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Goal of this presentation

Introduction to some recent developments in constructive algebra and abstract
functional analysis

This approach can be seen as an application of some basic results in proof
theory: the main one being the completeness of cut-free provability

It can be seen also as a partial realisation of Hilbert’s program and uses the
idea of “replacing” an infinite object by a syntactical one: a logical theory which
describes this object

It has close connections with formal topology: cut-elimination can be expressed
as forcing/topological model over a formal space
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Content of the talks

The first part will explain the method and contains basic examples in algebra,
finite combinatorics and functional analysis

The second part shows how this approach can lead to

-new concept (notion of boundary of element in a ring)

-new simple proof of classical result (Kronecker’s theorem about algebraic
subsets of Cn)

-new mathematical results in algebra: nonNoetherian version of Serre’s
splitting-off theorem (1958) and Forster-Swan’s theorem (1964-67), improving
slightly on breakthrough results of Heitmann (1984)
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Constructive mathematics

Compared to Bishop: alternative approach to infinite objects (reals, continuous
functions, linear functional, . . . )

Compared to Richman/Kronecker: work without requiring a factorisation
algorithm (cf. T. Mora “The Kronecker-Duval Philosophy”)

but we will see that we get a notion of formal “solutions” of system of
equations quite close to the one of Kronecker (notion that was forgotten in more
recent development of constructive mathematics)
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Basic example

Let R be a commutative ring.

Theorem: The intersection of all prime ideals is the set of nilpotent elements

This theorem does not hold in constructive mathematics if we undertand as
prime ideal a subset of R satisfying the usual properties

There are effective non trivial rings with no effective prime ideals

Solution (in constructive mathematics): to replace prime ideals by their
syntactical description

Classically this gives a way to eliminate the use of Zorn’s lemma
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Basic example

We introduce new symbols P (r), r ∈ R and we write the following theory of
a prime ideal

P (0)

¬P (1)

P (rs) ↔ [P (r) ∨ P (s)]

[P (r) ∧ P (s)] → P (r + s)

To say that a belongs to the intersection of all prime ideals is to say that P (a)
is a propositional consequence of this theory

5



Infinite objects in constructive mathematics (1)

Basic example

This is justified classically by the completeness theorem of propositional logic

More generally, the present approach is justified classically by various
completeness theorems (first-order logic, and completeness of infinitary logic)

We change the theorem to the following statement (classically equivalent):
P (a) is a propositional consequence of the theory of a prime ideal if and only if
a is nilpotent

Proofs are finite objects (finite trees); prime ideal are infinite (ideal) objects
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Basic example

Prime ideals were introduced by Kummer by analogy with chemistry

“These ideal complex numbers are comparable to hypothetical radicals that
do not exist by themselves, but only in their combinations.”

Kummer gave an example of an element (fluorine) that, at the time, existed
only hypothetically comparable to a prime ideal (this element was isolated later)

This notion of prime ideal, as introduced by Kummer, was an important
example for Hilbert’s program
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Hyperresolution and geometrical logic

The axioms for the theory of a prime ideal are of a special form: a conjunction
of atomic formulae (facts) implies a disjunction of (conjunction of) atomical
formulae. These are known as geometrical statements

We see the axioms as rules for developping the possible consequences of a
finite set of atomic formulae (facts)

This is a natural generalisation of closure for Horn clauses: we explore the
consequences of a given set of facts using the rules given by the theory

We may have to do branching since we have disjunction

To each branch is associated a set of facts
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The Method of Tree

Here for instance we can explore the consequences of P (r1), . . . , P (rk)

A branch may collapse if ⊥ is derivable (for instance P (r), P (1−r) then P (1)
and ⊥ directly derivable)

An atom P (r) is a consequence iff there exists a finite trees where this atom
P (r), or a contradiction ⊥, appear at all leaves

Example: we can derive ⊥ from P (1− a), P (b2a), P (1− b)
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The Method of Tree

That this method of proof is complete is exactly the completness of
hyperresolution

We can use this special form of deduction to prove that P (r) is a consequence
of P (r1), . . . , P (rk) iff a power of r is in the ideal <r1, . . . , rk>

Tree induction

This method of proofs (“logic without logic”) is described in detail in

Coste Lombardi Roy
“Effective Methods in Algebra, Effective Nullstellensätze”, JPAA 155 (2001)
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The Method of Tree

