
Dynamic construction of aglebraic closure and a
coinductive proof of Hensel's lemma

Master of Science Thesis in the Master Degree Programme, Computer
Science: Algorithms, Languages and Logic

BASSEL MANNAA

CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Division of Computer Science
Göteborg, Sweden, May 2010

Dynamic construction of algebraic closure and a Coinductive
proof of Hensel’s lemma

Bassel Mannaa

Department of Computer science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2010

The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and in a
non-commercial purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the
Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for exam-
ple a publisher or a company), acknowledge the third party about this agreement. If
the Author has signed a copyright agreement with a third party regarding the Work,
the Author warrants hereby that he/she has obtained any necessary permission from
this third party to let Chalmers University of Technology and University of Gothen-
burg store the Work electronically and make it accessible on the Internet.

Dynamic construction of algebraic closure and a Coinductive proof of Hensel’s
lemma

Bassel Mannaa

c©Bassel Mannaa, May 2010

Examiner: Prof. Thierry Coquand

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

ACKNOWLEDGMENTS

I’d like to thank Thierry Coquand for all the guidance and support he provided
throughout the work on this thesis. Also, for lots of inspiring and interesting discus-
sions.
I’d also like to thank Anders Mörtberg for the many useful comments and suggestions
and for the nice Haskell library.

i

ABSTRACT

In this thesis we present a dynamic construction of the algebraic closure of a
zero characteristic field implemented in the functional programming language Haskell
based on Duval’s dynamic evaluation method. We also present a complete formal-
ization of the ring of formal power series. Based on that we present a coinductive
proof Hensel’s lemma. As an application we present an implementation of Newton
algorithm for factorization of polynomials with power series coefficients.

ii

CONTENTS

ACKNOWLEDGMENTS . i
ABSTRACT . ii

I INTRODUCTION . 1
1.1 Motivation . 1
1.2 Outline of the thesis . 2
1.3 Outline of this document . 3

I Algebraic Closure . 4
II Dynamic construction of algebraic closure 5
2.1 Kronecker model . 5
2.2 Dynamic evaluation . 7

2.2.1 Preliminaries . 7
2.2.2 The square free condition 9
2.2.3 The Splitting Field . 12
2.2.4 The algebraic closure . 14
2.2.5 An example . 15

II Hensel’s lemma . 18
III CoInduction . 19

3.1 Datatypes and Codatatypes 19
3.2 The coinductive proof principle 20

IV The Ring of formal power series . 22
4.1 Equality

R[[X]]

≈ . 23
4.2 Addition

R[[X]]

+ . 23
4.3 Multiplication

R[[X]]

∗ . 26
V Hensel’s lemma . 35
5.1 The homomorphism k[[X]][Y]→ k[Y][[X]] 36
5.2 The lemma . 50
5.3 The inverse morphism k[Y][[X]]→ k[[X]][Y] 55

III Finale . 64
VI Newton theorem . 65

6.1 Newton theorem . 65
6.2 Examples . 68

VII Conclusion . 71
7.1 Discussion . 71

7.1.1 Regularity property for Hensel’s lemma 71
7.1.2 Complexity . 71
7.1.3 Haskell . 71

7.2 Future work . 72
APPENDIX . 75

iii

CHAPTER I

INTRODUCTION

Whenever you can settle a question

by explicit construction, be not

satisfied with purely existential

arguments.

Herman Weyl[9]

Although it has become more of a side issue rather than the ferocious battle it once

was, the debate over the foundations of mathematics that started in the 1920’s seems

to be unsettled today as it was then. Considering the enormous body of mathematics

developed classically, it is not difficult to see why, however strong the case for con-

structivism is, mathematicians are reluctant to fully embrace it. On the other hand,

Computer science was born outside the paradise 1, for the debate seems to be already

settled a priori by the correspondence between the notion of explicit construction

and computable functions. As Dirk Van Dalen put it “Although mathematics and

computer science were confronted with similar problems, mathematics could afford

to ignore the issue; classical mathematics could and can very well survive without

racking its brain about effectiveness”[16].

1.1 Motivation

Computer algebra systems have been in use of at least 3 decades. However, many

of these systems suffer from serious lacuna, that is, the algorithms they employ are

not correct as they stand, they usually need a separate -paper and pencil- proof of

correctness.

Constructive interpretation to logical propositions, for example BHK interpre-

tation of intuitionistic logic2, asserts the computational nature of proofs. Modern
1The reference here is to Hilbert’s famous statement “We will not be driven out of the paradise

Cantor has created for us”.
2Curry-Howard isomorphism is another example, although in its original form it only applied

1

type theories such as Per Martin-Löf type theory, Coquand’s calculus of construction

provide a formalization of such interpretation. With the availability of proof assis-

tants (i.e. Agda, Coq) based on these formal systems, the elements for a formal type

theoretic computer algebra system are in place.

Although important on its own right, a type theoretic formalization of algebra

has more to offer than just providing provably correct algorithms for a computer

algebra system. Deeper results can be obtained from such attempt, for example

not all algebraic notions are constructively sensible, providing such classification is

undoubtedly very important. This can be seen as analogous to Bishop’s important

work in analysis [4].

The work presented in hereby can be regarded as a part of this attempt of type

theoretic formalization of mathematics. The original goal of the thesis was to provide

a constructive formalization of Newton theorem. Unfortunately, this goal was not

attained. However, as will be outlined next, some parts of this construction have

been completed.

1.2 Outline of the thesis

The thesis aimed at providing a formalization of a proof of Newton theorem3 based

on a proof by S.S.Abhyankar [1]. The two major elements of the formalization are as

follows:

1. Formal proof of Hensel’s lemma

2. Formal construction of algebraic closure of a 0 characteristic field.

Each element is further divided into implementation/formalization phases. Where

the implementation is conducted in the functional programming language Haskell. A

to intuitionistic propositional logic; For this logic both interpretations are quite similar except that
Curry-Howard isomorphism explicitly defines the class of functions as those of the simply typed
lambda calculus.

3The theorem is widely known as Newton-Puiseux algorithm. However, the one version under
consideration is substantially different in that it does not use Newton polygon.

2

Haskell implementation of Hensel’s lemma, the algebraic closure of a zero characteris-

tic field and Newton algorithm is now complete. In addition a full formal constructive

proof of Hensel’s lemma is presented. This leaves this thesis short of its original goal

by the formalization of the algebraic closure of a 0 characteristic field and Newton

theorem.

Remark 1.2.1. The Haskell code of this thesis is integrated in the constructive-

algebra library http://hackage.haskell.org/package/constructive-algebra4.

1.3 Outline of this document

In chapter II we explain the construction of the algebraic closure as implemented

in this thesis. Chapter III contain with a brief introduction to coinduction and the

coninductive proof principle. In Chapter IV a formalization of the formal power series

ring is provided. In chapter V we give a coinductive proof of Hensel’s lemma. In

chapter VI Newton theorem is explained briefly followed by some examples from the

Haskell implementation of the algorithm. The last chapter contains the concluding

remarks and directions of future work.

4As of May 2010, only a fraction of the library has been moved to this location.

3

Part I

Algebraic Closure

4

CHAPTER II

Dynamic construction of algebraic closure

To the absolute number multiplied

by four times the [coefficient of the]

square, add the square of the

[coefficient of the] middle term; the

square root of the same, less the

[coefficient of the] middle term,

being divided by twice the [coefficient

of the] square is the value.

Brahmasphuta-siddhanta[5]

Finding the roots of a polynomial is one of the oldest mathematical problems.

Methods to solve certain forms of quadratic equations were developed in many ancient

civilizations. The Persian mathematician al-Khwarizmi was probably the first one to

provide a full solution to the general quadratic equation. The search for general

solution for higher degree equation occupied mathematician since then with formulas

for cubic and quartic equations developed in the 16th century1. In the 19th century

Abel–Ruffini theorem showed that there is no formula for general quintic equation2.

2.1 Kronecker model

We know by the fundamental theory of algebra that the roots of a polynomial

p(X) ∈ C[X] exist in C 3. However, this fact is useless since it doesn’t -and sure

can’t- provide a way to compute these roots. Leopold Kronecker escape of this Cul-

de-sac was to change the meaning of “solving” a polynomial from the intuitive one of
1A solution then meant computation of the roots involving arithmetic operations and radicals on

the coefficients.
2More modern proofs of the same fact are stated in terms of Galois groups, while the Galois

group of a polynomial of degrees less than 5 is solvable, this is not always the case for polynomials
of higher degrees.

3We assume the reader is familiar with basic algebra. For a reference see Serge Lang, Alge-
bra,Springer 2002 and Nathan Jacobson, Basic Algebra I, Dover 2009.

5

computing the roots of the polynomial to the less restrictive meaning of computing

with the roots of the polynomial[13]. Kronecker idea was simply as follows, given an

irreducible polynomial p(X) ∈ k[X] we can construct the field k[X]/(p(X)). If we let

π : k[X]→ k[X]/p(X) be the canonical homomorphism then p(π(X)) = π(p(X)) = 0

and hence α = π(X) is a root of p. Hence, doing all computation in k[X] modulo

p(X) is essentially the same as doing them in k(α) which is the finite extension of k

by the root α. Having this in mind it is possible to construct a splitting field K ⊇ k

of a polynomial f(X) ∈ k[X] inductively provided that we have a way to factorize

polynomials over the base field as well as the extensions we obtain at each step.

Theorem 2.1.1. Given a polynomial f(X) ∈ k[X], then there exist a field K ⊇ k in

which f(X) splits (factorize into linear factors)

Proof. Let deg(f) = n > 0 and g0 be an irreducible factor of f . If g0 is linear,

g0 = (X − a) then the root a is in k and f(X) = (X − a)f1(X) with f1(X) ∈ k[X].

We let k1 = k and α1 = a. Otherwise, we build a field k1 = k[X]/(g0). If we let

α1 = π01(X) where π01 : k[X]→ k[X]/(g0) is the canonical projection then we know

that f(X) = (X − α1)f1(X) for some f1(X) ∈ k1[X]. Inductively applying the same

argument to f1 we obtain a tower of fields k = k0 ⊆ k1 ⊆ ... ⊆ kn−1 = K and K is a

splitting field of f , i.e. the minimal extension of k containing the roots of f .

More over it can be shown that splitting fields for a given polynomial are isomor-

phic4, hence if K is some splitting field of p ∈ Q[X] then C contains an isomorphic

copy of K.

In 1930 Van Der Waerden showed that there is no general method for factoriza-

tion of polynomials in k[X] for any explicitly given field k[18]. Later on Fröhlich and

Shepherdson strengthened this result by giving a particular field k0 for which irre-

ducibility of elements in k0[X] is undecidable, and hence no factorization algorithm

exist [10].
4This result can be shown classically, constructively however, it is not always possible to construct

the isomorphism[14] p.152.

6

Although Van DerWaerden result points to a limitation of Kronecker’s model. The

situation is not so bleak since general factorization algorithms exist for polynomials

over finite fields and any finite extension of Q, which are indeed the interesting fields

for almost all practical purposes. The main disadvantage of Kronecker’s model lies

in the high computational cost of factorization algorithms. Duval’s model on which

we based our approach to constructing the algebraic closure overcomes this problem

by avoiding factorization completely.

2.2 Dynamic evaluation

Duval’s method[8] stems from the simple observation that for any two polynomials

p(X) and q(X) in Q[X] such that p(X) is square free, q(X) is zero modulo gcd(p, q)

and is invertible modulo p/gcd(p, q)[12]. So instead of constructing the splitting field

of p explicitly, we perform computations in Q〈α〉 = Q[X]/(p(X)) as long as we can

as if it is the splitting field of p. In other words, α represents all roots of p until

we are forced to decide which factor of p it belongs to. In turn this decision is

done in a lazy manner; for example if we need to answer a question in the form

“q(α) = 0?” we split Q〈α〉 into Q〈α1〉 = Q[X]/(p1(X)) and Q〈α2〉 = Q[X]/(p2(X))

where p1 = gcd(p, q) and p2 = p/gcd(p, q) (p1 and p2 are consequently coprime but

not necessarily irreducible). Then the answer to the question is “yes” in the first

branch and “no” in the second.

The method just illustrated is called dynamic evaluation, in the rest of this section

we explain it in more details and present the Haskell implementation5.

2.2.1 Preliminaries

Theorem 2.2.1. If p(X), q(X) ∈ k[X] are two coprime polynomials and

π : k[X]→ k[X]/(p(X)) is the canonical homomorphism, then π(q) is unit.

Proof. since p and q are coprime then we can find r and s such that r p + s q = 1.
5The first implementation of this approach was on the D5 system which is written in R-Lisp and

has been used with Reduce.

7

Then π(r p+ s q) = π(s) π(q) = 1, hence π(q) is a unit.

Corollary 2.2.2. If p(X) ∈ k[X] is irreducible then k[X]/(p(X)) is a field.

Remark 2.2.3. When we say that q(X) ∈ k[X] is a unit (or zero) in k[X]/(p(X))

for some p we mean that the canonical projection of q in k[X]/(p(X)) is a unit (or

zero) respectively.

Definition 2.2.4. A polynomial f ∈ k[X] is said to be square free if and only if g2 - f

for all non-constant g ∈ k[X].

Hence, If f is square free and f =
∏

i p
ei
i is its factorization into irreducible factors

in k[X], then each ei is either 0 or 1.

Theorem 2.2.5 (The Chinese remainder theorem). Let p ∈ k[X] be a polynomial

such that p = p1 p2 and gcd(p1, p2) = 1, then k[X]/(p) ∼= k[X]/(p1)⊕ k[X]/(p2)

Proof. omitted.

Corollary 2.2.6. If p ∈ k[X] be a polynomial with factorization p =
∏n

i=1 p
ei
i . Let

R = k[X]/(p) and Ri = k[X]/(peii). Then R ∼=
⊕

Ri. Moreover, if p is square free

then each Ri is a field.

Computing in the splitting field of a square free polynomial p ∈ k[X] dynamically

amounts to computing in k[X]/(p) instead of computing in the fields k[X]/(pi) for

each irreducible factor pi of p. However, since not all computations are decidable in

k[X]/(p) (for example, a question in the form “q(X) = 0?”) the internal representation

of the root X evolves with such computations. This evolution is mainly a minimal

branching (split) of the ring k[X]/(p) such that the question is decidable in each

branch. In terms of the Chinese remainder theorem this branching is a decomposition

of the ring into the smallest -with regard to the number of terms- possible direct sum

of rings in which the question is decidable. Of course we may have more than one

polynomial to begin with, i.e. a ring ((k[X1]/(p1))[X2]/(p2))...[Xn]/(pn) such that

each pi(X1, .., Xi) is square free in (k[X1, .., Xi−1]/(pi−1))[Xi]. For brevity we call this

ring k〈p1, ..., pn〉.

8

Implementation note II.1 (State Monad): The evolution of the internal represen-

tation of the roots is managed through a state monad in the form

newtype ST s a = ST { runState :: s -> [(s,a)] }

instance Monad (ST s) where

(ST p) >>= k = ST (\s0 -> let as = p s0 in

concatMap (\(st,vl) -> runState (k vl) st) as)

return a = ST (\s -> [(s,a)])

A state is just a list of multivariate polynomials over some field k. With the following

conditions for each element pi in the list

• It must have at least one term a Xei
i with both a 6= 0 and ei > 0

• The coefficients of Xej
j for all j > i are zero.

• It must be square free as a univariate polynomial in k〈p0, ..., pi−1〉[X]

type R k = MPoly k Len

type S k = [R k]

6 Intuitively, in each tuple (s,a), the state s contains a refined version of the original

state and a is the result of the computation which is not decidable in the original

state but decidable in s. Consequently all the computations are done monadically (in

parallel) with respect to some state.

2.2.2 The square free condition

The square free condition guarantees that for any q, if p - q is square free and

both have degree greater than 0, then gcd(p, q) and p/gcd(p, q) are coprime.
6The code presented here uses a Haskell library initiated by Anders Mörtberg, in fact the work

of this thesis is currently part of this library. Most of the basic algebraic structures (such as MPoly)
are due to Anders.

