
Univalent Type Theory and Modular Formalization
of Mathematics

Thierry Coquand

Big Proof 2017, Newton Institute, Cambridge



Univalent Type Theory and Modular Formalization of Mathematics

Content

In the first part, I will try to compare

-set theory

-simple type theory

-(univalent) type theory

and especially the status of extensionality in these systems

Main point: extensionality is important for modularity

The second part will be about the 〈〈 justification 〉〉 of extensionality

1



Univalent Type Theory and Modular Formalization of Mathematics

〈〈Simple 〉〉 type theory

1940 Church A Formulation of the Simple Theory of Types

Extremely simple and natural

A type bool as a type of 〈〈propositions 〉〉

A type I for 〈〈 individuals 〉〉

Function type A→ B and we can add product type A×B

Natural semantics of types as sets

2



Univalent Type Theory and Modular Formalization of Mathematics

Functions in simple type theory

In set theory, a function is a functional graph

In (this version of) type theory, a function is given by an explicit definition

If t : B, we can introduce f of type A→ B by the definition

f x = t

f a 〈〈 reduces 〉〉 to (a/x)t if a is of type A

We use the notation f a for f(a), which comes from combinatory logic

The type A→ B is 〈〈abstract 〉〉: we don’t state that a function is a graph

3



Univalent Type Theory and Modular Formalization of Mathematics

Functions in simple type theory

We have two notions of function

-functional graph

-function explicitly defined by a term

What is the connection between these two notions?

Church introduces a special operation ιx.P (x) and the 〈〈axiom of description 〉〉

If ∃!x : A.P (x) then P (ιx.P (x))

4



Univalent Type Theory and Modular Formalization of Mathematics

Rules of equality

Equality can be specified by the following purely logical rules

(1) a =A a

(2) if a0 =A a1 and P (a0) then P (a1)

Given (2), the law (1) is equivalent to the fact that a0 =A a1 is implied by

∀(P : A→ bool) P (a0)→ P (a1)

Church uses this to define a0 =A a1

5



Univalent Type Theory and Modular Formalization of Mathematics

Equality in mathematics

The first axiom of set theory is the axiom of extensionality stating that two
sets are equal if they have the same element

In Church’s system we have two forms of the extensionality axiom

(1) two equivalent propositions are equal

((P → Q) ∧ (Q→ P )) → P =bool Q

(2) two pointwise equal functions are equal

(∀(x : A) f x =B g x) → f =A→B g

The univalence axiom is a generalization of (1)

6



Univalent Type Theory and Modular Formalization of Mathematics

Equality in simple type theory

Henkin and P. Andrews (generalizing some previous work of Tarski for
propositional logic) reformulated the rules of simple type theory by taking equality
as the only logical primitive

E.g. ∀(x : A) P x is defined as

λ(x : A) P x =A→bool λ(x : A) true

where true can be defined as

λ(x : bool) x = λ(x : bool) x

7



Univalent Type Theory and Modular Formalization of Mathematics

Equality in mathematics and modularity

These two axioms of extensionality are important for modularity of reasoning

If we prove something about a function f and another function g is pointwise
equal to f we can replace f by g and conclude that the property also holds for g

Similarly if we prove P logically equivalent to Q, we can replace P by Q in
any context

8



Univalent Type Theory and Modular Formalization of Mathematics

Equality in mathematics and modularity

Dependent type theory (without univalence) does not have these principles

However, propositional extensionality holds for propositions represented by
Booleans (decidable propositions)

The formalization of the 4 color theorem in dependent type theory (and of
Feit-Thompson) uses heavily such a restriction to decidable propositions

Also it relies on the fact that the objects are first-order, so that the problems
coming from lack of function extensionality are not too serious

E.g. for functions of finite domain, one represents a function by its graph and
equality of graphs corresponds to extensional equality of functions

9



Univalent Type Theory and Modular Formalization of Mathematics

Type theory and set theory

In his 1931 paper

On Formally Undecidable Propositions of Principia Mathematica and Related
Systems I

Gödel uses a restriction of this system with only the types

1 = I

2 = I → bool

3 = (I → bool)→ bool

. . .

10



Univalent Type Theory and Modular Formalization of Mathematics

Type theory and set theory

The atomic formula are of the form b u where b of type n+ 1 and u of type n

This can be read as: u belongs to the class b

If we start from I empty collection, we get a cumulative hierarchy

11



Univalent Type Theory and Modular Formalization of Mathematics

Type theory and set theory

Extensionality axiom

(∀xn (a xn ↔ b xn)) → a =n+1 b

〈〈A class is completely determined by its elements 〉〉

Neither pairing, nor function type

-pairs can be defined (N. Wiener 1914, Kuratowski) 〈〈variables for binary or
n-ary functions (relations) are superflous as basic signs 〉〉