Each proof tree of P (r) from P (r1), . . . , P (rk) can be decorated by algebraic
identities (Nullstellensatz identities)

Example: we can derive ⊥ from P (1− a), P (b2a), P (1− b)

Tree induction proceeds from the leaves to the top of the tree

1 = b+ (1− b)
1 = b2 + (1 + b)(1− b)

1 = a+ (1− a)
1 = ab2 + b2(1− a) + (1 + b)(1− b)
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The Method of Tree

Theorem: The facts P (r1), . . . , P (rk) are inconsistent iff 1 ∈ <r1, . . . , rk>

We can read an algebraic identity 1 = u1r1 + · · · + ukrk from any tree
derivation of P (r1) ∧ · · · ∧ P (rk) →⊥
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The Method of Tree

Whiteley’s slogans:

“Nullstellensatz identities grow on trees”

“A logical proof guarantees an algebraic proof”

Cf. “Invariant computations for analytic projective geometry”
Journal of Symbolic Computation 11, 1991
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An application

Theorem: If (ΣaiY
i)(ΣbjY j) = ΣckY k we have the Gauss-Joyal equivalence

(∧P (ai)) ∨ (∧P (bj)) ↔ ∧P (ck)

This is clear if we think of P (u) as meaning u is in a generic prime ideal P ,
simply because, since A = R/P is integral, A[Y ] is an integral ring

Say that ΣuiY
i is primitive iff 1 ∈ <ui>

Corollary: The product of primitive polynomials is primitive

We get a constructive proof of this theorem which is similar in structure to
the classical proof which uses prime ideals
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An application

In the case n = m = 1 we have

c0 = a0b0, c1 = a0b1 + a1b0, c2 = a1b1

Given u0, u1, v0, v1 such that

u0a0 + u1a1 = 1 v0b0 + v1b1 = 1

we have to produce w0, w1, w2 such that

w0c0 + w1c1 + w2c2 = 1

The method reduces the use of prime ideals to algebraic identities like

(a0b1)2 = a0b1c1 − c0c2 (a1b0)2 = a1b0c1 − c0c2
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Other example

If K is a field, a valuation ring is a subring V such that for all x 6= 0 we have
x ∈ V or x−1 ∈ V

The atoms are V (x), x ∈ K and the theory is

V (x) ∧ V (y) → V (x+ y) ∧ V (xy)

→ V (x) ∨ V (x−1) if x 6= 0

Theorem: The implication

V (a1) ∧ · · · ∧ V (an) → V (a)

holds iff a is integral over a1, . . . , am
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Other example

Application: If ck = Σi+j=kaibj then each aibj is integral over c0, . . . , cn+m

This is known as Dedekind’s Prague theorem, fundamental in his theory of
ideals (and was actually proved before by Kronecker)

We reason in the field Q(ai, bj) and we show that

V (c0) ∧ · · · ∧ V (cn+m) → V (aibj)

Actually we have

[∧kV (ck)] ↔ [∧i,jV (aibj)]

Any Proof Tree can be decorated by an algebraic identities
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Other example

For n = m = 2 a proof certificate of V (c0) ∧ · · · ∧ V (c4) → V (a0b1) is

(a0b1)6 = p1(a0b1)5 + p2(a0b1)4 + p3(a0b1)3 + p4(a0b1)2 + p5(a0b1) + p6

where
p1 = 3c1, p2 = −3c21 − 2c0c2, p3 = c31 + 4c0c1c2

p4 = −c20c1c3 − 2c0c21c2 − c20c
2
2 + 4c30c4

p5 = c20c
2
1c3 + c20c1c

2
2 − 4c30c1c4

p6 = −c30c1c2c3 + c40c
2
3 + c30c

2
1c4
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The Method of Tree

This method has been also investigated in finite combinatorics

Matijasevitch “The application of the methods of the theory of logical
derivation to graph theory”, 1972

A simple application gives an elegant proof of König’s theorem: a graph
cannot be two-coloured iff it contains a cycle of odd length
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Finite combinatorics

We consider the theory, for i, j, k distincts in a given finite set

R(i, j) ∧R(j, k) ∧R(k, i) →

R(i, j) → R(i, k) ∨R(k, j)

We prove by Tree Induction that the facts F are contradictory iff F contains
a cycle of odd length

König’s theorem is a corollary of this remark: interpret R(i, j) as that i and j
does not have the same colour
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Finite combinatorics

For the pigeon-hole theory, given two finite sets P and H

R(p, h1) ∧R(p, h2) →⊥

R(p1, h) ∧R(p2, h) →⊥

→ ∨h∈HR(p, h)

When is {R(p, h) | (p, h) ∈ X}, X ⊆ P ×H a consequence of this theory?