9

Theorem 2.2.7. For two non constant polynomials q(X) and p(X) in k[X], such

that p is square free, then

1. If p | q then q is a zero in k[X]/(p(X))

2. If gcd(p, q) = 1 then q is a unit in k[X]/(p(X))

3. If p - q and deg(gcd(p, q)) > 0, let g = gcd(p, q) and h = p/gcd(p, q) then q is

zero in k[X]/(g(X)) and a unit in k[X]/(h(X)).

Proof. (1) Let π : k[X]→ k[X]/(p(X)) be the cannonical projection. Since p | q then

q = r p, hence π(q) = π(r p) = π(r)π(p) = 0

(2) Theorem 2.2.1

(3) Since p - q, then deg(h) > 0. Because p is square free we have p = g h =
∏

i pi

where each pi is irreducible and pk 6= pj for k 6= j and hence g and h are coprime

and we can find t and u such that t g + u h = 1. From this we know that g is a unit

in k[X]/(h(X)) with π(t) as the where π : k[X] → k[X]/(h(X)) is the cannonical

porjection. We also have r p + s q = g for some polynoimals r and s. Hence the

projection of q is a unit with the inverse π(q)−1 = π(s) π(g)−1 = π(s) π(t). The fact

that q is zero in k[X]/(g(X)) follows from the proof of (1).

Corollary 2.2.8. With the same notation of theorem 2.2.7

1. If deg(g) = 0 then q is invertible in k[X]/(p)

2. If deg(g) > 0 then q is invertible in k[X]/(p1) and is zero in k[X]/(g)

Theorem 2.2.9. For a 0 characteristic field k and f(X) ∈ k[X] a non-constant

polynomial. f is square free if and only if gcd(f, f ′) = 1, where f ′ is the derivative of

f with respect to X.

Proof. (⇒) Let f =
∏n

i=1 fi be the factorization of f with each fi(X) an irreducible

polynomial in k[X]. We do induction on n. If n = 1 then f is irreducible. Because f

is non constant and char(k) = 0 we have f ′(X) 6= 0, then gcd(f, f ′) is either 1 or f ,

10

but since deg(f ′) < deg(f) then gcd(f, f ′) = 1.

Assuming the the theorem for some n, Let h =
∏n

i=1 fi and f = fn+1 h with

fi(X) ∈ k[X] irreducible and fi 6= fj for i 6= j. Then

f ′ = f ′n+1 h+ fn+1 h
′

Since gcd(fn+1, f
′
n+1) = 1 and by induction hypothesis we have gcd(h, h′) = 1 it fol-

lows that gcd(f, f ′) = 1.

(⇐) Let g(X) ∈ k[X] be an irreducible factor of f with multiplicity r. Then

f ′ = r gr−1 g′ h+ gr h′

if r > 1 then gr−1 divides both f and f ′ and gcd(f, f ′) 6= 1.

Definition 2.2.10. Let f ∈ k[X] and f =
∏n

i=1 f
ei
i be its factorization in k[X]. By

the square free associate of f we mean
∏n

i=1 fi, i.e. the product of the factors of f

each taken with multiplicity 1. By a distinct power factorization of f we mean a list

where the ith element is the product of factors of f of multiplicity i in k[X].

Proposition 2.2.11. Let f ∈ k[X], p = gcd(f, f ′), q = f/p then q is the square free

associate of f .

Proof. 7 putting f in its distinct power factorization form we have for some g such

that gcd(f, g) = 1

f = f1 f 2
2 ... f i

i ...

f ′ = g f2 ... f i−1
i ...

p = f2 ... f i−1
i ...

q = f1 f2 ... fi ...

Implementation note II.2 (Square free associate): In the implementation we re-

strict ourselves to char 0 fields. We then compute the square free associate of f as

follows.

sqfr :: (Field k, Eq k) => UPoly (R k) x -> ST (S k) (UPoly (R k) x)

sqfr f = do let f’ = deriv f

7from Teo Mora, [13].

11

(_,_,_,d,_) <- iGCD f f’

return d

Where iGCD is gcd function such that iGCD (p,q) = (r,s,g,t,u) such that

r p + s q = g and t g = p, u g = q.

We also compute the distinct power factorization of f .

sqfrDec :: (Field k) => UPoly (R k) x -> ST (S k) [UPoly (R k) x]

2.2.3 The Splitting Field

We have given an example of the kind of problems undecidable in k〈p〉 for some

p(X) ∈ k[X] that are decidable in the splitting field of p. Computing in k〈p〉 as if

it is a field dynamically can be seen as a deferred extension of k〈p〉8 with the axiom

schema of fields:

∀x. x = 0 ∨ ∃y. x y = 1.

The extension is delayed in the sense that we do not enforce the axiom until we have

to, and even in this case we only enforce an instance of the axiom (an instantiation

of x to an element of the ring). If we cannot enforce the axiom in the current ring

(i.e. cannot decide on whether the element is invertible or zero) we split/branch into

two subrings in which the axiom instance for this element is enforced (0 in one and

invertible in the other).

Implementation note II.3 (The type of algebraic closure): We use the type

type R k = MPoly k Len

as the type of algebraic closure of a the field k. It is essentially k extended with count-

ably infinite set of roots {x0, x1,....}. An extension with a finite set {x0, x1,...,xn}

can be viewed as representing a subfield of the algebraic closure. However, this dis-

tinction is not present in the code.
8Note that the ring k〈p〉 is not necessarily entire (integral domain).

12

Implementation note II.4 (The inverse function): The witness that the type R k

is a field is the inverse function, which given an element in R k answers with either

() in which case the element is zero or returns the inverse of the element.

inverse :: (Field k, Eq k) => R k -> ST (S k) (Either () (R k))

Since computations are done with respect to the state (monadically), at each point

of the computation we can use R k as a genuine field for which the field axiom

∀x. x = 0 ∨ ∃y. x y = 1 is enforced by the inverse function. However, in reality

computation is performed in all branches. It is worthwhile to compare this approach

with the approach in [17].

The inverse function have 3 cases to consider:

• The element is zero; for example z2 − 1 is zero in Q〈x2 − 2, y + 3, z + 1〉

• The element is unit; for example y − 1 is invertible in Q〈x2 − 2, y + 3, z + 1〉

• The element can be either a unit or zero, in which case branching occur; for

example it is undecidable whether y − 1 is zero in Q〈x2 − 2, y2 − 1, z + 1〉, But

y − 1 is zero in Q〈x2 − 2, y − 1, z + 1〉 and a unit in Q〈x2 − 2, y + 1, z + 1〉.

(r,s,g,t,u) <- iGCD p q

(g,g_deg) <- iDeg g

(_,p_deg) <- iDeg p

case g_deg > 0 of

True -> case g_deg == p_deg of

False -> do

putD s1 s2 (Left ()) (Right qinv)

True -> return $ Left ()

False -> do

return $ Right $ qinv

13

2.2.4 The algebraic closure

In the previous section we showed that dynamic evaluation corresponds to delayed

extension of some ring with the axiom schema of fields. Now we look at the axiom

schema for the algebraic closure of a field:

∀p(X) ∈ k[X]. ∃α ∈ k. p(α) = 0

Now given the ring k〈p1, ..., pn〉 and given a polynomial q ∈ k〈p1, ..., pn〉[X]. We

can enforce the axiom above by building the ring k〈p1, ..., pn, q(α)〉 and take α as a

root of q where α is a fresh variable (formal root). This might look peculiar at first

glance, but indeed α is a root of q by isomorphism of splitting fields, or rather α is a

presentation of all the roots of q.9. In fact we compute q̂ the square free associate of q

and perform the previous step on q̂ for the reasons we stated earlier. Again this can

be viewed as a delayed enforcing of the axiom schema of algebraically closed field. We

enforce an instance of the schema only when we want to compute the root of some

polynomial.

Implementation note II.5: The witness that the type R k is algebraically closed

is the function root

root :: (Num k, Field k, Eq k, Show k) => UPoly (R k) x -> ST (S k) (R k)

root p = do

--To a multivariate polynomial in the right indeterminates

let p1 = poly $ mpoly (m+1) p

--square free associate

q <- sqfr p1

let s = mpoly (m+1) q

--the root x_m+1

let r = toMPoly [(one, replicate (fromInteger m) 0 ++ [1])]

9In [13], p.47-52. Teo Mora discusses this rather baffling tautological definition, namely “the roots
of f are the roots of f ”. For example we accept that

√
2 as a root of X2 − 2, but

√
2 can only be

defined as “a root of X2 − 2”.

14

appendToState s

return $ r

Having enforced both axiom schemata in this delayed manner we have a pair

(structure, computation) that serves as an algebraic closure. In fact the future plan

is to prove that this is a genuine algebraic closure.10

2.2.5 An example

Here we give a simple example of dynamic evaluation. In which we start with the

field Q, and see how our approach allows us to treat it as if it was algebraically closed,

which we call Q. As shown in the figure below, at first Q is internally identical to Q.

If we start by asking for the root of X2 − 2 we get α as an answer and at this point

the internal representation of Q changes from Q to Q〈α2− 2〉. Then if we repeat the

question asking for the root of X2−2 again we get a fresh formal root β as an answer

and again the internal representation of Q changes to Q〈α2 − 2, β2 − 2〉. Now since

the two polynomials in the two questions are the same it is natural to ask whether

α = β or we can put the same question in another way by asking for the inverse of

α − β since according to the field axiom and element is either a unit or zero; in the

first case α = β and in the second α 6= β. Since X2 − 2 has two distinct roots the

question is undecidable in the current representation of Q and a branching must occur

in this case and Q decompose into Q〈α2− 2, β−α〉 and Q〈α2− 2, β+α〉. In the first

component Q〈α2 − 2, β − α〉 the answer is “yes” and for the second Q〈α2 − 2, β + α〉

the answer is “no”. In fact the answer in the second component is actually α/4 which

is the inverse of α− β testifying to the fact that α− β 6= 0.
10We note that the model we present here corresponds to the generic model building approach

discussed in [7]. However, it is not clear how we can make use of the consistency proof presented to
prove our model correct. It seems to me that the main obstacle is the lack of typing in that proof,
for example it is not clear what is the type of x for the predicate Z(x) in [7]p.9 because the type of
x evolves with the computation.

15

Q

Q〈α2 − 2〉 α

Q〈α2 − 2, β2 − 2〉 β

Q〈α2 − 2, β − α〉 yes Q〈α2 − 2, β + α〉 no

root of X2 − 2?

root of X2 − 2?

α = β?

The two answers correspond to α = β = ±
√

2 and α = ±
√

2 6= β = ∓
√

2. Compare

this to the tree below.

Q

Q〈α + 1〉 α

Q〈α + 1, β2 + 1〉 β

Q〈α + 1, β2 + 1〉 yes

root of X + 1?

root of X2 + 1?

α = β2?

Implementation note II.6: For our Haskell program the questions as in the ex-

ample above are answered by applying the inverse function. The previous example

translates to

ex p = do alpha <- root p

beta <- root p

inverse $ alpha - beta

if we let p = x2 − 2 and call ex with an argument p

runState (ex p1) []

Where the empty list means the current field is the base field with no extensions

(i.e. Q〈〉 = Q), we get the following result

16

[([-1/2x^2+1,-y+x],Left ()),([-1/2x^2+1,-1/2y-1/2x],Right 1/4x)]

Where Left () means the element is not a unit (i.e. is 0) in the extension of Q with

[-1/2x^2+1,-y+x] and Right 1/4 x means that the element is a unit and x/4 is its

inverse in the extension of Q with [-1/2x^2+1,-1/2y-1/2x].

17

Part II

Hensel’s lemma

18

CHAPTER III

CoInduction

To prove Hensel’s lemma as we will do in the next chapters, we need a way to prove

properties of infinite mathematical objects called formal power series. Intuitively

formal power series can be viewed as polynomials with infinite length.

3.1 Datatypes and Codatatypes

Mathematically formal power series can be defined as follows

Definition 3.1.1 (Formal power series). Let G be a monoid of functions from the

singleton set {X} to N. The formal power series over a ring R denoted R[[X]] is the

set of functions from G to R . If we denote by Xn the element of G that has a value

n at X, then we can write an element in R[[X]] as
∞∑
i=0

ai X
i to denote the element

that have a value ai at X i.

One representation of formal power series is in the form of streams. For example

the type of streams of elements of type a is be defined

Stream a = Cons a (Stream a)

Note that this type is non-well-founded. Such types are called Codatatype as opposed

to the well-founded Datatypes1. The axiomatization of non-well-founded sets was

given by Aczel[2].

The usual proof by induction does not apply to codatatypes. Instead the so-called

coinductive proof principle based on the notion of bisimilarity (which we introduce

in the next section) is used.

Remark 3.1.2. Reasoning about non-well-founded sets is problematic for construc-

tive mathematics. In fact their very existence is challenged by constructivists2. So
1The prefix “co” originates from the category theoretic view of these types as final objects in the

category of coalgebra of some functor.
2The following note is attributed to Kronecker “The general concept of an infinite series itself.

for example a power series, is in my judgement permissible only with the reservation that in each

19

we cannot for example define them in Per Martin-Löf type theory. However, some

extension allow for this, see for example [6].

3.2 The coinductive proof principle

The coinductive proof principle is usually laid out in category theoretic terms as

follows3.

Definition 3.2.1. For a T-coalgebra c : U → T (U) a bisimulation on U is a relation

R on U for which there exist a T-coalgebra structure γ : R→ T (R) such that the two

project functions π1 : R→ U and pi2 : R→ U are T-coalgebras homomorphism.[11]

Figure 3.1: commutes iff R is bisimulation

Theorem 3.2.2 (Coinductive proof principle). For a final T-coalgebra c : Z → T (Z),

for all z, z′ ∈ Z if R(z, z′) for some bisimulation R then z = z′.[11]

It is easy to see that AN of streams of elements from a set A is a final colagebra of

the functor T (X) = A×X with a colgebra structure given by 〈head, tail〉 : AN → A× AN

where head and tail are the familiar functions on streams. A bisimulation on streams

can then be defined as follows.

Definition 3.2.3. A relation R : AN × AN is a bisimulation if

∀α, β ∈ AN. R(α, β)→ head(α) = head(β) ∧R(tail(α), tail(β)).

particular case the arithmetical rule by which the terms are given satisfies conditions which make
it possible to deal with the series as though it were finite, and thus make it unnecessary, strictly
speaking, to go beyond the notion of a finite series.”[15] p.71.

3If the reader is not familiar with category theory s/he can skip the definition 3.2.1 and theorem
3.2.2 and start from the definition of bisimulation for streams.

20

This is the principle we use to prove equalities of formal power series. Namely

to show that two formal power series are equal we show that they are related by

some bisimulation that we construct explicitly. In this case we say that the two series

(streams) are bisimilar.

21

CHAPTER IV

The Ring of formal power series

A ring R can be represented as a record consisting of:

• An underlying set of elements |R|

• An equivalence relation R≈ ⊆ |R| × |R|

• Two binary operations
R

+,
R∗ ∈ |R| × |R| → |R|, denoted addition and multipli-

cation respectively.

• Two designated elements 0R, 1R ∈ |R| which are the additive and multiplicative

identities respectively

• A unary operation
R

− ∈ |R| → |R| which given an element in |R| returns the

additive inverse of that element

Along with a set of proofs of basic ring axioms (i.e. associativity of the binary opera-

tions, neutrality of identities with regard to their respective binary operations...etc).

In this chapter we give a construction of the ring of formal power series R[[X]] over

a given commutative ringR with decidable equality by using streams as the underlying

datatype, i.e. the underlying elements set R[[X]] is the type (Stream |R|), the set of

all streams with elements in |R|. We also prove the correctness of our construction

by coinduction.

Notation 4.0.4. We adorn the different operation (addition, multiplication,...etc)

with the ring name (i.e. R, R[[X]]). We do the same for some ring elements, namely

the identities to avoid confusion. hd , tl ,:, and map are the usual head, tail, cons,

and map functions (resp) on streams, we leave them undefined here. We also use the

ring (i.e. R[[X]]) to denote both the ring itself and the underlying set of elements

(i.e. R[[X]]).

