)

-- Standard floating-point types

instan
e Text Float where

readsPre
 = readFloating

showsPre
 = showFloating

instan
e Text Double where

readsPre
 = readFloating

showsPre
 = showFloating
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readFloating p = readParen False read'

where read' r = [(-x,t) | ("-",s) <- [lex r℄,

(x,t) <- [read'' s℄ ℄

read'' r = [(fromRational x,t)

| (s,t) <- [lex r℄,

(x,"") <- readFix s ++ readS
i s℄

readFix r = [(x%1 + y%10^(length t), u)

| (x,'.':s) <- readDe
 r,

(t,u) <- [span isDigit s℄,

y <- [read t℄ ℄

readS
i r = [(x*(10^n%1),t)

| (x,'e':s) <- readFix r,

(n,t) <- readDe
 s ℄ ++

[(x*(1%10^n),t)

| (x,'e':'-':s) <- readFix r,

(n,t) <- readDe
 s ℄

showFloating p x =

if p >= 0 then show' x else showParen (p>6) (showChar '-'.show'(-x))

where

show' x = if e >= m || e < 0 then showS
i else showFix e

showS
i = showFix 1 . showChar 'e' . showInt e

showFix k = showString (fill (take k ds)) . showChar '.'

. showString (fill (drop k ds))

fill ds = if null ds then "0" else ds

ds = if sig == 0 then take m (repeat '0') else show sig

(m, sig, e) = if b == 10 then

(w, s, if s == 0 then 0 else n+w)

else

(
eiling ((fromInt w * log (fromInteger b))/log 10) + 1,

round ((s%1) * (b%1)^^n * 10^^(m-e)),

if s == 0 then 0 else floor (logBase 10 x))

(s, n) = de
odeFloat x

b = floatRadix x

w = floatDigits x

-- Lists

instan
e (Text a) => Text [a℄ where

readsPre
 p = readList

showsPre
 p = showList
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-- Tuples

instan
e (Text a, Text b) => Text (a,b) where

readsPre
 p = readParen False

(\r -> [((x,y), w) | ("(",s) <- [lex r℄,

(x,t) <- reads s,

(",",u) <- [lex t℄,

(y,v) <- reads u

(")",w) <- [lex v℄ ℄ )

showsPre
 p (x,y) = showChar '(' . shows x . showChar ',' .

shows y . showChar ')'

-- et 
etera
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A.8 Prelude PreludeIO

-- I/O fun
tions and definitions

module PreludeIO where

-- File and 
hannel names:

type Name = String

stdin = "stdin"

stdout = "stdout"

stderr = "stderr"

stde
ho = "stde
ho"

-- Requests and responses:

data Request = -- file system requests:

ReadFile Name

| WriteFile Name String

| AppendFile Name String

| ReadBinFile Name

| WriteBinFile Name Bin

| AppendBinFile Name Bin

| DeleteFile Name

| StatusFile Name

-- 
hannel system requests:

| ReadChan Name

| AppendChan Name String

| ReadBinChan Name

| AppendBinChan Name Bin

| StatusChan Name

-- environment requests:

| E
ho Bool

| GetArgs

| GetEnv Name

| SetEnv Name String

data Response = Su

ess

| Str String

| Bn Bin

| Failure IOError
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data IOError = WriteError String

| ReadError String

| Sear
hError String

| FormatError String

| OtherError String

-- Continuation-based I/O:

type Dialogue = [Response℄ -> [Request℄

type Su

Cont = Dialogue

type StrCont = String -> Dialogue

type BinCont = Bin -> Dialogue

type FailCont = IOError -> Dialogue

done :: Dialogue

readFile :: Name -> FailCont -> StrCont -> Dialogue

writeFile :: Name -> String -> FailCont -> Su

Cont -> Dialogue

appendFile :: Name -> String -> FailCont -> Su

Cont -> Dialogue

readBinFile :: Name -> FailCont -> BinCont -> Dialogue

writeBinFile :: Name -> Bin -> FailCont -> Su

Cont -> Dialogue

appendBinFile :: Name -> Bin -> FailCont -> Su

Cont -> Dialogue

deleteFile :: Name -> FailCont -> Su

Cont -> Dialogue

statusFile :: Name -> FailCont -> StrCont -> Dialogue

readChan :: Name -> FailCont -> StrCont -> Dialogue

appendChan :: Name -> String -> FailCont -> Su

Cont -> Dialogue

readBinChan :: Name -> FailCont -> BinCont -> Dialogue

appendBinChan :: Name -> Bin -> FailCont -> Su

Cont -> Dialogue

e
ho :: Bool -> FailCont -> Su

Cont -> Dialogue

getArgs :: FailCont -> StrCont -> Dialogue

getEnv :: Name -> FailCont -> StrCont -> Dialogue

setEnv :: Name -> String -> FailCont -> Su

Cont -> Dialogue

done resps = [℄

readFile name fail su

 resps =

(ReadFile name) : strDispat
h fail su

 resps

writeFile name 
ontents fail su

 resps =

(WriteFile name 
ontents) : su

Dispat
h fail su

 resps

appendFile name 
ontents fail su

 resps =

(AppendFile name 
ontents) : su

Dispat
h fail su

 resps
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readBinFile name fail su