We prove by tree induction that this holds iff X contains a rectangle P1×H1

with |P | < |P1|+ |H1|

We retrieve in this way Rado’s proof of Hall’s theorem (the “Mariage Lemma”)
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First-order formulation

Whiteley (1971) and Scarpellini (1969) gives a first-order formulation of these
results. In the first-order theory of rings, the terms are polynomials, and the only
predicate is Z(x). The axioms for rings are

Z(0)

Z(x) ∧ Z(y) → Z(x+ y)

Z(x) → Z(xy)

This is a direct theory (no branching) and Z(u) follows from Z(u1), . . . , Z(uk)
iff u ∈ <u1, . . . , uk>
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First-order formulation

We can add the axioms

Z(xy) → [Z(x) ∨ Z(y)] for integral rings

Z(x) ∨ ∃y.Z(1− xy) for fields

∃x.Z(xn + an−1x
n−1 + · · ·+ a0) for algebraically closed fields

The method of tree extends to this case: one may have to introduce new
parameters for the existential quantifications
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First-order formulation

For all these theories Z(u) follows from Z(u1), . . . , Z(uk) iff some power of u
is in <u1, . . . , uk>

This is proved by Tree Induction

In particular Z(u1), . . . , Z(uk) are incompatible iff 1 ∈ <u1, . . . , uk>

This is a simple proof of consistency of the theory of algebraically closed fields
and of Hilbert’s Nullstellensatz
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Construction of the splitting field

Problem: to build the splitting field of a given polynomial

This problem is discussed in detail in the recent book of H. Edwards on
constructive mathematics

It illustrates well the difference with the usual approach to constructive algebra
which requires an algorithm to decide if a polynomial is irreducible or not
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Construction of the splitting field

The logical analysis of the problem is that for building a splitting field of a
polynomial x3 − ax2 + bx− c over a field K we have to show the existence of a
prime ideal in K[x1, x2, x3] containing

x1 + x2 + x3 − a

x1x2 + x2x3 + x3x1 − b

x1x2x3 − c
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Construction of the splitting field

The prime ideal exists formally because the theory that describes it is not
contradictory. We show that the ideal

I = <x1 + x2 + x3 − a, x1x2 + x2x3 + x3x1 − b, x1x2x3 − c>

is proper.

It is easy to see that K[x1, x2, x3]/I is of dimension 6 over K of basis xi1
1 x

i2
2 x

i3
3

with ik < k (decomposition algebra)

This formal version of the Nullstellensatz, in the form of logical consistency,
and notion of logical consequence of a system of equations, was used in algebra
by Kronecker and his followers (Drach, 1898)
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Summary

By replacing infinite objects by their syntactical descriptions we can represent
in constructive mathematics infinite objects in a satisfactory way

By using completeness of hyperresolution/cut-free provability we can associate
nullstellensatz identities to any proof tree directly by Tree Induction
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Interpretation of cut-elimination

These remarks about cut-elimination have been discovered several times:

Lewis Carroll (1890) “Symbolic Logic”, Part II

Skolem (1919): for lattice theory and projective geometry

Scarpellini (1969): Gentzen cut-elimination

Whiteley (1971): Gentzen cut-elimination

Lifschitz (1980): hyperresolution (inspired by Matijasevich 1971)

S. Negri and J. van Plato (1998): axioms as new sequent rules
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Infinitary logics

The same method can be used for objects that are described in a theory that
uses infinitary logic

Classically, as long as we have a completeness theorem, the syntactical
approach is equivalent to the approach with models
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Infinitary logics

Example: theory of linear functional of norms ≤ 1

We introduce the axioms X(a, q) for λ(a) < q

X(a, 1) if |a| < 1

X(a+ b, p+ q) → [X(a, p) ∨X(b, q)]

X(a, p) ∧X(−a,−p) →

X(a, p) → ∨p′<pX(a, p′)

We can still apply the Method of Tree

31



Infinite objects in constructive mathematics (1)

Hahn-Banach

Theorem: The formula X(a1, p1) ∨ · · · ∨ X(ak, pk) is provable iff there is
1 = Σαi with |Σαiai| < Σαipi