22

4.1 Equality
R[[X]]

≈

Definition 4.1.1. Two formal power series α, β ∈ R[[X]] are equal if and only if

there exist a bisimulation R such that α R β 1

4.2 Addition
R[[X]]

+

Definition 4.2.1 (Addition). The addition operator
R[[X]]

+ ∈ R[[X]]×R[[X]]→ R[[X]]

is defined as follows

hd (α
R[[X]]

+ β) = hd α
R

+ hd β

tl (α
R[[X]]

+ β) = tl α
R[[X]]

+ tl β

Definition 4.2.2. The additive identity 0R[[X]] is defined coinductively as 0R[[X]] = 0R : 0R[[X]]

Definition 4.2.3. The additive inverse function
R[[X]]

− ∈ R[[X]]→ R[[X]] is defined as

hd (
R[[X]]

− β) =
R

− hd β

tl (
R[[X]]

− β) =
R[[X]]

− tl β

Now we prove some properties related to the operator (
R[[X]]

+)

Proposition 4.2.4 (
R[[X]]

+ is associative).

∀α, β, γ ∈ R[[X]]. (α
R[[X]]

+ β)
R[[X]]

+ γ
R[[X]]

≈ α
R[[X]]

+ (β
R[[X]]

+ γ)

Proof. Let R+assoc = {〈(α
R[[X]]

+ β)
R[[X]]

+ γ , α
R[[X]]

+ (β
R[[X]]

+ γ)〉 | α, β, γ ∈ R[[X]]},

if δ R+assoc ε, then δ = (α
R[[X]]

+ β)
R[[X]]

+ γ and ε = α
R[[X]]

+ (β
R[[X]]

+ γ) for some
1Of course, equality is not decidable in the ring R[[X]].

23

α, β, γ ∈ R[[X]]. Then

1 hd δ = (hd α
R

+ hd β)
R

+ hd γ Def of
R[[X]]

+

2 hd δ = hd α
R

+ (hd β
R

+ hd γ) Associativity of
R

+

3 hd δ = hd (α
R[[X]]

+ (β
R[[X]]

+ γ)) = hd ε 2,Def of
R[[X]]

+

4 tl δ = (tl α
R[[X]]

+ tl β)
R[[X]]

+ tl γ Def of
R[[X]]

+

5 tl ε = tl α
R[[X]]

+ (tl β
R[[X]]

+ tl γ) Def of
R[[X]]

+

6 tl δ R+assoc tl ε 4,5, Def of R+assoc

Having proved that R+assoc is a bisimulation, by cpp the associativity result follows

directly.

Proposition 4.2.5 (
R[[X]]

+ is commutative).

∀α, β ∈ R[[X]]. (α
R[[X]]

+ β)
R[[X]]

≈ (β
R[[X]]

+ α)

Proof. Let R+comm = {〈(α
R[[X]]

+ β) , (β
R[[X]]

+ α)〉 | α, β ∈ R[[X]]}. If δ R+comm ε then

δ = α
R[[X]]

+ β and ε = β
R[[X]]

+ α for some α, β ∈ R[[X]]. Then

1 hd δ = hd α
R

+ hd β Def of
R[[X]]

+

2 hd δ = hd β
R

+ hd α 1, commutativity of
R

+

3 hd δ = hd (β
R[[X]]

+ α) = hd ε 2,by Def
R[[X]]

+

4 tl δ = tl α
R[[X]]

+ tl β by Def
R[[X]]

+

5 tl ε = tl β
R[[X]]

+ tl α Def
R[[X]]

+

6 (tl δ) R+assoc (tl ε) 8 ,9 ,Def R+comm

24

Proposition 4.2.6 (0R[[X]] is the additive identity).

∀α ∈ R[[X]]. α
R[[X]]

+ 0R[[X]]

R[[X]]

≈ α

Proof. Let R+id = {〈α
R[[X]]

+ 0R[[X]] , α〉 | α ∈ R[[X]]}.

If δ R+id ε then δ = ε
R[[X]]

+ 0R[[X]] , we have

1 hd δ = hd ε
R

+ hd 0R[[X]] Def of
R[[X]]

+

2 hd δ = hd ε
R

+ 0R = hd ε 1, Def of 0R[[X]]

3 tl δ = tl ε
R[[X]]

+ tl 0R[[X]] = tl ε
R[[X]]

+ 0R[[X]] Def
R[[X]]

+ and 0R[[X]]

4 (tl δ) R+id (tl ε) 3, Def of R+id

Proving that 0R[[X]] is also a left identity is similar.

Proposition 4.2.7 (
R[[X]]

− is the additive inverse).

∀α ∈ R[[X]]. α
R[[X]]

− α
R[[X]]

≈ 0R[[X]]

Proof. (Omitted). The proof is trivial and follows similar approach to the ones above.

Proposition 4.2.8 (
R[[X]]

+ preserves equality).

∀α, β, γ, δ ∈ R[[X]]. (α
R[[X]]

≈ β) ∧ (γ
R[[X]]

≈ δ)→ α
R[[X]]

+ γ
R[[X]]

≈ β
R[[X]]

+ δ

Proof. The proof is trivial and is omitted.

25

4.3 Multiplication
R[[X]]

∗

Definition 4.3.1. The multiplication operator
R[[X]]

∗ ∈ R[[X]]×R[[X]]→ R[[X]] is de-

fined

hd (α
R[[X]]

∗ β) = hd α
R∗ hd β

tl (α
R[[X]]

∗ β) = ((hd α : 0R[[X]])
R[[X]]

∗ tl β)
R[[X]]

+ (tl α
R[[X]]

∗ β)

Proposition 4.3.2 (
R[[X]]

∗ preserves equality).

∀α, β, γ, δ ∈ R[[X]]. (α
R[[X]]

≈ β) ∧ (γ
R[[X]]

≈ δ)→ α
R[[X]]

∗ γ
R[[X]]

≈ β
R[[X]]

∗ δ

We define R∗pres≈ inductively as follows

1. if α
R[[X]]

≈ β then 〈α , β〉 ∈ R∗pres≈

2. if α
R[[X]]

≈ β ∧ γ
R[[X]]

≈ δ

then 〈(α
R[[X]]

∗ γ) , (β
R[[X]]

∗ δ)〉 ∈ R∗pres≈

3. if 〈α, β〉 ∈ R∗pres≈ ∧ 〈γ, δ〉 ∈ R∗pres≈

then 〈α
R[[X]]

+ γ , β
R[[X]]

+ δ〉 ∈ R∗pres≈

Proof. We proceed by doing a proof by induction on constructor clauses of R∗pres≈ ,

the proof being trivial for the 1st, we prove for the 2nd and 3rd.

proof for 2nd clause

26

If ζ R∗pres≈ η then ζ = α
R[[X]]

∗ γ and η = β
R[[X]]

∗ δ where α
R[[X]]

≈ β and γ
R[[X]]

≈ δ, then.

1 hd α = hd β ∧ hd γ = hd δ Def of
R[[X]]

≈

2 tl α
R[[X]]

≈ tl β ∧ tl γ
R[[X]]

≈ tl δ Def of
R[[X]]

≈

3 hd ζ = hd α
R∗ hd γ = hd β

R∗ hd δ = hd η 1,R∗ pres equality

4 tl ζ = ((hd α : 0R[[X]])
R[[X]]

∗ tl γ)
R[[X]]

+ (tl α
R[[X]]

∗ γ) Def of
R[[X]]

∗

5 tl η = ((hd β : 0R[[X]])
R[[X]]

∗ tl δ)
R[[X]]

+ (tl β
R[[X]]

∗ δ) Def of
R[[X]]

∗

6 (tl α
R[[X]]

∗ γ) R∗pres≈ (tl β
R[[X]]

∗ δ) 2, R∗pres≈
2nd

7 (hd α : 0R[[X]])
R[[X]]

≈ (hd β : 0R[[X]]) from 1 trivially

8 ((hd α : 0R[[X]])
R[[X]]

∗ tl γ) R∗pres≈ ((hd β : 0R[[X]])
R[[X]]

∗ tl δ) 7,2, IH R+pres≈
2nd

9 (tl ζ) R+pres≈ (tl η) 8,6, R∗pres≈
3rd

proof for 3rd clause

If ζ R∗pres≈ η then ζ = α
R[[X]]

+ γ and η = β
R[[X]]

+ δ where α R∗pres≈ β and γ R∗pres≈ δ,

then.

1 hd α = hd β ∧ hd γ = hd δ by IH

2 (tl α) R∗pres≈ (tl β) ∧ (tl γ) R∗pres≈ (tl δ) by IH

3 hd ζ = hd α
R

+ hd γ
R≈ hd β

R

+ hd δ = hd η 1,Def of
R[[X]]

+ ,
R

+ pres equality

4 tl ζ = tl α
R[[X]]

+ tl γ ∧ tl η = tl β
R[[X]]

+ tl δ Def of
R[[X]]

+

5 tl ζ R∗pres≈ tl η 4, 2, R∗pres≈
3rd

27

Proposition 4.3.3 (
R[[X]]

∗ is distributive over
R[[X]]

+).

∀α, β, γ ∈ R[[X]]. α
R[[X]]

∗ (β
R[[X]]

+ γ)
R[[X]]

≈ (α
R[[X]]

∗ β)
R[[X]]

+ (α
R[[X]]

∗ γ)

Proof. We define R∗dist+ inductively as follows

1. if α
R[[X]]

≈ β then 〈α , β〉 ∈ R∗dist+

2. ∀α, β, γ ∈ R[[X]]. 〈α
R[[X]]

∗ (β
R[[X]]

+ γ) , (α
R[[X]]

∗ β)
R[[X]]

+ (α
R[[X]]

∗ γ)〉 ∈ R∗dist+

3. ∀α, β, γ, δ ∈ R[[X]]. if 〈α, β〉 ∈ R∗dist+ ∧ 〈γ, δ〉 ∈ R∗dist+

then 〈α
R[[X]]

+ γ , β
R[[X]]

+ δ〉 ∈ R∗dist+

We now prove that R∗dist+ is a bisimulation by induction, the proof for the 1st clause

is trivial (omitted). The proof for the 3rd clause is similar to the one of proposition

4.3.2 and is omitted here.

proof for the 2nd clause

Let δ R∗dist+ ε where δ = α
R[[X]]

∗ (β
R[[X]]

+ γ) and ε = (α
R[[X]]

∗ β)
R[[X]]

+ (α
R[[X]]

∗ γ) for some

α, β, γ ∈ R[[X]], then

1 hd δ = hd α
R∗ (hd β

R

+ hd γ) Def
R[[X]]

+ ,
R[[X]]

∗

2 hd δ = (hd α
R∗ hd β)

R

+ (hd α
R∗ hd γ) 1, R∗ dist over

R

+

3 hd δ
R≈ hd (α

R[[X]]

∗ β)
R

+ hd (α
R[[X]]

∗ γ) 2, Def of
R[[X]]

∗

4 hd δ
R≈ hd ((α

R[[X]]

∗ β)
R[[X]]

+ (α
R[[X]]

∗ γ)) = hd ε 3, Def of
R[[X]]

+

28

1 tl δ = (hd α : 0R[[X]])
R[[X]]

∗ (tl β
R[[X]]

+ tl γ)
R[[X]]

+ tl α
R[[X]]

∗ (β
R[[X]]

+ γ) Def of
R[[X]]

+ ,
R[[X]]

∗

2
tl ε = (hd α : 0R[[X]])

R[[X]]

∗ tl β
R[[X]]

+ tl α
R[[X]]

∗ β

R[[X]]

+ (hd α : 0R[[X]])
R[[X]]

∗ tl γ
R[[X]]

+ tl α
R[[X]]

∗ γ

Def of
R[[X]]

+ ,
R[[X]]

∗

3
tl ε

R[[X]]

≈ (hd α : 0R[[X]])
R[[X]]

∗ tl β
R[[X]]

+ (hd α : 0R[[X]])
R[[X]]

∗ tl γ

R[[X]]

+ tl α
R[[X]]

∗ β
R[[X]]

+ tl α
R[[X]]

∗ γ

11,
R[[X]]

+ commutative

4

(
(hd α : 0R[[X]])

R[[X]]

∗ tl β
R[[X]]

+ (hd α : 0R[[X]])
R[[X]]

∗ tl γ
)

R∗dist+

(
(hd α : 0R[[X]])

R[[X]]

∗ (tl β
R[[X]]

+ tl γ)
)

R∗dist+
1st

5
(
tl α

R[[X]]

∗ β
R[[X]]

+ tl α
R[[X]]

∗ γ
)

R∗dist+
(
tl α

R[[X]]

∗ (β
R[[X]]

+ γ)
)

R∗dist+
1st

6 tl δ R∗dist+ tl ε 4, 5, 3, 1, R∗dist+
3rd

We note that we used the fact that
R[[X]]

∗ preserves equality and
R[[X]]

+ preserves equality

implicitly many times in the above derivation. Also in the rewriting cases of tl ε and

tl δ we implicitly used the property x
R[[X]]

≈ y ∧ y R∗dist+ z → x R∗dist+ z for which the

proof is also trivial. The left distributivity is similar.

Proposition 4.3.4 (
R[[X]]

∗ is associative).

∀α, β, γ ∈ R[[X]]. (α
R[[X]]

∗ β)
R[[X]]

∗ γ
R[[X]]

≈ α
R[[X]]

∗ (β
R[[X]]

∗ γ)

Proof. We define our relation R∗assoc inductively as follows

1. ∀α, β ∈ R[[X]]. 〈α , β〉 ∈ R∗assoc if α
R[[X]]

≈ β

2. ∀α, β, γ ∈ R[[X]]. 〈(α
R[[X]]

∗ β)
R[[X]]

∗ γ , α
R[[X]]

∗ (β
R[[X]]

∗ γ)〉 ∈ R∗assoc

29

3. ∀α, β, γ, δ ∈ R[[X]]. if 〈α, β〉 ∈ R∗assoc ∧ 〈γ, δ〉 ∈ R∗assoc

then 〈α
R[[X]]

+ γ , β
R[[X]]

+ δ〉 ∈ R∗assoc

Now we prove R∗assoc to be a bisimulation. The proof for elements generated by the

1st and 3rd clauses straight forward, we proceed with a proof for elements generated

by the 2nd clause.

Proof for 2nd clause:

Let δ R∗assoc ε, then δ = (α
R[[X]]

∗ β)
R[[X]]

∗ γ and ε = α
R[[X]]

∗ (β
R[[X]]

∗ γ) for some α, β, γ ∈

R[[X]]

1 hd δ = (hd α
R∗ hd β)

R∗ hd γ = hd α
R∗ (hd β

R∗ hd γ) Def of
R[[X]]

∗ , R∗ assoc

2 hd δ = hd (α
R[[X]]

∗ (β
R[[X]]

∗ γ)) = hd ε 1, Def
R[[X]]

∗

3
tl δ = (hd (α

R[[X]]

∗ β) : 0R[[X]])
R[[X]]

∗ tl γ

R[[X]]

+ (tl (α
R[[X]]

∗ β)
R[[X]]

∗ γ)

Def of
R[[X]]

∗

4
tl δ = (hd (α

R[[X]]

∗ β) : 0R[[X]])
R[[X]]

∗ tl γ

R[[X]]

+ (tl (α
R[[X]]

∗ β)
R[[X]]

∗ γ)

Def of
R[[X]]

∗

5 hd (α
R[[X]]

∗ β) : 0R[[X]]

R[[X]]

≈ (hd α : 0R[[X]])
R[[X]]

∗ (hd β : 0R[[X]]) trivial

6

tl δ
R[[X]]

≈ ((hd α : 0R[[X]])
R[[X]]

∗ (hd β : 0R[[X]]))
R[[X]]

∗ tl γ

R[[X]]

+ ((hd α : 0R[[X]])
R[[X]]

∗ tl β)
R[[X]]

∗ γ

R[[X]]

+ (tl α
R[[X]]

∗ β)
R[[X]]

∗ γ

4,5,
R[[X]]

∗ dist
R[[X]]

+

30

7

tl ε
R[[X]]

≈ (hd α : 0R[[X]])
R[[X]]

∗ ((hd β : 0R[[X]])
R[[X]]

∗ tl γ)

R[[X]]

+ (hd α : 0R[[X]])
R[[X]]

∗ (tl β
R[[X]]

∗ γ)

R[[X]]

+ tl α
R[[X]]

∗ (β
R[[X]]

∗ γ)

similar to 6

8

(
(hd α : 0R[[X]])

R[[X]]

∗ (hd β : 0R[[X]])
) R[[X]]

∗ tl γ

R∗assoc

(hd α : 0R[[X]])
R[[X]]

∗
(
(hd β : 0R[[X]])

R[[X]]

∗ tl γ
)

by R∗assoc
2nd

9

(
((hd α : 0R[[X]])

R[[X]]

∗ tl β)
R[[X]]

∗ γ
)

R∗assoc

(
(hd α : 0R[[X]])

R[[X]]

∗ (tl β
R[[X]]

∗ γ)
)

by R∗assoc
2nd

10
(
(tl α

R[[X]]

∗ β)
R[[X]]

∗ γ
)

R∗assoc
(
tl α

R[[X]]

∗ (β
R[[X]]

∗ γ)
)

by R∗assoc
2nd

11 tl δ R∗assoc tl ε 8,9,10, by R∗assoc
3rd

Proposition 4.3.5 (multiplicative identity). 1R[[X]] = 1R : 1R[[X]] is the multiplicative

identity.