 resps =

(ReadBinFile name) : binDispat
h fail su

 resps

writeBinFile name 
ontents fail su

 resps =

(WriteBinFile name 
ontents) : su

Dispat
h fail su

 resps

appendBinFile name 
ontents fail su

 resps =

(AppendBinFile name 
ontents) : su

Dispat
h fail su

 resps

deleteFile name fail su

 resps =

(DeleteFile name) : su

Dispat
h fail su

 resps

statusFile name fail su

 resps =

(StatusFile name) : strDispat
h fail su

 resps

readChan name fail su

 resps =

(ReadChan name) : strDispat
h fail su

 resps

appendChan name 
ontents fail su

 resps =

(AppendChan name 
ontents) : su

Dispat
h fail su

 resps

readBinChan name fail su

 resps =

(ReadBinChan name) : binDispat
h fail su

 resps

appendBinChan name 
ontents fail su

 resps =

(AppendBinChan name 
ontents) : su

Dispat
h fail su

 resps

e
ho bool fail su

 resps =

(E
ho bool) : su

Dispat
h fail su

 resps

getArgs fail su

 resps =

GetArgs : strDispat
h fail su

 resps

getEnv name fail su

 resps =

(GetEnv name) : strDispat
h fail su

 resps

setEnv name val fail su

 resps =

(SetEnv name val) : su

Dispat
h fail su

 resps

strDispat
h fail su

 (resp:resps) = 
ase resp of

Str val -> su

 val resps

Failure msg -> fail msg resps



104 A STANDARD PRELUDE

binDispat
h fail su

 (resp:resps) = 
ase resp of

Bn val -> su

 val resps

Failure msg -> fail msg resps

su

Dispat
h fail su

 (resp:resps) = 
ase resp of

Su

ess -> su

 resps

Failure msg -> fail msg resps

abort :: FailCont

abort msg = done

exit :: FailCont

exit err = appendChan stdout msg abort done

where msg = 
ase err of ReadError s -> s

WriteError s -> s

Sear
hError s -> s

FormatError s -> s

OtherError s -> s

let :: a -> (a -> b) -> b

let x k = k x

print :: (Text a) => a -> Dialogue

print x = appendChan stdout (show x) abort done

prints :: (Text a) => a -> String -> Dialogue

prints x s = appendChan stdout (shows x s) abort done

intera
t :: (String -> String) -> Dialogue

intera
t f = readChan stdin abort

(\x -> appendChan stdout (f x) abort done)
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B Syntax

B.1 Notational Conventions

These notational 
onventions are used for presenting syntax:

[pattern℄ optional

fpatterng zero or more repetitions

(pattern) grouping

pat

1

j pat

2


hoi
e

pat

fpat

0

g

di�eren
e|elements generated by pat

ex
ept those generated by pat

0

fibona

i terminal syntax in typewriter font

BNF-like syntax is used throughout, with produ
tions having form:

nonterm ! alt

1

j alt

2

j : : : j alt

n

B.2 Lexi
al Syntax

program ! f lexeme j whitespa
e g

lexeme ! varid j 
onid j varop j 
onop j literal j spe
ial j reservedop j reservedid

literal ! integer j 
oat j 
har j string

spe
ial ! ( j ) j , j ; j [ j ℄ j _ j { j }

whitespa
e ! whitestu� fwhitestu� g

whitestu� ! newline j spa
e j tab j vertab j formfeed j 
omment j n
omment

newline ! a newline (system dependent)

spa
e ! a spa
e

tab ! a horizontal tab

vertab ! a verti
al tab

formfeed ! a form feed


omment ! -- fanyg newline

n
omment ! {- fwhitespa
e j any

f{- j -}g

g -}

any ! graphi
 j spa
e j tab

graphi
 ! large j small j digit

j ! j " j # j $ j % j & j � j ( j ) j * j +

j , j - j . j / j : j ; j < j = j > j ? j �

j [ j \ j ℄ j ^ j _ j � j { j | j } j ~

small ! a j b j : : : j z

large ! A j B j : : : j Z

digit ! 0 j 1 j : : : j 9
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avarid ! (small fsmall j large j digit j � j _g)

freservedidg

varid ! avarid j (avarop)

a
onid ! large fsmall j large j digit j � j _g


onid ! a
onid j (a
onop)

reservedid ! 
ase j 
lass j data j default j deriving j else j hiding

j if j import j infix j infixl j infixr j instan
e j interfa
e

j module j of j renaming j then j to j type j where

avarop ! ( symbol fsymbol j :g )

freservedopg

j -

varop ! avarop j �avarid�

a
onop ! (: fsymbol j :g)

freservedopg


onop ! a
onop j �a
onid�

symbol ! ! j # j $ j % j & j * j + j . j / j < j = j > j ? j � j \ j ^ j | j ~

reservedop ! .. j :: j => j = j � j \ j | j ~

var ! varid (variables)


on ! 
onid (
onstru
tors)

tyvar ! avarid (type variables)

ty
on ! a
onid (type 
onstru
tors)

ty
ls ! a
onid (type 
lasses)

modid ! a
onid (modules)

integer ! digitfdigitg


oat ! integer.integer [e[-℄integer ℄


har ! � (graphi


f� j \g

j spa
e j es
ape

f\&g

) �

string ! " fgraphi


f" j \g

j spa
e j es
ape j gapg "

es
ape ! \ ( 
hares
 j as
ii j integer j o o
titfo
titg j x hexitfhexitg )


hares
 ! a j b j f j n j r j t j v j \ j " j � j &

as
ii ! ^
ntrl j NUL j SOH j STX j ETX j EOT j ENQ j ACK

j BEL j BS j HT j LF j VT j FF j CR j SO j SI j DLE

j DC1 j DC2 j DC3 j DC4 j NAK j SYN j ETB j CAN

j EM j SUB j ESC j FS j GS j RS j US j SP j DEL


ntrl ! large j � j [ j \ j ℄ j ^ j _

gap ! \ ftab j spa
eg newline ftab j spa
eg \

hexit ! digit j A j B j C j D j E j F j a j b j 
 j d j e j f

o
tit ! 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7

B.3 Layout

De�nitions: The indentation of a lexeme is the 
olumn number indi
ating the start of that

lexeme; the indentation of a line is the indentation of its left-most lexeme. To determine

the 
olumn number, assume a �xed-width font with this tab 
onvention: tab stops are 8
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hara
ters apart, and a tab 
hara
ter 
auses the insertion of enough spa
es to align the


urrent position with the next tab stop.