In particular if we can prove X(a, p) for all p > 0 we have a = 0

This is a statement of Hahn-Banach theorem

One application is (geometric Hahn-Banach theorem)

Corollary: If X(a, q) → ∨iX(ai, q) for all q ∈ Q then a is in the closed
convex hull of the ai
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Hahn-Banach

In Bishop’s development of functional analysis, Hahn-Banach’s theorem cannot
be proved: a linear functional is presented as a function, and not as a formal
object

The present formal approach avoids these problems
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Infinitary logic

This formal approach, in the case of infinitary logic, has direct connections
with one method used in proof theory to reduce Π1

1-comprehension to inductive
definitions
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Infinitary logic

For instance the Π1
1 statement “the intersection of all positive downward

subsets of Q is {q | q ≤ 0}” can be interpreted proof theoretically

If φ(X) = (∨q>0X(q)) ∧ ∧q1≤q2(X(q2) → X(q1)) then

` φ(X) → X(r) iff r ≤ 0

This statement replaces the quantification over arbitrary subsets of Q by a
statement that uses only inductive definitions

It is itself provable by Tree Induction
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Interpretation of cut-elimination

There is an alternative presentation of cut-elimination which has connection
with formal topology and Beth models/forcing

This alternative presentation gives a “semantical” way to prove completeness
of hyperresolution and gives an algorithm to transform an arbitrary proof in an
hyperresolution proof

One uses a notion of forcing/topological models, where the forcing conditions
are finite set of atomic formulae (like in Grzegorczyk’s interpretation of
intuitionistic logic)

cf. J. Avigad “Forcing in proof theory”
Bulletin of Symbolic Logic, 2004
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Interpretation of cut-elimination

We define X  φ by induction on φ

X  p iff there is a tree derivation of p from X

X  φ→ ψ iff X ⊆ Y and Y  φ imply Y  ψ

X  φ ∧ ψ iff X  φ and X  ψ

X  φ ∨ ψ iff there is a tree derivation from X of leaves X1, . . . , Xk with
Xi  φ or Xi  ψ for all i

Theorem: If X ` φ then X  φ

In particular if X ` p then there is a tree derivation of p from X
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Interpretation of cut-elimination

One can look at this forcing relation as defining a topological model: the
semantics of a formula φ is {X | X  φ}

This gives the following interpretation of the present method: it may be
impossible to find effectively a model for the predicate X in a standard way, but
it is possible to find a topological model for X

This forcing interpretation extends to first-order and infinitary logic
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Geometric logic and cut-elimination

In order to apply the method of Tree Induction/Beth model we have to work
with axioms of the form

C → C1 ∨ · · · ∨ Ck or

C → ∨nCn or

C → E1 ∨ · · · ∨ Ek

where C,Ci are finite conjunction of atoms, and Ej existential quantification
of conjunction of atoms
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Geometric logic and cut-elimination

What is interesting is the intuition from topology/topological models and
connection with sheaf models

One aspect of works of C. Mulvey (functional analysis) and G. Wraith (Galois
theory) has been precisely to reexpress classical theorems in a geometrical form.
(But they did not try to analyse the direct proofs.)
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Factorisation of primes

In constructive algebra, as developped by Kronecker, Richman, one insists of
effective factorisation in primes

Analogy: to prove x2|y2 → x|y one would use decomposition in prime factors

The primes are like infinite objects, they are best described by their syntactical
theories, but they exist in general only ideally
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Factorisation of primes

For x2|y2 → x|y we can give argument that uses only facts about gcd instead
of decomposition in primes

The argument will use only a partial factorisation x = ux1 and y = uy1 with
u = gcd(x, y)

More generally, the algorithms implicit in the arguments that we get using the
present formal approach to infinite objects are computationally more reasonable
than the ones we get by insisting on prime decompositions. This is the idea of
“lazy computations”: we don’t try to compute a large object but only the relevant
part
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What do we gain?

For constructive mathematics, we get a more satisfactory representation of
infinite objects and avoid to have to decide things like: is a given polynomial
irreducible or not? (even if it is possible it may be infeasible and not relevant)

For mathematics, we get a method to express more concretely/simply
properties, by Nullstellensatz identities, and to avoid strong assumptions like
axiom of choice. For simple statements, we know a priori by the logical form of a
statement that if it holds, it should hold for simple reasons

One message of Kronecker seems to have been that non only these strong
assumptions are not necessary in algebra, but also that we get a better treatment
by avoiding them
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