Proof. Proof is trivial, omitted.

Proposition 4.3.6. 0R[[X]] is annihilator of multiplication

Proof. Proof is trivial, omitted.

Lemma 4.3.7. Let L be defined as follows

1. ∀α, β ∈ R[[X]]

〈
(
(hd α : 0R[[X]])

R[[X]]

∗ β
R[[X]]

+ tl α
R[[X]]

∗ (0R : β)
)
, α

R[[X]]

∗ β〉 ∈ L

31

2. ∀α, β, γ, δ ∈ R[[X]]. if 〈α, β〉 ∈ L ∧ 〈γ, δ〉 ∈ L

then 〈α
R[[X]]

+ γ , β
R[[X]]

+ δ〉 ∈ L

Then L is a bisimulation

Proof. The second clause being straight forward we prove only for the 1st clause,

Let δ L ε such that δ = (hd α : 0R[[X]])
R[[X]]

∗ β
R[[X]]

+ tl α
R[[X]]

∗ (0R : β) and ε = α
R[[X]]

∗ β,

then

1 hd δ
R[[X]]

≈ hd α
R∗ hd β = hd ε Def of

R[[X]]

+∗ , 0R kills R∗

2

tl δ
R[[X]]

≈ (hd α : 0R[[X]])
R[[X]]

∗ tl β

R[[X]]

+ (hd tl α : 0R[[X]])
R[[X]]

∗ β

R[[X]]

+ tl tl α
R[[X]]

∗ (0R : β)

Def of
R[[X]]

∗ , 0R[[X]] kills
R[[X]]

∗

3 (tl δ) L
(
(hd α : 0R[[X]])

R[[X]]

∗ tl β
R[[X]]

+ (tl α
R[[X]]

∗ β)
)

2, by L1st
, L2nd

4 (tl δ) L (tl ε) 3, Def
R[[X]]

∗

Proposition 4.3.8 (
R[[X]]

∗ is commutative). If R is commutative then

∀α, β ∈ R[[X]]. α
R[[X]]

∗ β
R[[X]]

≈ β
R[[X]]

∗ α

Proof. We define R∗comm inductively as follows

1. ∀α, β ∈ R[[X]]. if α
R[[X]]

≈ β then 〈α , β〉 ∈ R∗comm

2. ∀α, β ∈ R[[X]]. 〈α
R[[X]]

∗ β , β
R[[X]]

∗ α〉 ∈ R∗comm

3. ∀α, β, γ, δ ∈ R[[X]]. if (α R∗comm β)∧(γ R∗comm δ) then 〈α
R[[X]]

+ γ , β
R[[X]]

+ δ〉 ∈ R∗comm

We proceed by induction as usual, The proofs for the 1st and 3rd clauses are straight

forward and are omitted here.

32

Proof for the 2nd clause

Let δ R∗assoc ε such that δ = α
R[[X]]

∗ β and ε = β
R[[X]]

∗ α

1 hd δ = (hd α
R∗ hd β) Def of

R[[X]]

∗

2 hd δ = hd β
R∗ hd α = hd ε 1,R∗ commutative

3 tl δ = (hd α : 0R[[X]])
R[[X]]

∗ tl β
R[[X]]

+ tl α
R[[X]]

∗ β Def of
R[[X]]

∗

4
tl δ

R[[X]]

≈ (hd α : 0R[[X]])
R[[X]]

∗ tl β

R[[X]]

+ tl α
R[[X]]

∗ (hd β : 0R[[X]]

R[[X]]

+ (0R : tl β))

3,
R[[X]]

+ pres
R[[X]]

≈

5

tl δ
R[[X]]

≈ (hd α : 0R[[X]])
R[[X]]

∗ tl β

R[[X]]

+ tl α
R[[X]]

∗ (hd β : 0R[[X]])

R[[X]]

+ tl α
R[[X]]

∗ (0R : tl β))

4,
R[[X]]

∗ dist
R[[X]]

+

6 tl δ
R[[X]]

≈ tl α
R[[X]]

∗ (hd β : 0R[[X]])
R[[X]]

+ α
R[[X]]

∗ tl β
R[[X]]

+ comm, L bisimulation

7 (tl α
R[[X]]

∗ (hd β : 0R[[X]])) R∗comm ((hd β : 0R[[X]])
R[[X]]

∗ tl α) IH R∗comm
2nd

8 (α
R[[X]]

∗ tl β) R∗comm (α
R[[X]]

∗ tl β) IH R∗comm
2nd

9 tl ε = (hd β : 0R[[X]])
R[[X]]

∗ tl α
R[[X]]

+ tl β
R[[X]]

∗ α Def of
R[[X]]

∗

10 (tl δ) R∗comm (tl ε) 6,7,8,9, IH R∗comm
3rd

Implementation note IV.1 (Monads and streams): The type of streams in haskell

is

data Stream a = Cons a (Stream a)

In the first implementation the type of power series over a ring a looked like this

newtype CommutativeRing a => PSeries a x = PS (Stream a) deriving (Ord)

33

However, this type failed to work properly with the type type R k = MPoly k Len,

i.e. the type dynamic algebraic closure of a field k. To see this, imagine that we want

to map a monadic operation on the stream type. The map function looks as follows

mapMS :: (Monad m) => (a -> m b) -> Stream a -> m (Stream b)

mapMS f g = do y <- f (head g)

ys <- map f (tail g)

return $ Cons (y, ys)

Since the bind operator »= of the state monad (see note II.1) forces the inspection of

each object in the list, this mapMS function would not terminate if called on a monadic

operation f that branches. This forced us to use a different datatype for streams

newtype (Monad m)=> Stream m a = Cons (a ,m (Stream m a))

newtype (CommutativeRing a, Monad m) => PSeries m a x = PS (Stream m a)

With this type we can define the monadic map as follows

mapMS :: (Monad m) => (a -> m b) -> Stream m a -> m (Stream m b)

mapMS f g = do y <- f (head g)

ys <- tail g

return $ Cons (y, mapMS f ys)

In which the computation on the tail of the stream is delayed.

The two implementations are now part of the library.

34

CHAPTER V

Hensel’s lemma

The statement of Hensel’s lemma is as follows

Theorem 5.0.1 (Hensel’s lemma). Let k be a field and let

F (X, Y) = Y n + a1(X)Y n−1 + ...+ an(X) ∈ k[[X]][Y]

be a monic polynomial of degree n > 0 in Y with coefficients ai(X) ∈ k[[X]]. Assume

that

F (0, Y) = Ḡ(Y)H̄(Y)

and

Ḡ(Y) = Y r + b̄1Y
r−1 + ...+ b̄r ∈ k[Y]

H̄(Y) = Y s + c̄1Y
s−1 + ...+ c̄s ∈ k[Y]

are monic polynomials of degrees r, s > 0 in Y with coefficients in k. Such that Ḡ(Y)

and H̄(Y) are coprime.

Then there exist unique monic polynomials

G(X, Y) = Y r + b1(X)Y r−1 + ...+ br(X) ∈ k[[X]][Y]

H(X, Y) = Y s + c1(X)Y s−1 + ...+ cr(X) ∈ k[[X]][Y]

of degrees r and s in Y with coefficients in k[[X]], such that G(0, Y) = Ḡ(Y) and

H(0, Y) = H̄(Y) and F (X, Y) = G(X, Y)H(X, Y).

Proof. . 5.3

In the following sections we give a formal proof of the lemma. In the formalization

we follow a proof presented by S.S.Abhyankar [1].

35

Remark 5.0.2. For the purpose of this document we assume a complete formalization

of the ring of polynomials over commutative rings. Also, a forall quantification is

assumed for free variables.

Notation 5.0.3. To distinguish between list and stream functions that usually have

the same name, we adorn the stream functions with ˜ . For example, tl , hd ,map

are the familiar tail,head, and map operations on lists while their stream counterparts

are t̃l , h̃d , m̃ap .

5.1 The homomorphism k[[X]][Y]→ k[Y][[X]]

Definition 5.1.1. The mapping φ : k[[X]][Y]→ k[Y][[X]] is defined as follows

h̃d φ(as) = map h̃d as

t̃l φ(as) = φ(map t̃l as)

We prove some properties for the (map h̃d) and (map t̃l)

Proposition 5.1.2. (map h̃d) : k[[X]][Y]→ k[Y] is
k[[X]][Y]

+ homomorphism

map h̃d (as
k[[X]][Y]

+ bs)
k[Y]

≈ map h̃d as
k[Y]

+ map h̃d bs

Proof. By induction on
k[[X]][Y]

+

Base case: [a]
k[[X]][Y]

+ [b] = [a
K[[X]]

+ b]

1 map h̃d ([a]
k[[X]][Y]

+ [b]) = map h̃d [a
K[[X]]

+ b] Def
k[[X]][Y]

+

2 = [h̃d (a
K[[X]]

+ b)] = [h̃d a
K

+ h̃d b] Def
K[[X]]

+ ,map

3 = [h̃d a]
k[Y]

+ [h̃d b] = map h̃d [a]
k[Y]

+ map h̃d [b] Def
k[Y]

+ ,map

36

Base case: a : as
k[[X]][Y]

+ [b] = (a
K[[X]]

+ b) : as

4 map h̃d (a : as
k[[X]][Y]

+ [b]) = map h̃d ((a
K[[X]]

+ b) : as) Def
k[[X]][Y]

+

5 = h̃d (a
K[[X]]

+ b) : (map h̃d as) = (h̃d a
K

+ h̃d b) : (map h̃d as) Def
K[[X]]

+ ,map

6 = h̃d a : (map h̃d as)
k[Y]

+ [h̃d b] Def
k[Y]

+

7 = map h̃d (a : as)
k[Y]

+ map h̃d [b] Def map

Base case: [a]
k[[X]][Y]

+ b : bs = (a
K[[X]]

+ b) : bs

Similar to the previous case

Step: (a : as)
k[[X]][Y]

+ (b : bs) = (a
K[[X]]

+ b) : (as
k[[X]][Y]

+ bs)

8 map h̃d (a : as
k[[X]][Y]

+ b : bs)

9 = map h̃d ((a
K[[X]]

+ b) : (as
k[[X]][Y]

+ bs)) Def
k[[X]][Y]

+

10 = h̃d (a
K[[X]]

+ b) : (map h̃d (as
k[[X]][Y]

+ bs)) Def map

11 = (h̃d a
K

+ h̃d b) : (map h̃d (as
k[[X]][Y]

+ bs)) Def
K[[X]]

+

12 = (h̃d a
K

+ h̃d b) : (map h̃d as
k[Y]

+ map h̃d bs) Induction Hyp (IH)

13 = (h̃d a : map h̃d as)
k[Y]

+ (h̃d b : map h̃d bs) Def
k[Y]

+

14 = map h̃d (a : as)
k[Y]

+ map h̃d (b : bs) Def map

Proposition 5.1.3. (map t̃l) : k[[X]][Y]→ k[[X]][Y] is
k[[X]][Y]

+ homomorphism

map t̃l (as
k[[X]][Y]

+ bs)
k[[X]][Y]

≈ map t̃l as
k[[X]][Y]

+ map t̃l bs

37

Proof. By induction on
k[[X]][Y]

+

Base case: [a]
k[[X]][Y]

+ [b] = [a
K[[X]]

+ b]

1 map t̃l ([a]
k[[X]][Y]

+ [b]) = map t̃l [a
K[[X]]

+ b] Def
k[[X]][Y]

+

2 = [t̃l (a
K[[X]]

+ b)] = [(t̃l a
K[[X]]

+ t̃l b)] Def
K[[X]]

+ ,map

3 = [t̃l a]
k[[X]][Y]

+ [t̃l b] = map t̃l [a]
k[[X]][Y]

+ map t̃l [b] Def
k[[X]][Y]

+ ,map

Base case: a : as
k[[X]][Y]

+ [b] = (a
K[[X]]

+ b) : as

4 map t̃l (a : as
k[[X]][Y]

+ [b]) = map t̃l ((a
K[[X]]

+ b) : as) Def
k[[X]][Y]

+

5 = t̃l (a
K[[X]]

+ b) : (map t̃l as) = (t̃l a
K[[X]]

+ t̃l b) : (map t̃l as) Def
K[[X]]

+ ,map

6 = (t̃l a : map t̃l as)
k[[X]][Y]

+ [t̃l b] Def
k[[X]][Y]

+

7 = map t̃l (a : as)
k[[X]][Y]

+ map t̃l [b] Def map

Base case: [a]
k[[X]][Y]

+ b : bs = (a
K[[X]]

+ b) : bs

Similar to the previous case

38

Step: (a : as)
k[[X]][Y]

+ (b : bs) = (a
K[[X]]

+ b) : (as
k[[X]][Y]

+ bs)

8 map t̃l (a : as
k[[X]][Y]

+ b : bs)

9 = map t̃l ((a
K[[X]]

+ b) : (as
k[[X]][Y]

+ bs)) Def
k[[X]][Y]

+

10 = t̃l (a
K[[X]]

+ b) : (map t̃l (as
k[[X]][Y]

+ bs)) Def map

11 = (t̃l a
K[[X]]

+ t̃l b) : (map t̃l (as
k[[X]][Y]

+ bs)) Def
K[[X]]

+

12 = (t̃l a
K[[X]]

+ t̃l b) : (map t̃l as
k[[X]][Y]

+ map t̃l bs) (IH)

13 = (t̃l a : t̃l as)
k[[X]][Y]

+ (t̃l b : map t̃l bs) Def
k[[X]][Y]

+

14 = map t̃l (a : as)
k[[X]][Y]

+ map t̃l (b : bs) Def map

Proposition 5.1.4. (map h̃d) : k[[X]][Y]→ k[Y] is
k[[X]][Y]

∗ homomorphism

map h̃d (as
k[[X]][Y]

∗ bs)
k[Y]

≈ map h̃d as
k[Y]

∗ map h̃d bs

Proof. By induction on
k[[X]][Y]

∗

Base case: [a]
k[[X]][Y]

∗ [b] = [a
K[[X]]

∗ b]

1 map h̃d ([a]
k[[X]][Y]

∗ [b]) = map h̃d [a
K[[X]]

∗ b] Def
k[[X]][Y]

∗

2 = [h̃d (a
K[[X]]

∗ b)] = [(h̃d a
K∗ h̃d b)] Def

K[[X]]

∗ ,map

3 = [h̃d a]
k[Y]

∗ [h̃d b] = map h̃d [a]
k[Y]

∗ map h̃d [b] Def
k[Y]

∗ ,map

39

Step : a : as
k[[X]][Y]

∗ [b] = (a
K[[X]]

∗ b) : (as
k[[X]][Y]