In the syntax given in the other parts of the report, de
laration lists are always pre
eded

by the keyword where or of, and are en
losed within 
urly bra
es ({ }) with the individual

de
larations separated by semi
olons (;). For example, the syntax of a where expression is:

exp where { de
l

1

; de
l

2

; : : : ; de
l

n

}

Haskell permits the omission of the bra
es and semi
olons by using layout to 
onvey

the same information. This allows both layout-sensitive and -insensitive styles of 
oding,

whi
h 
an be freely mixed within one program. Be
ause layout is not required, Haskell

programs may be me
hani
ally produ
ed by other programs.

The layout (or \o�-side") rule takes e�e
t whenever the open bra
e is omitted after the

keyword where or of. When this happens, the indentation of the next lexeme (whether or

not on a new line) is remembered and the omitted open bra
e is inserted (the whitespa
e

pre
eding the lexeme may in
lude 
omments). For ea
h subsequent line, if it 
ontains only

whitespa
e or is indented more, then the previous item is 
ontinued (nothing is inserted);

if it is indented the same amount, then a new item begins (a semi
olon is inserted); and if

it is indented less, then the de
laration list ends (a 
lose bra
e is inserted). A 
lose bra
e is

also inserted whenever the synta
ti
 
ategory 
ontaining the de
laration list ends (i.e. if an

illegal lexeme is en
ountered at a point where a 
lose bra
e would be legal, a 
lose bra
e is

inserted). The layout rule will mat
h only those open bra
es that it has inserted; an open

bra
e that the user has inserted must be mat
hed by a 
lose bra
e inserted by the user.

Given these rules, a single newline may a
tually terminate several de
laration lists. Also,

these rules permit:

f x = exp1 where a = 1; b = 2

g y = exp2

making a, b and g all part of the same de
laration list.

To fa
ilitate the use of layout at the top level of a module (several modules may reside

in one �le), the keyword module and the end-of-�le token are assumed to o

ur in 
olumn

0 (whereas normally the �rst 
olumn is 1). Otherwise, all top-level de
larations would have

to be indented.

B.4 Context-Free Syntax

module ! module modid [exports℄ where body

j body

body ! { [impde
ls ;℄ [�xde
ls ;℄ topde
ls }

j { impde
ls }

modid ! a
onid

impde
ls ! impde
l

1

; : : : ; impde
l

n

(n � 1 )
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exports ! ( export

1

, : : : , export

n

) (n � 1 )

export ! varid

j ty
on

j ty
on (..)

j ty
on ( 
onid

1

, : : : , 
onid

n

) (n � 1 )

j ty
ls (..)

j ty
ls ( varid

1

, : : : , varid

n

) (n � 0 )

j modid ..

impde
l ! import modid [impspe
℄ [renaming renamings℄

impspe
 ! ( import

1

, : : : , import

n

) (n � 0 )

j hiding ( import

1

, : : : , import

n

) (n � 1 )

import ! varid

j ty
on

j ty
on (..)

j ty
on ( 
onid

1

, : : : , 
onid

n

) (n � 1 )

j ty
ls (..)

j ty
ls ( varid

1

, : : : , varid

n

) (n � 0 )

renamings ! ( renaming

1

, : : : , renaming

n

) (n � 1 )

renaming ! name

1

to name

2

name ! varid j 
onid

�xde
ls ! �x

1

; : : : ; �x

n

(n � 1 )

�x ! infixl [digit ℄ ops

j infixr [digit ℄ ops

j infix [digit ℄ ops

ops ! op

1

, : : : , op

n

(n � 1 )

op ! varop j 
onop

topde
ls ! topde
l

1

; : : : ; topde
l

n

(n � 1 )

topde
l ! type [
ontext =>℄ simple = type

j data [
ontext =>℄ simple = 
onstrs [deriving (ty
ls j (ty
lses))℄

j 
lass [
ontext =>℄ 
lass [where { 
de
ls }℄

j instan
e [
ontext =>℄ ty
ls inst [where { de
ls }℄

j default (type j (type

1

, : : : , type

n

)) (n � 0 )

j de
l

de
ls ! de
l

1

; : : : ; de
l

n

(n � 1 )

de
l ! vars :: [
ontext =>℄ type

j valdef

type ! atype

j type

1

-> type

2

j ty
on atype

1

: : : atype

k

(arity ty
on = k � 1 )
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atype ! tyvar

j ty
on (arity ty
on = 0 )

j () (unit type)

j ( type ) (parenthesised type)

j ( type

1

, : : : , type

k

) (tuple type; k � 2 )

j [ type ℄


ontext ! 
lass

j ( 
lass

1

, : : : , 
lass

n

) (n � 1 )


lass ! ty
ls tyvar


de
ls ! 
de
l

1

; : : : ; 
de
l

n

(n � 1 )


de
l ! vars :: type

j valdef

vars ! var

1

, : : : , var

n

(n � 1 )

simple ! ty
on tyvar

1

: : : tyvar

k

(arity ty
on = k � 0 )


onstrs ! 
onstr

1

| : : : | 
onstr

n

(n � 1 )


onstr ! 
on atype

1

: : : atype

k

(arity 
on = k � 0 )

j type

1


onop type

2

(in�x 
onop)

ty
lses ! ty
ls

1

, : : : , ty
ls

n

(n � 0 )

inst ! ty
on (arity ty
on = 0 )

j ( ty
on tyvar

1

: : : tyvar

k

) (arity ty
on = k > 0 )

j ( tyvar

1

, : : : , tyvar

k

) k � 2

j ()

j [ tyvar ℄

j tyvar

1

-> tyvar

2

valdef ! lhs = exp

j lhs gdfun

lhs ! pat

j var apat

1

: : : apat

k

(k � 1 )

