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ABSTRACT. The goal of this note is to present an alternative, and we think simpler, proof
of the following generalisation of the Riesz representation theorem due to J.D.M. Wright
[8]: any positive linear map ¢ : C(X) — V can be represented by a V-valued measure
on Baire subsets of X, where X is compact Hausdorff and V is a monotone o-complete
ordered vector space, not necessarily a lattice. Our proof suggests a purely inductive
approach to measure theory, in the spirit of Borel’s original definition of measure of Borel
sets [1, 2].

INTRODUCTION

The goal of this note is to present an alternative, and we think simpler, proof of the
following generalisation of the Riesz representation theorem due to J.D.M. Wright [8]: any
positive linear map ¢ : C(X) — V can be represented by a V-valued Borel measure,
where X is compact Hausdorff and V' is a monotone o-complete ordered vector space, not
necessarily a lattice. As noticed by Wright [7], in general one cannot expect the resulting
measure m to be regular (even if V is a lattice) and so, the usual Daniell-Bourbaki approach,
centred around the definition of an outer measure, cannot be used here. Our approach is
based on a universal characterisation of the Riesz space B(X) of bounded Baire functions
on X, and a general lemma about existence of binary sups which holds in any monotone
o-complete space. Our construction suggests also a purely inductive approach to measure
theory, in the spirit of Borel’s original definition of measure of Borel sets [1, 2]'.

1. UNIVERSAL CHARACTERISATION OF BOUNDED BAIRE FUNCTIONS

We shall use the terminology of [3]. A Riesz space is an ordered vector space which
is a lattice. We shall only consider Riesz space with a strong unit 1: for any element x
there exists n such that —n.1 <z < n.1. A map of Riesz space, or Riesz homomorphism,
f Vi — Vs is a map of ordered vector space that preserves l.u.b. and strong unit. A Riesz
space is Dedekind o-complete iff it is also monotone o-complete: any increasing bounded

'Even for real valued measures, or in the case where V is a lattice, we believe that our approach gives
essentially new proofs of basic results. Being purely inductive, it is an alternative to the use of outer
measure, which, since Lebesgue’s work through Daniell, Caratheodory, Bourbaki, is the usual way to
define the measure of Borel subsets. In particular, and in contrast to Wright’s work [7, 8], which relies for
instance on the usual Riesz representation theorem, our proofs are developped independently of measure
theory, and relies only on the inductive characterisation of the space of bounded Baire functions given in
lemma 1.1 and some general properties of ordered vector spaces.
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sequence has a l.u.b. A Riesz homomorphism f : V; — V5 is o-continuous iff it preserves
l.u.b. of increasing bounded sequences.

We can now define the notion of og-completion of a Riesz space V. It is a Dedekind
o-complete Riesz space W with a Riesz homomorphism ¢ : V' — W such that, for any
other Dedekind o-complete Riesz space W; and Riesz homomorphism f : V' — W, there
is a unique o-continuous Riesz homomorphism f; : W — W; such that f; oi = f. This
condition characterises uniquely (up to isomorphism) the pair W,i: V — W.

This definition may surprise readers used to Boolean algebras: notice that, and this is an
essential point, we do not require the map 7 : V — W to preserve the sequential suprema
already existing in V. The justification of our definition in the framework of our paper is
given by the next result.

Lemma 1.1. Let X be a compact Hausdorff space, and C(X) the Riesz space of continuous
functions over X, with the constant function 1 as strong unit. The Riesz space B(X) of
bounded Baire functions on X, with the inclusion function i : C(X) — B(X), is the
o-completion of C(X).

Proof. We use standard results, which go back to Stone [5, 6]. First, any Dedekind o-
complete Riesz space Wi is of the form C(Y), where Y is the representative space of a
o-complete Boolean algebra. Also [6], any bounded Baire function « in B(Y') determines
a unique H(a) € C(Y) such that a(y) = H(a)(y) except on a meager set. Furthermore
the map H : B(Y) — C(Y) is o-continuous.

Any map f : C(X) — C(Y) corresponds to a continuous map Y — X, which extends to
a o-continuous map G : B(X) — B(Y). Composing this map with H : B(Y) — C(Y), we
get the desired extension H o G : B(X) — C(Y) of f, which is uniquely determined. O

2. REFORMULATION OF RIESZ REPRESENTATION THEOREM

The interest of the lemma 1.1 is that it suggests a natural way to prove Wright’s result
(and Riesz representation theorem) if we reformulate it in the following way.

Theorem 2.1. Let ¢ : C(X) — V be a positive linear map, where V' is a monotone o-
complete ordered vector space, not necessarily a lattice. Then ¢ has a unique extension to
a o-continuous map B(X) — V.

Since the o-complete Boolean algebra of components [3] of B(X) can be seen as the
algebra of Baire subsets of X, the extension of ¢ to B(X) will indeed defined a measure
on Baire subsets of X. Notice that this reformulation contains as direct corollary the
monotone (and hence the bounded) convergence theorem. The theorem will follow directly
from lemma 1 and the following remarks.