∗ [b])

4 map h̃d (a : as
k[[X]][Y]

∗ [b])

5 = map h̃d ((a
K[[X]]

∗ b) : (as
k[[X]][Y]

∗ [b])) Def
k[[X]][Y]

∗

6 = h̃d (a
K[[X]]

∗ b) : map h̃d (as
k[[X]][Y]

∗ [b]) Def map

7 = (h̃d a
K∗ h̃d b) : map h̃d (as

k[[X]][Y]

∗ [b]) Def
K[[X]]

∗

8 = (h̃d a
K∗ h̃d b) : (map h̃d as)

k[Y]

∗ [h̃d b]) (IH), Def map

9 = (h̃d a : map h̃d as)
k[Y]

∗ [h̃d b] Def
k[Y]

∗

10 = map h̃d (a : as)
k[Y]

∗ map h̃d [b] Def map

Step : [a]
k[[X]][Y]

∗ b : bs = (a
K[[X]]

∗ b) : bs

Similar to the previous case

Step:

(a : as)
k[[X]][Y]

∗ (b : bs) =[a
K[[X]]

∗ b]

k[[X]][Y]

+ (0K[[X]] : [a]
k[[X]][Y]

∗ bs)

k[[X]][Y]

+ (0K[[X]] : as
k[[X]][Y]

∗ [b])

k[[X]][Y]

+ (0K[[X]] : 0K[[X]] : as
k[[X]][Y]

∗ bs)

40

11 map h̃d (a : as
k[[X]][Y]

∗ b : bs)

12

= map h̃d [a
K[[X]]

∗ b]

k[Y]

+ map h̃d (0K[[X]] : [a]
k[[X]][Y]

∗ bs)

k[Y]

+ map h̃d (0K[[X]] : as
k[[X]][Y]

∗ [b])

k[Y]

+ map h̃d (0K[[X]] : 0K[[X]] : as
k[[X]][Y]

∗ bs)

map h̃d is
k[[X]][Y]

+ hom

13

= [h̃d a
K∗ h̃d b]

k[Y]

+ 0k : map h̃d ([a]
k[[X]][Y]

∗ bs)

k[Y]

+ 0k : map h̃d (as
k[[X]][Y]

∗ [b])

k[Y]

+ 0k : 0k : map h̃d (as
k[[X]][Y]

∗ bs)

Def map ,
K[[X]]

∗

14

= [h̃d a
K∗ h̃d b]

k[Y]

+ 0k : ([h̃d a]
k[Y]

∗ map h̃d bs)

k[Y]

+ 0k : (map h̃d as
k[Y]

∗ [h̃d b])

k[Y]

+ 0k : 0k : (map h̃d as
k[Y]

∗ map h̃d bs)

(IH)

15 = (h̃d a : map h̃d as)
k[Y]

∗ (h̃d b : map h̃d bs) Def
k[Y]

∗

16 = map h̃d (a : as)
k[Y]

∗ map h̃d (b : bs) Def map

Proposition 5.1.5 (a property of map t̃l).

map t̃l (as
k[[X]][Y]

∗ bs) =map (λz → hd z : 0K[[X]]) as
k[[X]][Y]

∗ map t̃l bs

k[[X]][Y]

+ map t̃l as
k[[X]][Y]

∗ bs

41

Proof. the proof is quite complicated, we postpone it for the appendix.

Proposition 5.1.6. φ(0k[[X]][Y])
k[Y][[X]]

≈ 0k[Y][[X]]

Proof. let R0 = {〈φ(0k[[X]][Y]), 0k[Y][[X]]〉}

1 h̃d φ(0k[[X]][Y]) = h̃d φ([0K[[X]]]) = [h̃d 0K[[X]]] Def of φ, 0k[[X]][Y]

2 = [0k] = h̃d 0k[Y][[X]] 1, Def 0k , 0k[Y][[X]]

3 t̃l φ(0k[[X]][Y]) = φ([t̃l 0K[[X]]]) = φ([0K[[X]]]) = φ(0k[[X]][Y]) Def of φ, 0k[[X]][Y]

4 t̃l 0k[Y][[X]] = 0k[Y][[X]] Def of 0k[Y][[X]]

5 t̃l φ(0k[[X]][Y]) R0 t̃l 0k[Y][[X]] 3,4

Proposition 5.1.7. φ(1k[[X]][Y])
k[Y][[X]]

≈ 1k[Y][[X]]

Proof. similar to proof of proposition 5.1.6 (omitted).

Proposition 5.1.8 (φ additive homomorphism).

φ(f1
k[[X]][Y]

+ f2)
k[Y][[X]]

≈ φ(f1)
k[Y][[X]]

+ φ(f2)

Proof. Let R+hom be defined as follows

R+hom = {〈φ(f1
k[[X]][Y]

+ f2) , φ(f1)
k[Y][[X]]

+ φ(f2)〉 | f1, f2 ∈ k[[X]][Y]}

We prove that R+hom is a bisimulation.

42

1 h̃d φ(f1
k[[X]][Y]

+ f2) = map h̃d (f1
k[[X]][Y]

+ f2) Def φ

2 = (map h̃d f1)
k[Y]

+ (map h̃d f2) 5.1.2

3 = h̃d φ(f1)
k[Y]

+ h̃d φ(f2) Def φ

4 = h̃d (φ(f1)
k[Y][[X]]

+ φ(f2)) Def
k[Y][[X]]

+

5 t̃l φ(as
k[[X]][Y]

+ bs)

6 = φ(map t̃l (as
k[[X]][Y]

+ bs)) Def φ

7 = φ((map t̃l as)
k[[X]][Y]

+ (map t̃l bs)) 5.1.3

8 t̃l (φ(as)
k[Y][[X]]

+ φ(bs))

9 = t̃l φ(as)
k[Y][[X]]

+ t̃l φ(bs) Def
k[[X]][Y]

+

10 = φ(map t̃l as)
k[Y][[X]]

+ φ(map t̃l bs) Def φ

11 t̃l φ(as
k[[X]][Y]

+ bs) R+hom t̃l (φ(as)
k[Y][[X]]

+ φ(bs)) 10,7

Lemma 5.1.9.

φ(map (λz → h̃d z : 0K[[X]]) f1)
k[Y][[X]]

≈ (h̃d φ(f1) : 0k[Y][[X]])

Proof. Trivial. (omitted)

Proposition 5.1.10 (φ multiplicative homomorphism). We want to prove

φ(f1
k[[X]][Y]

∗ f2)
k[Y][[X]]

≈ φ(f1)
k[Y][[X]]

∗ φ(f2)

Proof. Let R∗hom inductively defined as follows

43

1. ∀f1, f2 ∈ k[[X]][Y]. 〈φ(f1
k[[X]][Y]

∗ f2) , φ(f1)
k[Y][[X]]

∗ φ(f2)〉 ∈ R∗hom

2. ∀f1, f2, f3, f4 ∈ k[Y][[X]]. if f1 R∗hom f2 and f3 R∗hom f4 then

(f1
k[Y][[X]]

+ f3) R∗hom (f2
k[Y][[X]]

+ f4)

3. ∀f1, f2 ∈ k[Y][[X]]. if f1
k[Y][[X]]

≈ f2 then f1 R∗hom f2

4. ∀f1, f2, f3 ∈ k[Y][[X]]. if f1 R∗hom f2 and f2
k[Y][[X]]

≈ f3 then

f1 R∗hom f3

We prove that R∗hom is a bisimulation by induction on the constructor clauses of. We

do the proof for the first clause only, the proof for the other clauses is straightforward.

First we show that the heads are equal

1 h̃d φ(f1
k[[X]][Y]

∗ f2) = map h̃d (f1
k[[X]][Y]

∗ f2) Def of φ

2 = (map h̃d f1)
k[Y]

∗ (map h̃d f2) 5.1.4

3 = h̃d φ(f1)
k[Y]

∗ h̃d φ(f2) Def of φ

4 = h̃d (φ(f1)
k[Y][[X]]

∗ φ(f2)) Def of
k[Y][[X]]

∗

Now we show that the tails are in R∗hom

5 t̃l φ(f1
k[[X]][Y]

∗ f2) = φ(map t̃l (f1
k[[X]][Y]

∗ f2)) Def of φ

6
= φ

(
map (λz → h̃d z : 0K[[X]]) f1

k[[X]][Y]

∗ map t̃l f2

k[[X]][Y]

+ map t̃l f1
k[[X]][Y]

∗ f2
) 5.1.5

7

= φ
(
map (λz → h̃d z : 0K[[X]]) f1

k[[X]][Y]

∗ map t̃l f2
)

k[Y][[X]]

+ φ
(
map t̃l f1

k[[X]][Y]

∗ f2
)

5.1.8

44

8 t̃l (φ(f1)
k[Y][[X]]

∗ φ(f2))

9 = (h̃d φ(f1) : 0k[Y][[X]])
k[Y][[X]]

∗ t̃l φ(f2)
k[Y][[X]]

+ t̃l φ(f1)
k[Y][[X]]

∗ φ(f2) Def of
k[Y][[X]]

∗

10
= (h̃d φ(f1) : 0k[Y][[X]])

k[Y][[X]]

∗ φ(map t̃l f2)

k[Y][[X]]

+ φ(map t̃l f1)
k[Y][[X]]

∗ φ(f2)

Def of φ

11

φ
(
map (λz → h̃d z : 0K[[X]]) f1

k[[X]][Y]

∗ map t̃l f2
)

R∗hom

φ
(
map (λz → h̃d z : 0K[[X]]) f1

) k[Y][[X]]

∗ φ
(
map t̃l f2

)
Def R∗hom

1st

12

φ
(
map (λz → h̃d z : 0K[[X]]) f1

) k[Y][[X]]

∗ φ
(
map t̃l f2

)
k[Y][[X]]

≈

(h̃d φ(f1) : 0k[Y][[X]])
k[Y][[X]]

∗ φ
(
map t̃l f2

)
5.1.9,

k[Y][[X]]

∗ pres
k[Y][[X]]

≈

13

φ
(
map (λz → h̃d z : 0K[[X]]) f1

k[[X]][Y]

∗ map t̃l f2
)

R∗hom

(h̃d φ(f1) : 0k[Y][[X]])
k[Y][[X]]

∗ φ
(
map t̃l f2

)
11, 12, IH R∗hom

4th

14

φ
(
map t̃l f1

k[[X]][Y]

∗ f2
)

R∗hom

φ(map t̃l f1)
k[Y][[X]]

∗ φ(f2)

IH R∗hom
1st

15 t̃l φ(f1
k[[X]][Y]

∗ f2) R∗hom tl ′(φ(f1)
k[Y][[X]]

∗ φ(f2)) 7,10,13,14, Def of R∗hom
2nd

45

Definition 5.1.11. Equality on the type K[[X]][Y] is defined inductively as follows

1. if α
K[[X]]

≈ β then [α]
k[[X]][Y]

≈ [β]

2. if (α
K[[X]]

≈ β) ∧ (A
k[[X]][Y]

≈ B) then α : A
k[[X]][Y]

≈ β : B

Lemma 5.1.12.

∀α, β ∈ K[[X]]. φ([α])
k[Y][[X]]

≈ φ([β])→ α
K[[X]]

≈ β

Proof. let RINJ0 be defined as follows

• If α, β ∈ K[[X]] such that φ([α])
k[Y][[X]]

≈ φ([β]) then α RINJ0 β

We claim that RINJ0 is a bisimulation. Following is the proof

1 φ([α])
k[Y][[X]]

≈ φ([β])

2 h̃d φ([α])
k[Y]

≈ h̃d φ([β]) from 1

3 [h̃d α]
k[Y]

≈ [h̃d β] Def of φ

4 h̃d α
K≈ h̃d β Def of

k[Y]

≈

5 t̃l φ([α])
k[Y][[X]]

≈ t̃l φ([β]) from 1

6 φ([t̃l α])
k[Y][[X]]

≈ φ([t̃l β]) Def of φ

7 t̃l α RINJ0 t̃l β Def of RINJ0

Lemma 5.1.13.

∀A,B ∈ K[[X]][Y]. φ(α : A)
k[Y][[X]]

≈ φ(β : B)→ α
K[[X]]

≈ β

Proof. let RINJ1 be defined as follows

• If ∃A,B ∈ K[[X]][Y] such that φ(α : A)
k[Y][[X]]

≈ φ(β : B) then α RINJ1 β

46

we prove that RINJ1 is a bisimulation.

1 φ(α : A)
k[Y][[X]]

≈ φ(β : B)

2 h̃d φ(α : A)
k[Y]

≈ h̃d φ(β : B) from 1

3 (h̃d α : map h̃d A)
k[Y]

≈ (h̃d β : map h̃d B) Def of φ

4 h̃d α
K≈ h̃d β Def of

k[Y]

≈

5 t̃l φ(α : A)
k[Y][[X]]

≈ t̃l φ(β : B) from 1

6 φ(t̃l α : map t̃l A)
k[Y][[X]]

≈ φ(t̃l β : map t̃l B) Def of φ

7 t̃l α RINJ1 t̃l β Def of RINJ1

Lemma 5.1.14.

∀A,B ∈ K[[X]][Y], ∀α, β ∈ K[[X]]. α
K[[X]]

≈ β ∧ φ(α : A)
k[Y][[X]]

≈ φ(β : B)→ φ(A)
K[[X]]

≈ φ(B)

Proof. let RINJ2 be defined as follows

• If ∃α, β ∈ K[[X]] such that α
K[[X]]

≈ β ∧ φ(α : A)
k[Y][[X]]

≈ φ(β : B) then

φ(A) RINJ2 φ(B)

47

We prove that RINJ2 is a bisimulation

1 φ(α : A)
k[Y][[X]]

≈ φ(β : B)

2 α
K[[X]]

≈ β

3 h̃d φ(α : A)
k[Y]

≈ h̃d φ(β : B) from 1

4 (h̃d α : map h̃d A)
k[Y]

≈ (h̃d β : map h̃d B) Def of φ

5 map h̃d A
k[Y]

≈ map h̃d B 2,4, Def
k[Y]

≈

6 h̃d φ(A)
k[Y]

≈ h̃d φ(B) 2,4, Def φ

7 t̃l φ(α : A)
k[Y][[X]]

≈ t̃l φ(β : B) from 1

8 φ(t̃l α : map t̃l A)
k[Y][[X]]

≈ φ(t̃l β : map t̃l B) Def of φ

9 t̃l α
K[[X]]

≈ t̃l β from 2

10 φ(map t̃l A) RINJ2 φ(map t̃l B) 8,9, Def of RINJ2

11 t̃l φ(A) RINJ2 t̃l φ(B) 10, Def of φ

Proposition 5.1.15 (proof φ is injective).

∀A,B ∈ k[[X]][Y]. φ(A)
k[Y][[X]]

≈ φ(B)→ A
k[[X]][Y]

≈ B

Proof. We do the proof by induction on A and B 1

1induction is done on non-empty list, the base case is singleton list.

48

base case: C = [α], D = [β]

1 φ([α])
k[Y][[X]]

≈ φ([β])

2 α
K[[X]]

≈ β by 5.1.12

3 [α]
k[[X]][Y]

≈ [β] 2, Def of
k[[X]][Y]

≈

base case: C = [α], D = β : B

1 φ([α])
k[Y][[X]]

≈ φ(β : B)

2 [hd α]
k[[X]][Y]

≈ (hd β : map (λx→ hd x)B) Def of α

3 ⊥ 2, Def of
k[[X]][Y]

≈

4 ¬(φ([α])
k[Y][[X]]

≈ φ(β : B))

step: C = α : A, D = β : B

1 φ(α : A)
k[Y][[X]]

≈ φ(β : B)

2 α
K[[X]]

≈ β from 1, by 5.1.13

3 φ(A)
k[Y][[X]]

≈ φ(B) from 1, by 5.1.14

4 A
k[[X]][Y]

≈ B from 3, by IH

5 (α : A)
k[[X]][Y]

≈ (β : B) 2,4, Def of
k[[X]][Y]

≈

49

5.2 The lemma

Now that we have the injective homomorphism φ we can re-write the Y poly-

nomial F (X, Y) as a formal power series in X with coefficients in k[Y]. We let

F = φ(F (X, Y)) = F0(Y) + F1(Y) X + ... + Fq X
q + ... ∈ k[Y][[X]]. Now given

two coprime monic polynomials Ḡ(Y) and H̄(Y) of degrees r and s respectively,

such that F0(Y) = Ḡ(Y)
k[Y]

∗ H̄(Y); we want to find two power series G =
∑
GiX

i

and H =
∑
HiX

i. such that G0 = Ḡ(Y) and H0 = H̄(Y). with deg Gi < r for

all i > 0 and deg Hi < s for all j > 0. such that F = G
k[Y][[X]]

∗ H. We first

define the following system of equations, assuming we have Gp and Hp such that

G0

k[Y]

∗ Hp

k[Y]

+ H0

k[Y]

∗ Gp = 1k[Y] .