j apat

1

varop apat

2

j ( apat

1

varop apat

2

) apat

3

: : : apat

k

(k � 3 )

gdfun ! gd = exp [gdfun℄

gd ! | exp

exp ! aexp
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j exp aexp (fun
tion appli
ation)

j exp

1

op exp

2

(operator appli
ation)

j - aexp (pre�x -)

j \ apat

1

: : : apat

n

[gd ℄ -> exp (lambda abstra
tion; n � 1 )

j if exp

1

then exp

2

else exp

3

(
onditional)

j exp where { de
ls } (where expression)

j 
ase exp of { alts } (
ase expression)

j exp :: [
ontext =>℄ atype (expression type signature)

aexp ! var (variable)

j 
on (
onstru
tor)

j literal

j () (unit)

j ( exp ) (parenthesised expression)

j ( exp

1

, : : : , exp

k

) (tuple; k � 2 )

j [ exp

1

, : : : , exp

k

℄ (list; k � 0 )

j [ exp

1

[, exp

2

℄ .. [exp

3

℄ ℄ (arithmeti
 sequen
e)

j [ exp | [qual ℄ ℄ (list 
omprehension)

qual ! qual

1

, qual

2

j pat <- exp

j exp

alts ! alt

1

; : : : ; alt

n

(n � 1 )

alt ! pat [gd ℄ -> exp

pat ! apat

j 
on apat

1

: : : apat

k

(arity 
on = k � 1 )

j pat

1


onop pat

2

(in�x 
onstru
tor)

j var + integer (su

essor pattern)

j [ - ℄ integer

apat ! var [ � apat ℄ (as pattern)

j 
on (arity 
on = 0 )

j integer j 
oat j 
har j string (literals)

j _ (wild
ard)

j ( pat

1

, : : : , pat

k

) (tuple patterns; k � 2 )

j [ pat

1

, : : : , pat

k

℄ (list patterns; k � 0 )

j ( pat ) (parenthesised pattern)

j () (unit pattern)

j ~ apat

ty
ls ! a
onid

tyvar ! avarid

ty
on ! a
onid
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B.5 Interfa
e Syntax

interfa
e ! interfa
e modid where ibody

ibody ! { [iimpde
ls ;℄ [�xes ;℄ itopde
ls }

j { iimpde
ls }

iimpde
ls ! iimpde
l

1

; : : : ; iimpde
l

n

(n � 1 )

iimpde
l ! import modid ( import

1

, : : : , import

n

)

[renaming renamings℄ (n � 1 )

itopde
ls ! itopde
l

1

; : : : ; itopde
l

n

(n � 1 )

itopde
l ! type [
ontext =>℄ simple = type

j data [
ontext =>℄ simple [= 
onstrs℄ [deriving (ty
ls j (ty
lses))℄

j 
lass [
ontext =>℄ 
lass [where { i
de
ls }℄

j instan
e [
ontext =>℄ ty
ls inst

j vars :: [
ontext =>℄ type

i
de
ls ! i
de
l

1

; : : : ; i
de
l

n

(n � 1 )

i
de
l ! vars :: type
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C Input/Output Semanti
s

The behaviour of a Haskell program performing I/O is given within the environment in

whi
h it is running. That environment will be des
ribed using standard Haskell 
ode

augmented with a non-deterministi
 merge operator.

The state of the operating system (OS state) that is relevant to Haskell programs is


ompletely des
ribed by the �le system and the 
hannel system. The 
hannel system is split

into two subsystems, the input 
hannel system and the output 
hannel system.

type State = (FileSystem, ChannelSystem)

type FileSystem = Name -> Response

type ChannelSystem = (ICs, OCs)

type ICs = Name -> (Agent, Open)

type OCs = Name -> Response

type Agent = (FileSystem, OCs) -> Response

type Open = PId -> Bool

type PId = Int

type PList = [(PId,[Request->Response℄)℄

type Name = String

An agent maps a list of OS states to responses. Those responses will be used as the 
ontents

of input 
hannels, and thus 
an depend on output 
hannels, other input 
hannels, �les, or

any 
ombination thereof. For example, a valid implementation must allow the user to a
t

as agent between the standard output 
hannel and standard input 
hannel.

Ea
h running pro
ess (i.e. program) has a unique PId. Elements of PList are lists of

running programs.

os :: TagReqList -> State -> (TagRespList, State)

type TagRespList = [(PId,Response)℄

type TagReqList = [(PId,Request)℄

The operating system is modeled as a (non-deterministi
) fun
tion os. The os takes a

tagged request list and an initial state, and returns a tagged response list and a �nal state.

Given a list of programs pList, os must exhibit this behaviour:

(tagRespList, state') = os tagReqList state

tagReqList = merge [ zip [pId,pId..℄ (pro
 (untag pId tagRespList))

| (pId, pro
) <- pList ℄

where merge is a non-deterministi
 merge of a list of lists, and untag is:

untag n [℄ = [℄

untag n ((m,resp):resps) = if n==m then resp:(untag n resps)

else untag n resps

This relationship 
an be generalised to in
lude requests su
h as CreatePro
ess.

A valid implementation must ensure that the input 
hannel system is de�ned at stdin

and the output 
hannel system is de�ned at stdout, stderr, and stde
ho. If the agent
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atta
hed to standard input is 
alled user (i.e. i
s stdin has form (user, open)), then

user must depend at least on standard output. In other words, this 
onstraint must hold:

user [..., (fs,(i
s,o
s)), ...℄ = ... user' (o
s stdout) ...

where user' is a stri
t, but otherwise arbitrary, fun
tion modelling the user. Its stri
tness


orresponds to the user's 
onsumption of standard output whilst determining standard

input.

The rest of this se
tion spe
i�es the required behaviour of os in response to ea
h kind

of request. This semanti
s is relatively abstra
t and omits any referen
e to hardware errors

(e.g. \bad se
tor on disk") and system dependent errors (e.g. \a

ess rights violation").