We let M be the ordered space of linear maps [ : C(X) — V that are bounded by ¢:
there exists n such that —n.¢(a) < l(a) < n.¢(a) for @« > 0. The space M is clearly
monotone o-complete, but may not be a lattice. The evaluation map

ev:l+—1(1), M -V
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clearly preserves l.u.b. of increasing bounded sequences. The map
[:C(X)— M
defined by I(«)(8) = ¢(a.f) is monotone. Even though M may not be a lattice, we have
the following result [4].
Lemma 2.2. If ay, a0 € C(X) then I(oq V ag) is the Lu.b. in M of I(cy) and I(a2).
Proof. 1t is clear that we have I(«a;) < I(y V ). Let us fix J € M such that I(ay) < J
and I(ay) < J. We show that we have I(a; V ap) < J.
For this, we fix § € C(X), 8> 0 and we show that we have
I(a1 V az)(B) < J(B) + ed(B)
for any € > 0. This will show
I{oa V 02)(B) < J(B)
and hence I(a; V ag) < J.
We write a = a; — an, and we take
er=1Ana", es=1—¢;
with n > 1/e. We have e;a = e;a™ and
a1 Vag = oy + Of+ = ey + 1€ + OZ+€2
since
atey <1/n
this implies
a1 Vay < agey + e +¢€
It follows that we have
(1 V ap)B < Bagey + Base; + PBe

and hence
I{aa V 02)(B) < J(Ber) + J(Bez) + ep(B) = J(B) + €g(P)
as desired.
The key point is that this argument does not require V' to be a lattice. Indeed, the only
property needed for V is to be an ordered vector space. ]

Lemma 2.3. Let a,b be two elements of M then a Vb exists iff a A b exists (and in this
caseaVb+aAb=a+b).

Lemma 2.4. If b,, is a bounded decreasing sequence, and a V b,, exists for all m then
aV A\ by, ezists. Furthermore, it is equal to \,,(a V by,).

Proof. 1t is enough by the previous lemma to show that a A A by, exists. By hypothesis,
aV b, and hence by the previous lemma, a A b, exists for all m. Since a A b, is a bounded
decreasing sequence, A, (a A by,) exists and is a A b.

Since a V by, is decreasing and bounded, A, (a V by,) exists. By general distributivity
property valid in any ordered space [3], we have a V A b, = A, (¢ V by,). O
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Corollary 2.5. If R a subspace of M such that a V b exists and belongs to R if a,b €
R. Then the least monotone ag-complete ordered subspace containing R is a Dedekind o-
complete Riesz space.

Proof. We let M; be the smallest subset C M containing R which satisfies: if a,, € M; is a
bounded increasing (resp. decreasing) sequence then \/, a, € M; (resp. A, a, € My). We
claim that M, is a subspace of M and that, if a,b € M; then a V b exists and belongs to
M;. This will show that M; is actually the least monotone o-complete ordered subspace
containing R and that, being also a lattice, it is a Dedekind o-complete Riesz space. The
proof of this claim is straightforward by induction from lemma 2.4. Since this is a key
point, we give explicitely the argument proving the second closure property.

We first show that if @ € R and b € M; then a V b exists and belongs to M;. Indeed the
set, My of elements b € M; such that a V b exists and is in M; contains R by hypothesis. If
bm € My is an increasing bounded sequence then a V \/ b, = \/(a V b,,) exists and belongs
to M;. Similarly if b,, € M> is a decreasing bounded sequence then a V A b, = A(a V by,)
exists by lemma 2.4 and belongs to M;. This shows that M, = M;.

Next, we consider the set M3 of elements a € M; such that if b € M; then a V b exists
and belongs to M;. We have just shown that this set contains R. We show next that M3
is closed by sups and infs of bounded monotone sequence.

If a,, € Mj is an increasing bounded sequence and b € M; then a, V b exists and belongs
to M, for all n and hence (\/a,) Vb= \/(a, V b) exists and belongs to M;. This shows
that \/ a, € M.

Similarly if a,, € M3 is a decreasing bounded sequence and b € M; then a, V b exists and
belongs to M for all n. By the lemma 2.4 we have that (A a,) Vb= A(a, V b) exists and
belongs to M;. Hence A a, € Ms. O

This last formal result is valid for any monotone o-complete space M, with the same
argument. It can be compared to the theorem that a family of pairwise commuting opera-
tors have a common spectral decomposition. The condition of being pairwise commuting
ab = ba is here replaced by the condition that a V b exists. Since R is a subset of a
Dedekind o-complete Riesz space M;, all elements of R have a spectral decomposition
w.r.t. the o-complete Boolean algebra of components of M; [3].

Theorem 2.1 is then a direct consequence of lemmas 1.1,2.2 and corollary 2.5: the image
I(C(X)) is contained a Dedekind o-complete Riesz space M; C M and hence by initiality
the map I : C(X) — I(C(X)) can be extended in a unique way to a o-continous map
B(X) — M;. By composing this map with the evaluation map ev : M — V we get the
desired o-continuous extension of the map ¢ : C(X) — V.

3. INDUCTIVE MEASURE THEORY

One possible interest of the previous construction is that it suggests a purely inductive
and representation-free approach to measure theory, in the spirit of Borel’s original defi-
nition of measure of Borel sets [1, 2]. Since this is not the main purpose of this note, we
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limit ourselves here to state the following representation-free version of our construction,
which has a similar justification to the one of theorem 2.1.

In a representation-free approach, we start not from a compact space but from a Riesz
space C over the rationals. This vector space is thought of as a pointfree presentation of a
space C(X). We can then define the corresponding Riesz space of bounded Baire functions
as being the o-completion of C'. This definition is justified by lemma 1.1. A measure is then
defined to be a positive linear map on C. The representation-free formulation of measure
theory, which contains not only Riesz representation theorem, but also the monotone and
bounded convergence theorem, can then be formulated as follows.

Theorem 3.1. Let C' be a Riesz space over the rationals. Any positive linear map from C
to a monotone o-complete ordered vector space has a unique o-continuous extension to the
o-completion of C.
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