U = h̃d (t̃l F) : (t̃l t̃l F
k[Y][[X]]

− (t̃l G
k[Y][[X]]

∗ t̃l H))

H∗ = (Hp : 0k[Y][[X]])
k[Y][[X]]

∗ U

G∗ = (Gp : 0k[Y][[X]])
k[Y][[X]]

∗ U (*)

H = H0 :
(
m̃ap (λx→ x mod H0) H

∗)
E = m̃ap (λx→ x quot H0) H

∗

G = G0 :
(
G∗

k[Y][[X]]

+ E
k[Y][[X]]

∗ (G0 : 0k[Y][[X]])
)

Where quot and mod are functions returning the quotient and remainder of Y

polynomials division respectively. Now we start by proving that G
k[Y][[X]]

∗ H
k[Y][[X]]

≈ F

as usual by construction of a bisimulation.

Notation 5.2.1. For some C ∈ k[Y], let C̃ ∈ k[Y][[X]] denote (C : 0k[Y][[X]]).

for example: G̃0 = G0 : 0k[Y][[X]], H̃p = Hp : 0k[Y][[X]], H̃0 = H0 : 0k[Y][[X]], and

G̃p = Gp : 0k[Y][[X]].

Lemma 5.2.2. With the notation above

G̃0

k[Y][[X]]

∗ H̃p

k[Y][[X]]

+ H̃0

k[Y][[X]]

∗ G̃p

k[Y][[X]]

≈ 1k[Y][[X]]

50

Proof. Trivial, (omitted).

Lemma 5.2.3. For all C ∈ k[Y] and β ∈ k[Y][[X]]

β
k[Y][[X]]

≈ m̃ap (λx→ x quot C) β
k[Y][[X]]

∗ (C : 0k[Y][[X]])
k[Y][[X]]

+ m̃ap (λx→ x mod C) β

Proof. Trivial, (omitted).

Proposition 5.2.4. For the system of equations (*)

G
k[Y][[X]]

∗ H
k[Y][[X]]

≈ F

Proof. Let Rlemm be inductively as follows

1. ∀α, β ∈ k[Y][[X]]. if α
k[Y][[X]]

≈ β then α Rlemm β

2. ∀α, β, γ ∈ k[Y][[X]]. if α
k[Y][[X]]

≈ β then (γ
k[Y][[X]]

+ α) Rlemm (γ
k[Y][[X]]

+ β)

3. ∀α, β,∈ k[Y][[X]].A ∈ k[Y]. if α Rlemm β then (A : γ) Rlemm (A : α)

4. ∀α, β, γ ∈ k[Y][[X]]. if α Rlemm β and β Rlemm γ then α Rlemm γ

It is straight forward to check that Rlemm is a bisimulation. Now we prove that

(G
k[Y][[X]]

∗ H) Rlemm F .

51

proof t̃l t̃l (G
k[Y][[X]]

∗ H) Rlemm t̃l t̃l F

1 t̃l t̃l (G
k[Y][[X]]

∗ H) = t̃l (
˜̃
hd G

k[Y][[X]]

∗ t̃l H
k[Y][[X]]

+ t̃l G
k[Y][[X]]

∗ H) Def of
k[Y][[X]]

∗

2

=
˜̃
hd G

k[Y][[X]]

∗ t̃l t̃l H

k[Y][[X]]

+
˜̃
hd H

k[Y][[X]]

∗ t̃l t̃l G

k[Y][[X]]

+ t̃l H
k[Y][[X]]

∗ t̃l G

Def of
k[Y][[X]]

+, ∗

3

= G̃0

k[Y][[X]]

∗ m̃ap (λx→ x mod H0) t̃l H∗

k[Y][[X]]

+ H̃0

k[Y][[X]]

∗
(
t̃l G∗

k[Y][[X]]

+ t̃l E
k[Y][[X]]

∗ G̃0

)
k[Y][[X]]

+ t̃l H
k[Y][[X]]

∗ t̃l G

Def of G,H

4

k[[X]][Y]

≈ G̃0

k[Y][[X]]

∗
(
m̃ap (λx→ x mod H0) t̃l H∗

k[Y][[X]]

+ H̃0

k[Y][[X]]

∗ t̃l E
)

k[Y][[X]]

+ H̃0

k[Y][[X]]

∗ t̃l G∗

k[Y][[X]]

+ t̃l H
k[Y][[X]]

∗ t̃l G

4.3.3

5

= G̃0

k[Y][[X]]

∗
(
m̃ap (λx→ x mod H0) t̃l H∗

k[Y][[X]]

+

H̃0

k[Y][[X]]

∗ (λx→ x quot H0) t̃l H∗
)

k[Y][[X]]

+ H̃0

k[Y][[X]]

∗ t̃l G∗

k[Y][[X]]

+ t̃l H
k[Y][[X]]

∗ t̃l G

Def of E

52

6 Rlemm G̃0

k[Y][[X]]

∗ t̃l H∗
k[Y][[X]]

+ H̃0

k[Y][[X]]

∗ t̃l G∗
k[Y][[X]]

+ t̃l H
k[Y][[X]]

∗ t̃l G (5.2.3), Rlemm
2nd

7

= G̃0

k[Y][[X]]

∗ G̃p

k[Y][[X]]

∗ t̃l U

k[Y][[X]]

+ H̃0

k[Y][[X]]

∗ H̃p

k[Y][[X]]

∗ t̃l U

k[Y][[X]]

+ t̃l H
k[Y][[X]]

∗ t̃l G

Def of G∗, H∗

8 Rlemm t̃l U
k[Y][[X]]

+ t̃l H
k[Y][[X]]

∗ t̃l G (5.2.2), Rlemm
2nd

9 = t̃l t̃l F Def of U

10 t̃l t̃l (G
k[Y][[X]]

∗ H) Rlemm t̃l t̃l F By 1-9, Rlemm
4th

53

proof h̃d t̃l (G
k[Y][[X]]

∗ H) = h̃d t̃l F

1 h̃d t̃l (G
k[Y][[X]]

∗ H) = h̃d
(
G̃0

k[Y][[X]]

∗ t̃l H
k[Y][[X]]

+ t̃l G
k[Y][[X]]

∗ H
)

Def of
k[Y][[X]]

∗

2 = G0

k[Y]

∗ h̃d t̃l H
k[Y]

+ h̃d t̃l G
k[Y]

∗ H0
Def of

k[Y][[X]]

∗

3
= G0

k[Y]

∗ h̃d H∗ mod H0

k[Y]

+ (h̃d G∗
k[Y]

+ h̃d E
k[Y]

∗ G0)
k[Y]

∗ H0

Def of H, G

4
= G0

k[Y]

∗ h̃d H∗ mod H0

k[Y]

+ (Gp

k[Y]

∗ h̃d U +G0

k[Y]

∗ h̃d H∗ quot H0)
k[Y]

∗ H0

Def E

5
= G0

k[Y]

∗
(
(h̃d H∗ quot H0)

k[Y]

∗ H0

k[Y]

+ h̃d H∗ mod H0

)
k[Y]

+ Gp

k[Y]

∗ h̃d U
k[Y]

∗ H0

rewriting

6 = G0

k[Y]

∗ h̃d H∗
k[Y]

+ Gp

k[Y]

∗ h̃d U
k[Y]

∗ H0
prop of polynomial div

7 = G0

k[Y]

∗ Hp

k[Y]

∗ h̃d U
k[Y]

+ Gp

k[Y]

∗ h̃d U
k[Y]

∗ H0
Def of H∗

8 = h̃d U G0 Hp +H0 Gp = 1

9 = h̃d t̃l F Def of U

Since t̃l t̃l (G
k[Y][[X]]

∗ H) Rlemm t̃l t̃l F and h̃d t̃l (G
k[Y][[X]]

∗ H) = h̃d t̃l F , then

by Rlemm
3rd we get that t̃l (G

k[Y][[X]]

∗ H) Rlemm t̃l F . By the assumption of the

lemma we have h̃d (G
k[Y][[X]]

∗ H) = G0

k[Y]

∗ H0 =
k[Y]

≈ h̃d F . Thus again by inductive

step Rlemm
3rd we get that G

k[Y][[X]]

∗ H Rlemma F . Since Rlemma is a bisimulation we have

G
k[Y][[X]]

∗ H
k[Y][[X]]

≈ F .

Implementation note V.1: For the same reasons stated in note IV.1. The imple-

54

mentation of Hensel’s lemma comes in two flavors; a monadic one that uses the type

of streams

newtype (Monad m)=> Stream m a = Cons (a ,m (Stream m a))

and a purely functional one that uses the usual type Haskell type of streams

data Stream a = Cons a (Stream a)

5.3 The inverse morphism k[Y][[X]]→ k[[X]][Y]

We just proved that F (X, Y) seen as a power series (φ(F (X, Y))) is a product of

two power series G,H ∈ k[Y][[X]]. However, we want to show that there exist two

polynomials Gz, Hz ∈ k[[X]][Y] such that there product is equal to F (X, Y). Since φ

is an embedding, then we know that k[Y][[X]] contains an isomorphic copy of the ring

k[[X]][Y]. Then what we need to do amounts to finding the inverse image of G and H

in k[[X]][Y]. In what follows we construct a function ψ : k[Y][[X]]× N→ k[[X]][Y]

and establish that ψ is really the inverse morphism of φ if applied to elements in the

image of φ.

Definition 5.3.1. The function ψ : k[Y][[X]]× N→ k[[X]][Y] is defined as follows

ψ(α, 0) = [m̃ap h̄d α]

ψ(α, n) = m̃ap h̄d α : ψ(m̃ap t̄l α, n− 1)

Where h̄d : k[Y]→ k

h̄d [] = 0k

h̄d a : as = a

55

and t̄l : k[Y]→ k[Y]

t̄l [] = []

t̄l a : as = as

Lemma 5.3.2.

∀α ∈ k[Y][[X]]. t̃l map t̄l α = map t̄l t̃l α

Proof. trivial (omitted)

Lemma 5.3.3.

∀α ∈ k[Y][[X]] ∀n ∈ N. map t̃l ψ(α, n) = ψ(t̃l α, n)

Proof. . By induction on n.

base case: n = 0.

1 map t̃l ψ(α, 0) = map t̃l [m̃ap h̄d α] Def of ψ

2 map t̃l ψ(α, 0) = [m̃ap h̄d (t̃l α)] = ψ(t̃l α, 0) 1, Def of map

step: Assuming the lemma for n

1 map t̃l ψ(α, n+ 1) = map t̃l (m̃ap h̄d α : ψ(map t̄l α, n)) Def of ψ

2 = m̃ap h̄d (t̃l α) : (map t̃l ψ(map t̄l α, n)) 1, Trivial

3 = m̃ap h̄d (t̃l α) : ψ(t̃l (map t̄l α), n) 2, by IH

4 = m̃ap h̄d (t̃l α) : ψ(map t̄l (t̃l α), n) 3, by 5.3.2

5 = ψ(t̃l α, n+ 1) 4, Def of ψ

56

Definition 5.3.4. We define equality on the type k[Y] by extending the intensional

equality on lists as follows

[]
k[Y]

≈ []

[]
k[Y]

≈ 0k[Y]

0k[Y]

k[Y]

≈ []

∀a, b ∈ k ∀as, bs ∈ k[Y]. a = b ∧ as
k[Y]

≈ bs→ (a : as)
k[Y]

≈ (b : bs)

where 0k[Y] = [0k]

Definition 5.3.5. The notion of degree on k[Y] can be defined as a function k[Y]→ N

degk[Y] [] = 0

degk[Y](x : xs) = if xs
k[Y]

≈ 0k[Y] then 0 else 1 + degk[Y](xs)

Lemma 5.3.6.

∀α ∈ k[Y][[X]]. h̃d α
k[Y]

≈ h̄d (h̃d α) : h̃d (m̃ap t̄l α)

Proof. proof is by simple structural induction on h̃d α

base case: h̃d α = []

1 h̄d [] : h̃d (m̃ap t̄l α) = 0k : h̃d (t̄l [] : m̃ap t̄l (t̃l α)) Def of h̄d ,m̃ap

2 = 0k : t̄l [] = 0k = [] Def of t̄l , equality on k[Y]

setp: h̃d α = a : as

1 h̄d (a : as) : h̃d (m̃ap t̄l α) = a : h̃d (t̄l (a : as) : m̃ap t̄l (t̃l α)) Def of h̄d ,m̃ap

2 = a : as Def of t̄l

57

Lemma 5.3.7. For all α ∈ k[Y][[X]] if degk[Y](h̃d α) ≤ n then

h̃d φ(ψ(α, n)) = h̃d α

Proof. By induction on n

base case: n = 0.

1 h̃d φ(ψ(α, 0)) = map h̃d (ψ(α, 0)) Def of φ

2 = map h̃d [m̃ap h̄d α] = [h̃d (m̃ap h̄d α)] 1, Def of ψ,map

3 = [h̄d (h̃d α)] trivial

Since degk[Y](h̃d α) ≤ n by definition 5.3.5 we consider two cases

• h̃d α = [] then from step 3 above we get

h̃d φ(ψ(α, 0)) = [h̄d []] == [0k] = []

by definition of h̄d ,
k[Y]

≈

• h̃d α = a : as and as
k[Y]

≈ 0k[Y] then from setp 3 we get

h̃d φ(ψ(α, 0)) = [h̄d (a : as)] = [a] = a : as

by def of h̄d and
k[Y]

≈

58

setp: Assuming the statement is true for some n

1 h̃d φ(ψ(α, n+ 1)) = map h̃d (ψ(α, n+ 1)) Def of φ

2 = h̃d (m̃ap h̄d α) : map h̃d (ψ(m̃ap t̄l α, n)) Def of ψ, m̃ap

3 = h̄d (h̃d α) : map h̃d (ψ(m̃ap t̄l α, n)) trivial

4 = h̄d (h̃d α) : h̃d (m̃ap t̄l α) by IH

5 = h̃d α by 5.3.6

Proposition 5.3.8. For α ∈ k[Y][[X]], If ∃n ∈ N. ∀j ∈ N. degk[Y](h̃d t̃l
j
α) ≤ n

then φ(ψ(α, n))
k[Y][[X]]

≈ α

Proof. we define S as

• ∃n ∈ N. ∀j ∈ N. degk[Y](h̃d t̃l
j
α) ≤ n

then φ(ψ(α, n)) S α

The heads are equal by 5.3.7, now we show assuming that φ(ψ(α, n)) S α we have

φ(ψ(t̃l α, n)) S t̃l α. for n = 0 the proof is trivial, we consider when n > 0

1 t̃l φ(ψ(α, n)) = φ(map t̃l ψ(α, n)) Def of φ

2 = φ(t̃l (m̃ap h̄d α) : map t̃l ψ(m̃ap t̄l α, n− 1)) Def of ψ

3 = φ(m̃ap h̄d (t̃l α) : map t̃l ψ(m̃ap t̄l α, n− 1)) trivial

4 = φ(m̃ap h̄d (t̃l α) : ψ(t̃l (m̃ap t̄l α), n− 1)) 5.3.3

5 = φ(m̃ap h̄d (t̃l α) : ψ(m̃ap t̄l (t̃l α), n− 1)) 5.3.2

6 = φ(ψ(t̃l α), n) Def of ψ

7 S (t̃l α) Def of S

59

In the last step implicitly uses the fact that if ∀j ∈ N. degk[Y](h̃d t̃l
j
α) ≤ n the

∀j ∈ N. degk[Y](h̃d t̃l
j
(t̃l α)) ≤ n

Now if we can prove that the property ∀j ∈ N. degk[Y](h̃d t̃l
j
(t̃l α)) ≤ n is true for

H and G we obtained in (*), then we can use ψ to get their pre-image in k[[X]][Y].‘

Lemma 5.3.9.