Implementation-spe
i�
 requests (for example the environment requests) are not shown

here. We des
ribe only the text version of the requests: the binary version di�ers trivially.

os is de�ned by:

os :: TagReqList -> State -> (TagRespList,State)

os [℄ state = ([℄, state)

os ((n, ReadChan name):es) state�(fs,(i
s,o
s)) =

(alist',state') where

(agent,open) = i
s name

alist' = (n, (if open n

then fail

else (agent (fs,o
s)) )) : alist

fail = Failure (OtherError "Channel already open\n")

(alist,state') = os es (fs, (update i
s name

(agent, update open n true),

o
s))

where the auxiliary fun
tion update is de�ned by:

update f x v x' = if x==x' then v else f x

If an attempt is made to read a non-existent 
hannel, i
s returns an agent that gives

the appropriate error message when applied to its arguments. This de�nition is generalised

in the obvious way for the behaviour of ReadChannels. In parti
ular, a
k must be 
reated

by non-deterministi
ally merging the result of applying ea
h agent to the stream of future

states.
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os ((n, AppendChan name 
ontents):es) state�(fs,(i
s,o
s)) =

(alist',state') where

alist' = a
k:alist

a
k =

(n,


ase (o
s name) of

Failure msg -> Failure (Sear
hError "Nonexistent Channel")

Str o
han -> Su

ess

Bn o
han -> Failure (FormatError "format error")

)

(alist,state') = os es (fs,(i
s,


ase (o
s name) of

Failure msg -> o
s

Str o
han -> update o
s name

(Str (o
han ++ 
ontents))

Bn o
han -> o
s

))

os ((n, ReadFile name):es) state�(fs,(i
s,o
s)) =

(alist',state') where

alist' = a
k : alist

a
k = (n,


ase (fs name) of

Failure msg -> Failure (Sear
hError "File not found")

Str string -> Str string

Bn binary -> Failure (FormatError "")

)

(alist,state') = os es state

os ((n, WriteFile name 
ontents):es) state�(fs,(i
s,o
s)) =

(alist',state') where

alist' = (n, Su

ess):alist

(alist,state') = os es (update fs name (Str 
ontents),

(i
s,o
s))
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os ((n, AppendFile name 
ontents):es) state�(fs,(i
s,o
s)) =

(alist',state') where

alist' = a
k:alist

a
k = (n,


ase (fs name) of

Failure msg -> Failure (Sear
hError "file not found")

Str s -> Su

ess

Bn b -> Failure (FormatError "")

)

(alist,state') = os es (newfs, (i
s,o
s)) where

newfs = 
ase (fs name) of

Failure msg -> fs

Str s ->

update fs name (Str (s++
ontents))

Bn b -> fs

os ((n, DeleteFile name):es) state�(fs,(i
s,o
s)) =

(alist',state') where

alist' = a
k : alist

a
k = (n,


ase (fs name) of

Failure msg -> Failure (Sear
hError "file not found")

Str s -> Su

ess

Bn b -> Su

ess

)

(alist,state') = os es (
ase (fs name) of

Failure msg -> fs

Str s -> update fs name fail

Bn b -> update fs name fail,

(i
s,o
s))

fail = Failure (Sear
hError "file not found")

os ((n,StatusFile name):es) state�(fs,(i
s,o
s)) = (alist',state') where

alist' = a
k : alist

a
k = (n,


ase (fs name) of

Failure msg -> Failure (Sear
hError "File not found")

Str string -> Str "t"++(rw n fs name)

Bn binary -> Str "b"++(rw n fs name)

)

(alist, state') = os es state

where rw is a fun
tion that determines the read and write status of a �le for this parti
ular

pro
ess.
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C.1 Optional Requests

These optional I/O requests may be useful in a Haskell implementation.

� ReadChannels [
name1, ..., 
namek℄

ReadBinChannels [
name1, ..., 
namek℄

Opens 
name1 through 
namek for input. A su

essful response has form Tag vals

[BinTag vals℄ where vals is a list of values tagged with the name of the 
hannel.

These responses require an extension to the Response datatype:

data Response = ...

| Tag [(Name,Char)℄

| BinTag [(Name,Bin)℄

The tagged list of values is the non-deterministi
 merge of the values read from the

individual 
hannels. If an element of this list has form (
namei,val), then it 
ame

from 
hannel 
namei.

If any 
namei does not exist then the response Failure (Sear
hError string) is

indu
ed; all other errors indu
e Failure (ReadError string).

� CreatePro
ess prog

Introdu
es a new program prog into the operating system. prog must have type

[Response℄ -> [Request℄. Either Su

ess and Failure (OtherError string) is

indu
ed.

� CreateDire
tory name string

DeleteDire
tory name

Create or delete dire
tory name. The string argument to CreateDire
tory is an

implementation-dependent spe
i�
ation of the initial state of the dire
tory.

� OpenFile name inout

OpenBinFile name inout

CloseFile file

ReadVal file

ReadBinVal file

WriteVal file 
har

WriteBinVal file bin

These requests emulate traditional �le I/O in whi
h 
hara
ters are read and written

one at a time.

data Response = ...

| Fil File

data File

type Bins = [Bin℄

OpenFile name inout [OpenBinFile name inout℄ opens the �le name in text [binary℄

mode with dire
tion inout (True for input, False for output). The response Fil file
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is indu
ed, where file has type File, a primitive type that represents a handle to a

�le. Subsequent use of that �le by other requests is via this handle.

CloseFile file 
loses file. Failure (OtherError string) is indu
ed if file 
an-

not be 
losed.

ReadVal [ReadBinVal℄ file reads file, indu
ing the response Str val [Bins val℄

or Failure (ReadError string).

WriteVal file 
har [WriteBinVal file bin℄ writes 
har [bin℄ to file. The re-

sponse Su

ess or Failure (WriteError string) is indu
ed.