∀n ∈ N.∀α ∈ k[Y][[X]].∀A ∈ k[Y].

degk[Y](A) > 0→ degk[Y](h̃d t̃l
n

m̃ap (λz → z mod A) α) < degk[Y](A)

Proof. By induction on n. Let degk[Y] = m > 0

base case: n = 0, by property of polynomial division

degk[Y](h̃d m̃ap (λz → z mod A) α) = degk[Y]((h̃d α) mod A) < m

step: assuming the statement is true for n.

degk[Y](h̃d t̃l
n+1

m̃ap (λz → z mod A) α)

= degk[Y](h̃d t̃l
n

m̃ap (λz → z mod A) t̃l α) (by def of map)

< m (by IH)

We cannot define the notion of degree for k[[X]][Y] the way we did for k[Y] since

we need to assume that equality on k[[X]] is decidable. Which is not. We use the

following definition to

Definition 5.3.10. For some L ∈ k[[X]][Y] We say that Dg (L) ≤ n for some n ∈ N

if and only if ∀n < i < len (L). L(i)
k[[X]][Y]

≈ 0k[[X]][Y]. Where len is the length function

on lists and L(i) is the element of index i in L.

Lemma 5.3.11. For f ∈ k[[X]][Y], Dg (map t̃l f) ≤ Dg (f)

60

Proof. The proof is straight forward by noting that len (f) = len (map t̃l f) and

(map t̃l f)(i) = t̃l f(i). We omit it here.

Corollary 5.3.12. If f ∈ k[[X]][Y] is monic of degree n, Dg (m̃ap tl f) < n

Lemma 5.3.13. For f ∈ k[[X]][Y], if Dg (f) ≤ n then

∀j ∈ N. degk[Y](h̃d t̃l
j
φ(f)) ≤ n

Proof. The proof is straight forward by noting that len (f) = len (map t̃l f) and

(map t̃l f)(i) = t̃l f(i). We omit it here.

Proposition 5.3.14. For the equation system (*)

U
k[Y][[X]]

≈ (G0 : 0k[[X]][Y])
k[[X]][Y]

∗ t̃l H
k[[X]][Y]

+ (H0 : 0k[[X]][Y])
k[[X]][Y]

∗ t̃l G

Proof. let T be defined

1. For all α, β ∈ k[Y][[X]] If α
k[Y][[X]]

≈ β then α T β

2. For all α, β, γ ∈ k[Y][[X]] If α T β then (α
k[Y][[X]]

− γ) T (β
k[Y][[X]]

− γ)

3. For all α, β, γ ∈ k[Y][[X]] If α T β and β T γ then α T γ

Clearly T is a bisimulation. We proof that

U T (G0 : 0k[[X]][Y])
k[[X]][Y]

∗ t̃l H
k[[X]][Y]

+ (H0 : 0k[[X]][Y])
k[[X]][Y]

∗ t̃l G

1 h̃d U = h̃d t̃l F Def of U

2 = h̃d ((G0 : 0k[Y][[X]])
k[Y][[X]]

∗ t̃l H
k[Y][[X]]

+ t̃l G
k[Y][[X]]

∗ H) Def of U

3 = h̃d ((G0 : 0k[Y][[X]])
k[Y][[X]]

∗ t̃l H)
k[Y]

+ h̃d t̃l G
k[Y]

∗ H0 Def of h̃d , H

4 = h̃d ((G0 : 0k[Y][[X]])
k[Y][[X]]

∗ t̃l H)
k[Y]

+ h̃d t̃l G
k[Y]

∗ h̃d (H0 : 0k[Y][[X]]) rewriting

5 = h̃d ((G0 : 0k[Y][[X]])
k[Y][[X]]

∗ t̃l H
k[Y][[X]]

+ (H0 : 0k[Y][[X]])
k[Y][[X]]

∗ t̃l G) Def of h̃d

61

1 t̃l U = t̃l t̃l F
k[Y][[X]]

− t̃l G
k[Y][[X]]

∗ t̃l H Def of U

2 T
(
t̃l t̃l (G

k[Y][[X]]

∗ H)
k[Y][[X]]

− t̃l G
k[Y][[X]]

∗ t̃l H
)

5.2.4, IH T

3

k[Y][[X]]

≈ (G0 : 0k[Y][[X]])
k[Y][[X]]

∗ t̃l t̃l H

k[Y][[X]]

+ (H0 : 0k[Y][[X]])
k[Y][[X]]

∗ t̃l t̃l G

k[Y][[X]]

+ t̃l H
k[Y][[X]]

∗ t̃l G
k[Y][[X]]

− t̃l G
k[Y][[X]]

∗ t̃l H

Def of
k[Y][[X]]

∗ , 4.3.8

4 = (G0 : 0k[Y][[X]])
k[Y][[X]]

∗ t̃l t̃l H
k[Y][[X]]

+ (H0 : 0k[Y][[X]])
k[Y][[X]]

∗ t̃l t̃l G rewriting

5 = t̃l
(
(G0 : 0k[Y][[X]])

k[Y][[X]]

∗ t̃l H)
k[Y][[X]]

+ (H0 : 0k[Y][[X]])
k[Y][[X]]

∗ G
)

Def of
k[Y][[X]]

∗+

6 t̃l U T t̃l
(
(G0 : 0k[Y][[X]])

k[Y][[X]]

∗ t̃l H)
k[Y][[X]]

+ (H0 : 0k[Y][[X]])
k[Y][[X]]

∗ G
)

1-5, Def of T

Corollary 5.3.15. rewriting the previous result we get

∀q. U(q)
k[Y]

≈ H0

k[Y]

∗ G(q + 1) +G0

k[Y]

∗ H(q + 1)

Lemma 5.3.16. For the equation system (*)

T1(q) : ∀q. degk[Y](U(q)) < degk[Y](F (0))

T2(q) : ∀q. degk[Y](G(q + 1)) < degk[Y](G0) T3(q) : ∀q. degk[Y](H(q + 1)) < degk[Y](H0)

Proof. The proof is by mutual induction on q

By the premise of the lemma we know that degk[Y](G0) = r and degk[Y](H0) = s where

r + s = n = degk[Y](F (X, Y))

Base case: q = 0

Since F (X, Y) is monic of degree n by 5.3.12 and 5.3.13 we know that degk[Y](F (1)) <

n. By definition of U , degk[Y](U(0)) = degk[Y](F (1)). Hence By definition of U ,

62

degk[Y](U(0)) < n. By 5.3.15 and properties of polynomials

degk[Y](G(1)) = degk[Y](U(0)
k[Y]

− G0

k[Y]

∗ H(1))− degk[Y](H0).

By 5.3.9 and definition of H we get that degk[Y](H(1)) < s, hence

degk[Y](G0

k[Y]

∗ H(1)) < r + s = n. Since degk[Y](U(0)) < n we get that

degk[Y](U(0)
k[Y]

− G0

k[Y]

∗ H(1)) < n again by properties of polynomials. Thus

degk[Y](G(1)) < r = degk[Y](G0)

Inductive step: Assuming T1(n), T2(n) and T3(n)for some n

By similar argument degk[Y](G(n+ 1)) < r = degk[Y](G0) hence T2(n+ 1) and by 5.3.9

and definition of H we get degk[Y](H(n+ 1)) < s = degk[Y](H0) hence T3(n+ 1). Then

T1(n+ 1) follows by 5.3.15 and simple properties of polynomials.

Now we combine the previous results to give a proof of the Hensel’s lemma as

stated in theorem 5.0.1.

proof of theorem 5.0.1. By 5.3.8 and 5.3.16 we get that φ(ψ(G, r)) = G and φ(ψ(H, s)) = H.

Since φ is a homomorphism and by proposition 5.2.4 we get that

φ(ψ(G, r)
k[[X]][Y]

∗ ψ(H, s))
k[Y][[X]]

≈ G
k[Y][[X]]

∗ H
k[[X]][Y]

≈ φ(F (X, Y))

By injectivity of φ (proposition 5.1.15) we get that

ψ(G, r)
k[[X]][Y]

∗ ψ(H, s)
k[[X]][Y]

≈ F (X, Y)

Completing the proof Hensel’s lemma.

63

Part III

Finale

64

CHAPTER VI

Newton theorem

In this chapter we present Newton theorem as an application to the work developed

in parts I and II.

6.1 Newton theorem

The statement of Newton theorem is as follows

Theorem 6.1.1 (Newton theorem). For an algebraically closed field k of zero char-

acteristic, given a monic polynomial of degree n

F (X, Y) = Y n + a1(X) Y n−1 + ...+ an(X) ∈ k[[x]][Y]

there exist a positive integer m such that

F (X, Y) =
n∏

i=1

(
Y − ηi(X1/m)

)
, ηi(X

1/m) ∈ k[[X1/m]]

The standard method for obtaining this linear factorization is the famous Newton-

Puiseux algorithm. The approach we follow is a new approach presented by Ab-

hyankar [1]. The main idea of the proof is reducing the polynomial to one on which

Hensel’s lemma can be applied. Then by application of Hensel’s lemma factors of

smaller degrees are obtained. Repeating this process at most n times we obtain the

linear factors. In its general form as presented in [1] the proof is not fully construc-

tive. It relies on the ability to test if a polynomial in k[[X]][Y] is the zero polynomial

which is obviously undecidable. To remedy we consider only polynomials that satisfy

some condition.

Theorem 6.1.2 (Weak Newton theorem). For an algebraically closed field k of zero

65

characteristic, Let

F (X, Y) = Y n + a1(X) Y n−1 + ...+ an(X) ∈ k[[X]][Y]

be a a monic polynomial of degree n > 1 such that gcd(F, FY) = 1 in k((X))[Y],

where FY is the Y derivative of F . Then there exist a positive integer m such that

F (X, Y) =
n∏

i=1

(
Y − ηi(X1/m)

)
, ηi(X

1/m) ∈ k[[X1/m]]

Proof. The strategy is to find two coprime factors of F (0, Y) then use Hensel’s lemma

to lift those to factors of F (X, Y) in k[[X]][Y]. Then we inductively repeat the process

for the obtained factors. We need to ensure that these factors exist, i.e. F (0, Y) 6=

(Y +a)n for all a ∈ k and n > 1. Now if F (0, Y) = (Y + a)n then either F (0, Y) = Y n

when a = 0 or , since k is of characteristic 0, F (0, Y) = Y n + naY n−1 + ...+ an (na 6= 0).

To exclude the latter we kill the (n− 1)th coefficient in F (X, Y), this amounts to

adding a1(X)/n to the roots of F (X, Y). Doing this we get

F1(X, Y) = F (X, Y − a1(X)/n) = Y n + ã1(X)Y n−1 + ...+ ãn(X)

such that ã1(X) = 0. Clearly, F (0, Y − a1(X)/n) 6= (Y + a)n for a 6= 0. To ensure

that F (0, Y −a1(X)/n) 6= Y n, we multiply the roots of F (X, Y −a1(X)/n) such that

one of ãi(X) 6= 0 at X = 0. To multiply by X−d we construct

F2(X, Y) = X−dnF1(X,X
dY) = Y n+ã1(X)X−dY n−1+...+ãi(X)X−diY n−i+...+ãn(X)X−dn

We need to adjust the value d such that ãi(0) 6= 0 for some i and for all j

ãj(X) ∈ k[[X]]. Thus we take d =
n

min
i=1

(
ord ãi(X)/i

)
. Since d might be a rational

number, say d = d1/d2 yet another change of the polynomial is due. We change the

66

indeterminate in the coefficients to X̂ where X̂d2 = X to get

F3(X̂, Y) = X̂−d1nF1(X̂
d2 , X̂d1Y) = Y n + â1(X̂)Y n−1 + ...+ âi(X̂)Y n−i + ...+ ân(X̂)

The condition that gcd(F, FY) = 1 guarantees that d 6= ∞, i.e. that for some i

we have ãi(X) 6= 0. Since otherwise, F (X, Y − a1(X)/n) = Y n (n > 1). Hence

F (X, Y) = (Y + a1(X)/n)n which is impossible for the square free F (X, Y). This

means that for all a we have F3(0, Y) 6= (Y + a)n for n > 1 and we can find two

coprime factors of F3(0, Y). We apply Hensel’s lemma to lift those factors to factors

of F3(X, Y) and then repeat the process for the obtained factors until linear factors are

obtained. The process is guaranteed to end in at most n− 1 steps. The linear factors

obtained would be in the form Y − b(X1) where b(X1) ∈ k[[X1]] and Xm
1 = X for

some m. Note that since gcd(F, FY) = 1 then for any G | F we have gcd(G,GY) = 1.

Thus the same argument holds as we proceed inductively.

Remark 6.1.3. We note that the proof of theorem 6.1.2 is not fully constructive.

Markov’s principle was used to justify that if F1(X, Y) 6= Y n, i.e. ¬∀i. ãi(X) = 0

then ∃i. ãi(X) 6= 0, for 0 < i ≤ n.

Implementation note VI.1 (Newton theorem): The processes on the root (ad-

dition, multiplication..etc) lend themselves to another state monad. For example

addition of d to the roots of a polynomial F (X, Y) can be done by changing the

polynomial indeterminate from Y to Z where Z = Y + d to get F (X,Z). Then we

can keep track of the such change be adding Z = Y + d to the state. With the

current base library however, this was not possible since the indeterminates are just

phantom types. So a polynomial F1 = Z and a polynomial F2 = Y are identical;

a list [0,1]. As a solution each recursive call reverts the changes to the roots it

introduced. However, not all changes can be reverted. In particular the change of the

coefficients indeterminates from X to some X ′ where X ′d = X cannot be reflected

in the power series directly. This is because the power of the indeterminate must

67

be a natural number, in fact it is the position of the coefficient in the stream that

determines the power of the indeterminate. As a work around the program returns

with the list of linear factors a natural number d mainly saying that the roots are

power series in X1/d. Hence the function signature

newton1 :: (Field k, Eq k) => F (ST (S k)) (R k) x y

-> ST (S k) (Integer, [F (ST (S k)) (R k) x y])

Where F (ST (S k)) (R k) x y is a type synonym for polynomials in y with power

series coefficients in x over R k. R k is the type of algebraic closure for a field k

and ST (S k) is the state monad where the state (S k) is a list of polynomials

denoting the algebraic numbers obtained. To recall these definitions in more details

see implementation notes II.1 and II.3.

After altering the roots we use the algebraic closure function root to obtain a

root p of F (0, Y). Then divide by p iteratively until we get q such that F (0, Y) = pnq

and p - q.

twoCopDec :: (Field k, Eq k) => UPoly (R k) y

-> ST (S k) (UPoly (R k) y, UPoly (R k) y)

Then by applying Hensel’s lemma we get two factors of F (X, Y) on which we recur-

sively call the function newton1. As a result we get two tuples (d1, factors1) and

(d2, factors2). Since it might be the case that d1 and d2 are not equal, i.e. in

factor1 the coefficients are power series in X1/d1 while in factor2 they are in X1/d2

(d1 6= d2). We have to process these factors such that the coefficients in both are

power series in X1/lcm (d1,d2).

6.2 Examples

Here we show two examples of Newton theorem at work in which we find the

branches of two simple plane curves.

68

Implementation note VI.2 (UI): We also coded a small parser1 and pretty printer

for Newton algorithm. The output is printed as a pair State and Result. The state

specifies the the algebraic closure (see II) while the result is the linear factors of the

polynomial.

Example 6.2.1 (The node): Figure 6.1 shows the node plane curve Y 2 +X2(X + 1) = 0.

Figure 6.1: Y 2 +X2(X + 1) = 0

Applying the algorithm to this curve we get

> Y^2+X^3+X^2

State: a^2+1=0

Result: (Y-aX-1/2aX^2+1/8aX^3-1/16aX^4+ ...) (Y+aX+1/2aX^2-1/8aX^3+1/16aX^4+...)

Example 6.2.2 (The folium of Descartes): The folium of Descartes plane curve is

defined by the equation Y 3 +X3 − 3XY = 0. The curve is shown in figure 6.2.
1The parser was built using BNF converter www.digitalgrammars.com/bnfc (visited May 2010).

69

Figure 6.2: Y 3 +X3 − 3XY = 0

Applying the algorithm to this polynomial we get

> Y^3+X^3-3XY

State: a=0,b^2-3=0

Result: (Y-1/3X^2+ ...) (Y-bX^1/2+1/6X^2+ ...) (Y+bX^1/2+1/6X^2+ ...)

State: a^2-3=0,b^2-3/4=0

Result: (Y-aX^1/2+1/6X^2+ ...) (Y+(-b+1/2a)X^1/2+(-1/6ab-1/12)X^2+ ...)

(Y+(b+1/2a)X^1/2+(1/6ab-1/12)X^2+ ...)

70

CHAPTER VII

Conclusion

7.1 Discussion

Here we give some final remarks about the project and highlight some issues that

deserves further investigation from our point of view.

7.1.1 Regularity property for Hensel’s lemma

As the reader might have noticed reading part II, coinductive proofs even for

simple propositions tend to be very long. They sometimes also become quite com-

plicated; see for example the proofs in sections 5.1 and 5.3. It is worthwhile to see

if starting from a polynomial F (X, Y) ∈ k[X][Y] the coefficients of the lifted factors

generated by one or more repeated application of Hensel’s lemma admit some regu-

larity property. In other words if these coefficients are recognizable1 power series. In

this case it would be possible to do without coinduction since these series could be

finitely represented.

7.1.2 Complexity

No complexity analysis of the constructions presented have been done. The exper-

imental observation of Newton algorithm indicate a high complexity. The program

also tend to occupy a big stack space, most probably exponential in the degree of

the input polynomial. The stack space problem can hopefully be remedies by some

optimization; mainly by re-implementing the functions tail recursively.

7.1.3 Haskell

Haskell is a good choice for mathematical programming. In its purely functional

style, there is a conspicuous correspondence between the resulting algorithms and
1By recognizable we mean recognizable by a finite k-nondeterministic automata.

71

the mathematical (constructive) proof. This correspondence becomes less clear when

monadic computation is involved.

The lack of dependent types in Haskell causes some limitations. For example it

is not obvious how the characteristic of a field can be encoded in the field definition.

Another example is the problem of variable change of a polynomial discussed in

implementation note VI.1 which can be easily solved if dependent types were available.

7.2 Future work

In the near future the plan is to optimize the code and analyze the complexity of

the algorithms involved. One possible extension is to implement Hensel’s lemma over

more general/abstract structure than polynomials with power series coefficients, see

[3] .

The next step would be constructing a logical model for the algebraic closure and

a formal proof of Newton theorem based on the proof of theorem 6.1.2. Then it would

be possible to implement the whole program in a proof assistant such as Agda or Coq.

72

BIBLIOGRAPHY

[1] S S Abhyankar. Algebraic geometry for scientists and engineers. American
Mathematical Society, 1990.

[2] P Aczel. Non-well-founded sets. number 14. In Notes. Stanford University, 1988.

[3] Maria Emilia Alonso, Henri Lombardi, and Hervé Perdry. Elementary construc-
tive theory of henselian local rings. Math. Log. Q., 54(3):253–271, 2008.

[4] Errett Bishop. Foundations of constructive analysis. McGraw-Hill, 1967.

[5] Henry Thomas Colebrooke. Algebra with Arithmetic of Brahmagupta and
Bhaskara. London, 1817.

[6] Thierry Coquand. Infinite objects in type theory. In In Types for Proofs and
Programs, International Workshop TYPES’93, volume 806 of LNCS, pages 62–
78, 1994.

[7] Thierry Coquand. A completeness proof for geometrical logic. In Westerstahl
Hajek, Valdes-Villuaneva, editor, Logic, Methodology and Philosophy of Sciences.
Preceedings of the Twelfth International Congress, pages 79–90, 2005.

[8] D.Duval. Diverses questions relatives au calcul formel avec des nombres al-
gébriques. PhD thesis, Institut Fourier, Grenoble, 1987.

[9] P. Duren et al. A century of mathematics in america: Part ii. American Math-
ematical Society, 1989.

[10] A. Fröhlich and J. C. Shepherdson. On the factorisation of polynomials in a
finite number of steps. Mathematische Zeitschrift, 62:331–334.

[11] Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction.
EATCS Bulletin, 62:62–222, 1997.

[12] D.Duval J.Della Dora, C.Dicrescenzo. About a new method for computing in
algebraic number fields. In EUROCAL ’85, pages 289–290. 1985.

[13] Teo Mora. Solving Polynomial Equation Systems I. Cambridge University Press,
2002.

[14] Wim Ruitenburg Ray Mines, Fred Richman. A Course in Constructive Algebra.
Universitext. Springer, 1987.

[15] David E. Rowe and John McCleary. The History of Modern Mathematics: Ideas
and their reception. Academic Pr, 1990.

73

[16] Werner DePauli-Schimanovich; Eckehart Köhler; F. Stadler. The foundational
debate: Complexity and constructivity in mathematics and physics. Vienna
Circle Institute Yearbook. Springer, 1995.

[17] Allan K. Steel. Computing with algebraically closed fields. J. Symb. Comput.,
45(3):342–372, 2010.

[18] Van Der Waerden. Eine bemerkung über die unzerlegbarkeit von polynomen.
Math. Annalen, 102:738–739, 1930.

74

APPENDIX
Proof of proposition 5.1.5

Proof. By induction on
k[[X]][Y]

∗
Base case: [a]

k[[X]][Y]

∗ [b] = [a
K[[X]]

∗ b]

1 map t̃l ([a]
k[[X]][Y]

∗ [b]) = map t̃l [a
K[[X]]

∗ b] Def of
k[[X]][Y]

∗

2 = [t̃l (a
K[[X]]

∗ b)] = [(h̃d a : 0K[[X]]

K[[X]]

∗ t̃l b)
K[[X]]

+ t̃l a
K[[X]]

∗ b] Def of
K[[X]]

∗ ,map

3 = [h̃d a : 0K[[X]]

K[[X]]

∗ t̃l b]
k[[X]][Y]

+ [t̃l a
K[[X]]

∗ b] Def of
k[[X]][Y]

+

4 = [h̃d a : 0K[[X]]]
k[[X]][Y]

∗ [t̃l b]
k[[X]][Y]

+ [t̃l a]
k[[X]][Y]

∗ [b] Def of
k[[X]][Y]

∗

5
= map (λz → h̃d z : 0K[[X]])[a]

k[[X]][Y]

∗ map t̃l [b]

k[[X]][Y]

+ map t̃l [a]
k[[X]][Y]

∗ [b]
Def of map

Step : a : as
k[[X]][Y]

∗ [b] = (a
K[[X]]

∗ b) : (as
k[[X]][Y]

∗ [b])

6 map t̃l (a : as
k[[X]][Y]

∗ [b])

7 = map t̃l ((a
K[[X]]

∗ b) : (as
k[[X]][Y]

∗ [b])) Def of
k[[X]][Y]

∗

8
= (h̃d a : 0K[[X]]

K[[X]]

∗ t̃l b
K[[X]]

+ t̃l a
K[[X]]

∗ b)

: map t̃l (as
k[[X]][Y]

∗ [b])
Def of map , t̃l

9
= [h̃d a : 0K[[X]]

K[[X]]

∗ t̃l b]
k[[X]][Y]

+ [t̃l a
K[[X]]

∗ b]

k[[X]][Y]

+ 0K[[X]] : map t̃l (as
k[[X]][Y]

∗ [b])
Def of

k[[X]][Y]

+

10

= [h̃d a : 0K[[X]]

K[[X]]

∗ t̃l b]
k[[X]][Y]

+ [t̃l a
K[[X]]

∗ b]

k[[X]][Y]

+ 0K[[X]] : map (λz → h̃d z : 0K[[X]]) as
k[[X]][Y]

∗ map t̃l [b]

k[[X]][Y]

+ 0K[[X]] : map t̃l as
k[[X]][Y]

∗ [b]

(IH), Def of
k[[X]][Y]

+

11
= (h̃d a : 0K[[X]]

K[[X]]

∗ t̃l b) : map (λz → h̃d z : 0K[[X]]) as
k[[X]][Y]

∗ [t̃l b]

k[[X]][Y]

+ (t̃l a
K[[X]]

∗ b) : map t̃l as
k[[X]][Y]

∗ [b]
Def of

k[[X]][Y]

+

12
= ((h̃d a : 0K[[X]]) : map (λz → h̃d z : 0K[[X]]) as)

k[[X]][Y]

∗ [t̃l b]

k[[X]][Y]

+ (t̃l a : map t̃l as)
k[[X]][Y]

∗ [b]
Def of

k[[X]][Y]

∗

13
= map (λz → h̃d z : 0K[[X]]) (a : as)

k[[X]][Y]

∗ map t̃l [b]

k[[X]][Y]

+ map t̃l (a : as)
k[[X]][Y]

∗ [b]
Def of map

75

Step : [a]
k[[X]][Y]

∗ b : bs = (a
K[[X]]

∗ b) : bs
Similar to the previous case
Step:

(a : as)
k[[X]][Y]

∗ (b : bs) =[a
K[[X]]

∗ b]
k[[X]][Y]

+ (0K[[X]] : [a]
k[[X]][Y]

∗ bs)
k[[X]][Y]

+ (0K[[X]] : as
k[[X]][Y]

∗ [b])
k[[X]][Y]

+ (0K[[X]] : 0K[[X]] : as
k[[X]][Y]

∗ bs)

14 map t̃l (a : as
k[[X]][Y]

∗ b : bs)

15

= map t̃l [a
K[[X]]

∗ b]

k[[X]][Y]

+ map t̃l (0K[[X]] : [a]
k[[X]][Y]

∗ bs)

k[[X]][Y]

+ map t̃l (0K[[X]] : as
k[[X]][Y]

∗ [b])

k[[X]][Y]

+ map t̃l (0K[[X]] : 0K[[X]] : as
k[[X]][Y]

∗ bs)

5.1.3

16

= [(h̃d a : 0K[[X]])
K[[X]]

∗ t̃l b]
k[Y][[X]]

+ [t̃l a
K[[X]]

∗ b]

k[[X]][Y]

+ 0K[[X]] : map t̃l ([a]
k[[X]][Y]

∗ bs)

k[[X]][Y]

+ 0K[[X]] : map t̃l (as
k[[X]][Y]

∗ [b])

k[[X]][Y]

+ 0K[[X]] : 0K[[X]] : map t̃l (as
k[[X]][Y]

∗ bs)

Def of
K[[X]]

+ ∗ ,map , t̃l

17

= [(h̃d a : 0K[[X]])
K[[X]]

∗ t̃l b]
k[Y][[X]]

+ [t̃l a
K[[X]]

∗ b]

k[[X]][Y]

+ 0K[[X]] : [a : 0K[[X]]]
k[[X]][Y]

∗ map t̃l bs

k[[X]][Y]

+ 0K[[X]] : [t̃l a]
k[[X]][Y]

∗ bs

k[[X]][Y]

+ 0K[[X]] : map (λz → h̃d z : 0K[[X]]) as
k[[X]][Y]

∗ [t̃l b]

k[[X]][Y]

+ 0K[[X]] : map t̃l as
k[[X]][Y]

∗ [b]
)

k[[X]][Y]

+ 0K[[X]] : 0K[[X]] : map (λz → h̃d z : 0K[[X]]) as
k[[X]][Y]

∗ map t̃l bs

k[[X]][Y]

+ 0K[[X]] : 0K[[X]] : map t̃l as
k[[X]][Y]

∗ bs

(IH)

76

18

= 0K[[X]] : [h̃d a : 0K[[X]]]
k[[X]][Y]

∗ map t̃l bs

k[[X]][Y]

+ 0K[[X]] : [t̃l a]
k[[X]][Y]

∗ bs

k[[X]][Y]

+ ((h̃d a : 0K[[X]])
K[[X]]

∗ t̃l b) : map (λz → h̃d z : 0K[[X]]) as
k[[X]][Y]

∗ [t̃l b]

k[[X]][Y]

+ (t̃l a
K[[X]]

∗ b) : map t̃l as
k[[X]][Y]

∗ [b]
)

k[[X]][Y]

+ 0K[[X]] : 0K[[X]] : map (λz → h̃d zs : 0K[[X]]) as
k[[X]][Y]

∗ map t̃l bs

k[[X]][Y]

+ 0K[[X]] : 0K[[X]] : map t̃l as
k[[X]][Y]

∗ bs

def of
k[[X]][Y]

+

19

= (0K[[X]] : (h̃d a : 0K[[X]]))
k[[X]][Y]

∗ map t̃l bs

k[[X]][Y]

+ (0K[[X]] : t̃l a)
k[[X]][Y]

∗ bs

k[[X]][Y]

+ ((h̃d a : 0K[[X]])
K[[X]]

∗ t̃l b) : map (λz → h̃d z : 0K[[X]]) as
k[[X]][Y]

∗ [t̃l b]

k[[X]][Y]

+ (t̃l a
K[[X]]

∗ b) : map t̃l as
k[[X]][Y]

∗ [b]

k[[X]][Y]

+ (0K[[X]] : 0K[[X]] : map (λz → h̃d z : 0K[[X]]) as)
k[[X]][Y]

∗ map t̃l bs

k[[X]][Y]

+ (0K[[X]] : 0K[[X]] : map t̃l as)
k[[X]][Y]

∗ bs

trivial

20

= ((h̃d a : 0K[[X]])
K[[X]]

∗ t̃l b) : map (λz → h̃d z : 0K[[X]]) as
k[[X]][Y]

∗ [t̃l b]

k[[X]][Y]

+ (t̃l a
K[[X]]

∗ b) : map t̃l as
k[[X]][Y]

∗ [b]

k[[X]][Y]

+ (0K[[X]] : (h̃d a : 0K[[X]]) :

map (λz → h̃d z : 0K[[X]]) as)
k[[X]][Y]

∗ map t̃l bs

k[[X]][Y]

+ (0K[[X]] : t̃l a : map t̃l as)
k[[X]][Y]

∗ bs

Def of
k[[X]][Y]

+

21

= map (λz → h̃d z : 0K[[X]]) (a : as)
k[[X]][Y]

∗ map t̃l [b]

k[[X]][Y]

+ map t̃l (a : as)
k[[X]][Y]

∗ [b]

k[[X]][Y]

+ (0K[[X]] : map (λz → h̃d z : 0K[[X]]) (a : as))
k[[X]][Y]

∗ map t̃l bs

k[[X]][Y]

+ (0K[[X]] : map t̃l (a : as))
k[[X]][Y]

∗ bs

Def of map

22
= map t̃l ((a : as)

k[[X]][Y]

∗ [b])

k[[X]][Y]

+ 0K[[X]] : map t̃l ((a : as)
k[[X]][Y]

∗ bs)
(IH)

23
= map t̃l ((a : as)

k[[X]][Y]

∗ [b])

k[[X]][Y]

+ map t̃l (0K[[X]] : (a : as)
k[[X]][Y]

∗ bs)
t̃l 0K[[X]]

24 = map t̃l ((a : as)
k[[X]][Y]

∗ [b]
k[[X]][Y]

+ (0K[[X]] : (a : as)
k[[X]][Y]

∗ bs)) 5.1.3

25 = map t̃l ((a : as)
k[[X]][Y]

∗ [b]
k[[X]][Y]

+ (a : as)
k[[X]][Y]

∗ (0K[[X]] : bs)) trivial

26 = map t̃l ((a : as)
k[[X]][Y]

∗ (b : bs)) 4.3.3

77