Failure (Sear
hError string) is indu
ed for ReadVal, ReadBinVal, WriteVal,

and WriteBinVal if file is not a text or binary �le, as appropriate.
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D Spe
i�
ation of Derived Instan
es

If T is an algebrai
 data type de
lared by:

data 
 => T u

1

: : : u

k

= K

1

t

11

: : : t

1k

1

| � � � | K

n

t

n1

: : : t

nk

n

deriving (C

1

, : : : , C

m

)

(where m � 0 and the parentheses may be omitted if m = 1 ) then a derived instan
e de
-

laration is possible for a 
lass C if and only if these 
onditions hold:

1. C is one of Eq, Ord, Enum, Ix, Text, or Binary.

2. There is a 
ontext 


0

su
h that 


0

) C t

ij

holds for ea
h of the 
onstituent types t

ij

.

3. If C is either Ix or Enum, then further 
onstraints must be satis�ed as des
ribed under

the paragraphs for Ix and Enum later in this se
tion.

4. There must be no expli
it instan
e de
laration elsewhere in the module whi
h makes

T u

1

: : : u

k

an instan
e of C or of any of C 's super
lasses.

If the deriving form is present (as in the above general data de
laration), an instan
e

de
laration is automati
ally generated for T u

1

: : : u

k

over ea
h 
lass C

i

and ea
h of C

i

's

super
lasses. If the derived instan
e de
laration is impossible for any of the C

i

then a stati


error results. If no derived instan
es are required, the form deriving () must be used.

If the deriving form is omitted then instan
e de
larations are derived for the datatype

in as many of the six 
lasses mentioned above as is possible; that is, no stati
 error 
an

o

ur. Sin
e datatypes may be re
ursive, the implied in
lusion in these 
lasses may also be

re
ursive, and the largest possible set of derived instan
es is generated. For example,

data T1 a = C1 (T2 a) | Nil1

data T2 a = C2 (T1 a) | Nil2

Be
ause the deriving form is omitted, we would expe
t derived instan
es for Eq (for ex-

ample). But T1 is in Eq only if T2 is, and T2 is in Eq only if T1 is. The largest solution has

both types in Eq, and thus both derived instan
es are generated.

Ea
h derived instan
e de
laration will have the form:

instan
e (
, C

0

1

u

0

1

, : : : , C

0

j

u

0

j

) => C

i

(T u

1

: : : u

k

) where { d }

where d is derived automati
ally depending on C

i

and the data type de
laration for T (as

will be des
ribed in the remainder of this se
tion), and u

0

1

through u

0

j

form a subset of

u

1

through u

k

. The 
lass assertions C

0

u

0

are 
onstraints on T 's type variables that are

inferred from the instan
e de
larations of the 
onstituent types t

ij

. For example, 
onsider:

data T1 a = C1 (T2 a) deriving Eq

data T2 a = C2 a deriving ()
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And 
onsider these three di�erent instan
es for T2 in Eq:

instan
e Eq (T2 a) where C2 x == C2 y = True

instan
e (Eq a) => Eq (T2 a) where C2 x == C2 y = x == y

instan
e (Ord a) => Eq (T2 a) where C2 x == C2 y = x > y

The 
orresponding derived instan
es for T1 in Eq are:

instan
e Eq (T1 a) where C1 x == C1 y = x == y

instan
e (Eq a) => Eq (T1 a) where C1 x == C1 y = x == y

instan
e (Ord a) => Eq (T1 a) where C1 x == C1 y = x == y

When inferring the 
ontext for the derived instan
es, type synonyms must be expanded

out �rst. The remaining details of the derived instan
es for ea
h of the six 
lasses are now

given.

Derived instan
es of Eq and Ord. The operations automati
ally introdu
ed by de-

rived instan
es of Eq and Ord are (==), (/=), (<), (<=), (>), (>=), max, and min. The

latter six operators are de�ned so as to 
ompare their arguments lexi
ographi
ally with

respe
t to the 
onstru
tor set given, with earlier 
onstru
tors in the data type de
laration


ounting as smaller than later ones. For example, for the Bool datatype, we have that

True > False == True.

Derived instan
es of Ix. The derived instan
e de
larations for the 
lass Ix are only

possible for integers, enumerations (i.e. datatypes having only nullary 
onstru
tors), and

single-
onstru
tor datatypes (in
luding tuples) whose 
onstituent types are instan
es of Ix.

They introdu
e the overloaded fun
tions range, index, and inRange. The operation range

takes a (lower, upper) bound pair, and returns a list of all indi
es in this range, in as
ending

order. The operation inRange is a predi
ate taking a (lower, upper) bound pair and an

index and returning True if the index is 
ontained within the spe
i�ed range. The operation

index takes a (lower, upper) bound pair and an index and returns an integer, the position

of the index within the range.

For an enumeration, the nullary 
onstru
tors are assumed to be numbered left-to-right

with the indi
es 0 through n� 1. For example, given the datatype:

data Colour = Red | Orange | Yellow | Green | Blue | Indigo | Violet

we would have:
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range (Yellow,Blue) == [Yellow,Green,Blue℄

index (Yellow,Blue) Green == 1

inRange (Yellow,Blue) Red == False

For single-
onstru
tor datatypes, the derived instan
e de
larations are 
reated as shown for

tuples in Figure 14.

Derived instan
es of Enum. Derived instan
e de
larations for the 
lass Enum are only

possible for enumerations, using the same ordering assumptions made for Ix. They intro-

du
e the operations enumFrom, enumFromThen, enumFromTo, and enumFromThenTo, whi
h

are used to de�ne arithmeti
 sequen
es as des
ribed in Se
tion 3.7.

enumFrom n returns a list 
orresponding to the 
omplete enumeration of n's type starting

at the value n. Similarly, enumFromThen n n' is the enumeration starting at n, but with

se
ond element n', and with subsequent elements generated at a spa
ing equal to the

di�eren
e between n and n'. enumFromTo and enumFromThenTo are as de�ned by the default-

methods for Enum (see Figure 4, page 29).

Derived instan
es of Binary. The Binary 
lass is used primarily for transparent I/O

(see Se
tion 7.1). The operations automati
ally introdu
ed by derived instan
es of Binary

are readBin and showBin. They 
oer
e values to and from the primitive abstra
t type Bin

(see Se
tion 6.6). An implementation must be able to 
reate derived instan
es of Binary

for any type t not 
ontaining a fun
tion type.

showBin is analogous to shows, taking two arguments: the �rst is the value to be


oer
ed, and the se
ond is a Bin value to whi
h the result is to be 
on
atenated. readBin is

analogous to reads, \parsing" its argument and returning a pair 
onsisting of the 
oer
ed

value and any remaining Bin value.

Derived versions of showBin and readBin must obey this property:

readBin (showBin v b) == (v,b)

for any Bin value b and value v whose type is an instan
e of the 
lass Binary.

Derived instan
es of Text. The operations automati
ally introdu
ed by derived in-

stan
es of Text are showsPre
, readsPre
, showList and readList. They are used to


oer
e values into strings and parse strings into values.

The fun
tion showsPre
 d x r a

epts a pre
eden
e level d (a number from 0 to 10),

a value x, and a string r. It returns a string representing x 
on
atenated to r. showsPre


satis�es the law:

showsPre
 d x r ++ s == showsPre
 d x (r ++ s)
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lass (Ord a) => Ix a where

range :: (a,a) -> [a℄

index :: (a,a) -> a -> Int

inRange :: (a,a) -> a -> Bool

rangeSize :: (Ix a) => (a,a) -> Int

rangeSize (l,u) = index (l,u) u + 1

instan
e Ix Int where

range (l,u) = [l..u℄

index (l,u) i = i - l

inRange (l,u) i = i >= l && i <= u

instan
e Ix Integer where

range (l,u) = [l..u℄

index (l,u) i = fromInteger (i - l)

inRange (l,u) i = i >= l && i <= u

instan
e (Ix a, Ix b) => Ix (a,b) where

range ((l,l'),(u,u'))

= [(i,i') | i <- range (l,u), i' <- range (l',u')℄

index ((l,l'),(u,u')) (i,i')

= index (l,u) i * rangeSize (l',u') + index (l',u') i'

inRange ((l,l'),(u,u')) (i,i')

= inRange (l,u) i && inRange (l',u') i'

-- Instan
es for other tuples are obtained from this s
heme:

--

-- instan
e (Ix a1, Ix a2, ... , Ix ak) => Ix (a1,a2,...,ak) where

-- range ((l1,l2,...,lk),(u1,u2,...,uk)) =

-- [(i1,i2,...,in) | i1 <- range (l1,u1),

-- i2 <- range (l2,u2),

-- ...

-- ik <- range (lk,uk)℄

-- index ((l1,l2,...,lk),(u1,u2,...,uk)) (i1,i2,...,ik) =

-- index (l1,u1) i1 * rangeSize ((l2,...,lk),(u2,...,uk))

-- + index (l2,u2) i2 * rangeSize ((l3,...,lk),(u3,...,uk))

-- ...

-- + index (lk,uk) ik

-- inRange ((l1,u2,...lk),(u1,u2,...,uk)) (i1,i2,...,ik) =

-- inRange (l1,u1) i1 && inRange (l2,u2) i2 &&

-- ... && inRange (lk,uk) ik

Figure 14: Index 
lasses and instan
es
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The representation will be en
losed in parentheses if the pre
eden
e of the top-level 
on-

stru
tor operator in x is less than d. Thus, if d is 0 then the result is never surrounded in

parentheses; if d is 10 it is always surrounded in parentheses, unless it is an atomi
 expres-

sion. The extra parameter r is essential if tree-like stru
tures are to be printed in linear

time rather than time quadrati
 in the size of the tree.

The fun
tion readsPre
 d s a

epts a pre
eden
e level d (a number from 0 to 10) and

a string s, and returns a list of pairs (x,r) su
h that showsPre
 d x r == s. readsPre


is a parse fun
tion, returning a list of (parsed value, remaining string) pairs. If there is no

su

essful parse, the returned list is empty.

showList and readList allow lists of obje
ts to be represented using non-standard

denotations. This is espe
ially useful for strings (list s of Char).

For 
onvenien
e, the standard prelude provides the following auxiliary fun
tions:

shows = showsPre
 0

reads = readsPre
 0

show x = shows x ""

read s = x where [(x,"")℄ = reads s

shows and reads use a default pre
eden
e of 0, and show and read assume that the result

is not being appended to an initial string.

The instan
es of Text for the standard types Int, Integer, Float, Double, Char, lists,

tuples, and rational and 
omplex numbers are de�ned in the standard prelude (see Ap-

pendix A). For 
hara
ters and strings, the 
ontrol 
hara
ters that have spe
ial represen-

tations (\n et
.) are shown as su
h by showsPre
; otherwise de
imal es
apes are used.

Floating-point numbers for whi
h �1 � log

10

jf j � sf(f) where

sf f = (floatDigits f * floatRadix f) `div` 10 + 1

are represented by showsPre
 in non-exponential format; otherwise they are in exponential

format with one digit before the de
imal point. Unne
essary trailing zeroes are suppressed

(but at least one digit must follow the de
imal point).

readsPre
 will parse any valid representation of the standard types apart from lists, for

whi
h only the bra
ketted form [. . . ℄ is a

epted. See Appendix A for full details.

D.1 Spe
i�
ation of showsPre


As des
ribed in Se
tion 4.3.3, showsPre
 has the typing

(Text a) => Int -> a -> String -> String

The �rst parameter is a pre
eden
e in the range 0 to 10, the se
ond is the value to be


onverted into a string, and the third is the string to append to the end of the result.
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showsPre
 d (e1 `Con` e2) =

showParen (d > p) showStr where

p = `the pre
eden
e of Con'

lp = if `Con is left asso
iative' then p else p+1

rp = if `Con is right asso
iative' then p else p+1


n = `the original name of Con'

showStr = showsPre
 lp e1 .

showChar ' ' . showString 
n . showChar ' ' .

showsPre
 rp e2

Figure 15: Spe
i�
ation of showsPre
 for In�x Constru
tors of arity 2

showsPre
 d (Con e1 ... en) =

showParen (d >= 10) showStr where

showStr = showString 
n . showChar ' ' .

showsPre
 10 e1 . showChar ' ' .

...

showsPre
 10 en


n = `the original name of Con'

Figure 16: General Spe
i�
ation of showsPre
 for User-De�ned Constru
tors

For all 
onstru
tors Con de�ned by some data de
laration su
h as:

data 
 => T u

1

: : : u

k

= : : : | Con t

1

: : : t

n

| : : :

the 
orresponding de�nition of showsPre
 for Con is shown in Figure 15 for binary in�x 
on-

stru
tors and Figure 16 for all other 
onstru
tors. See Appendix A for details of showParen,

showChar, et
.

D.2 Spe
i�
ation of readsPre


A lexeme is exa
tly as in Se
tion 2. lex :: String -> (String, String) parses a string

into two parts: (1) a string representing the �rst lexeme or "" if the input is "" or 
onsists

entirely of white spa
e, and (2) the remainder of the input after the �rst lexeme is extra
ted.

Whitespa
e (again refer to Se
tion 2) is ignored ex
ept within strings. An error results if
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readsPre
 d r = readCon K1 k1 `the original name of K1' r ++

...

readCon Kn kn `the original name of Kn' r

readCon 
on n 
n = -- if 
on is infix and n == 2

readParen (d > p) readVal

where

readVal r = [(u `
on` v, s2) |

(u,s0) <- readsPre
 lp r,

(tok,s1) <- [lex s0℄, tok == 
n,

(v,s2) <- readsPre
 rp s1℄

p = `the pre
eden
e of 
on'

lp = if `
on is left asso
iative' then p else p+1

rp = if `
on is right asso
iative' then p else p+1

readCon 
on n 
n = -- if 
on is not infix or n /= 2

readParen (d > 9) readVal

where

readVal r = [(
on t1 ... tn, sn) |

(t0,s0) <- [lex r℄, t0 == 
n,

(t1,s1) <- readsPre
 10 s0,

...

(tn,sn) <- readsPre
 10 s(n-1)℄

Figure 17: De�nition of readsPre
 for User-De�ned Types

no proper lexeme 
an be parsed (su
h as in the 
ase of an unre
ognised 
ontrol 
hara
ter).

A full de�nition is provided in Appendix A.7.

As des
ribed in Se
tion 4.3.3, readsPre
 has the typing

Text a => Int -> String -> [(a,String)℄

Its �rst parameter is a pre
eden
e in the range 0 to 10, its se
ond is the string to be parsed.

Figure 17 shows the spe
i�
ation of readsPre
 for user-de�ned datatypes of the form:

data 
 => T u

1

: : : u

k

= K

1

t

11

: : : t

1k

1

| : : : | K

n

t

n1

: : : t

nk

n
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D.3 An example

As a 
omplete example, 
onsider a tree datatype:

data Tree a = Leaf a | Tree a :^: Tree a

Sin
e there is no deriving 
lause, this is shorthand for:

data Tree a = Leaf a | Tree a :^: Tree a

instan
e (Eq a) => Eq (Tree a)

where ...

instan
e (Ord a) => Ord (Tree a)

where ...

instan
e (Text a) => Text (Tree a)

where ...

instan
e (Binary a) => Binary (Tree a)

where ...

Note the re
ursive 
ontext; the 
omponents of the datatype must themselves be instan
es

of the 
lass. Instan
e de
larations for Ix and Enum are not present, as Tree is not an

enumeration or single-
onstru
tor datatype. Ex
ept for Binary, the 
omplete instan
e

de
larations for Tree are shown in Figure 18, Note the impli
it use of default-method

de�nitions|for example, only <= is de�ned for Ord, with the other operations (<, >, >=,

max, and min) being de�ned by the defaults given in the 
lass de
laration shown in Figure 4

(page 29).
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infix 4 :^:

data Tree a = Leaf a | Tree a :^: Tree a

instan
e (Eq a) => Eq (Tree a) where

Leaf m == Leaf n = m==n

u:^:v == x:^:y = u==x && v==y

_ == _ = False

instan
e (Ord a) => Ord (Tree a) where

Leaf m <= Leaf n = m<=n

Leaf m <= x:^:y = True

u:^:v <= Leaf n = False

u:^:v <= x:^:y = u<x || u==x && v<=y

instan
e (Text a) => Text (Tree a) where

showsPre
 d (Leaf m) = showParen (d >= 10) showStr where

showStr = showString "Leaf" . showChar ' ' . showsPre
 10 m

showsPre
 d (u :^: v) = showParen (d > 4) showStr where

showStr = showsPre
 5 u .

showChar ' ' . showString ":^:" . showChar ' ' .

showsPre
 5 v

readsPre
 d r = readParen (d > 4)

(\r -> [(u:^:v,w) |

(u,s) <- readsPre
 5 r,

(":^:",t) <- [lex s℄,

(v,w) <- readsPre
 5 t℄) r

++ readParen (d > 9)

(\r -> [(Leaf m,t) |

("Leaf",t) <- [lex r℄,

(m,t) <- readsPre
 10 t℄) r

Figure 18: Example of Derived Instan
es
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