-functions can be defined as functional graphs

12



Univalent Type Theory and Modular Formalization of Mathematics

Type theory and set theory

In set theory, we usually start with I empty collection

Transfinite iteration and cumulativity

〈〈Types 〉〉 become ordinals

We can quantify over variable ranging over all 〈〈 types 〉〉

An infinite type of individuals is obtained at stage ω

13



Univalent Type Theory and Modular Formalization of Mathematics

Type theory and set theory

〈〈 It is a pity that a system such as Zermelo-Fraenkel set theory is usually
presented in a purely formal way, because the conception behind it is quite
straightforwardly based on type theory. One has the concept of an arbitrary
subset of a given domain and that the collection of all subsets of the given
domain can form a new domain (of the next type!). Starting with a domain of
individuals (possibly empty), this process of forming subsets is then iterated into
the transfinite. Thus, each set has a type (or rank), given by the ordinal number
of the stage at which it is first to be found in the iteration. 〉〉

Dana Scott, A type-theoretical alternative to ISWIM, CUCH, OWHY, 1969

Note that LCF was introduced to formalize the system described in this paper

14



Univalent Type Theory and Modular Formalization of Mathematics

Description of mathematical objects and collections

We will analyse next how to represent 〈〈collections of collections 〉〉

Collections of mathematical structures

When two structures should be identified?

The answer provides a new and important modularity principle

This principle is closely connected to what is described in Types, abstraction
and parametric polymorphism, J.R. Reynolds and works of Morris, Liskove and
Zilles, . . . on the importance of representation independence results for modular
development of programs

15



Univalent Type Theory and Modular Formalization of Mathematics

Description of mathematical objects and collections

Algebraic structures, ordered structures, e.g. groups, rings, lattices

Set equipped with some operations and/or relations satisfying some properties

An identification of two structures is provided by an isomorphism

At this level one can talk about 〈〈 initial structures 〉〉

Uniqueness up to isomorphism

This is the level considered by Bourbaki in his théorie des structures

16



Univalent Type Theory and Modular Formalization of Mathematics

Description of mathematical objects

Two isomorphic groups G and H satisfy the same 〈〈structural 〉〉 properties

If G is abelian, so is H

If G is solvable, so is H

But we can have π ∈ G and π /∈ H

Transportable properties (Bourbaki)

〈〈When two relations have the same structure, their logical properties are
identical, except such as depend upon the membership of their fields 〉〉

Russell 〈〈 relation arithmetic 〉〉 (1900)

17



Univalent Type Theory and Modular Formalization of Mathematics

Description of mathematical objects

Next level: collection of all groups, or all sets (at a fixed universe)

When are two such collections considered to be the 〈〈same 〉〉?

18



Univalent Type Theory and Modular Formalization of Mathematics

Description of mathematical objects

Let B be a given set

In mathematics the two collections SETB and SET/B should be 〈〈 identified 〉〉

They satisfy the same 〈〈structural 〉〉/transportables properties

SETB contains families of sets Xb, b ∈ B

SET/B contains Y, f ∈ BY , functions of codomain B

19



Univalent Type Theory and Modular Formalization of Mathematics

Description of mathematical objects

We have two canonical maps F : SETB → SET/B and G : SET/B → SETB

F (X) = Σ(b : B)Xb, π1

G(Y, f) = (f−1(b))b∈X

G(F (X)) and X are only isomorphic (and not equal as sets in general)

G(F (X))b = {b} ×Xb

The two collections (groupoids) SETB and SET/B are equivalent

F and G do not define an isomorphism

20



Univalent Type Theory and Modular Formalization of Mathematics

Collapsing

We get a new way to identify collections

The collection of all linear orders with 27 elements in a given Grothendieck
universe U is not an element of U

But it can be identified with the groupoid with one object and one morphism

Mathematics is the art of giving the same name to different things. It is
enough that these things, though differing in matter, should be similar in form,
to permit of their being, so to speak, run in the same mould. When language
has been well chosen, one is astonished to find that all demonstrations made for
a known object apply immediately to many new objects: nothing requires to be
changed, not even the terms, since the names have become the same.

21



Univalent Type Theory and Modular Formalization of Mathematics

Description of mathematical objects

This natural stratification of collection of mathematical objects is not directly
represented in set theory

A (Grothendieck) universe is a set as any other set with its notion of equality

Similarly for a collection of structures

Bourbaki has a characterisation of transportable properties for his notion of
structure

Such a description for the next level is much more complex

22



Univalent Type Theory and Modular Formalization of Mathematics

Description of mathematical objects

At the next level we have 2-groupoids

Then n-groupoids, then ∞-groupoids

More and more complex notions of equivalences/identifications

Less and less clear when a property is transportable along equivalences

This can be done in an uniform way in dependent type theory extended with
the univalence axiom

23



Univalent Type Theory and Modular Formalization of Mathematics

Universes

Simple type theory is elegant but presents unnatural limitations

First, we cannot express the notion of 〈〈arbitrary 〉〉 structures

〈〈Let X be a type, then . . . 〉〉

In set theory, we can quantify over all sets

In type theory, one can introduce variables ranging over types (already
suggested in R. Gandy’s 1952 PhD thesis)

But we cannot form the type of all given groups or rings

In set theory, Grothendieck universes are used to form a collection of
mathematical structures as a set

24



Univalent Type Theory and Modular Formalization of Mathematics

Universes

In type theory, a universe is a type the elements of which are types

Notion already present in the system AUTOMATH (N.G. de Bruijn)

We can then use sigma types to represent a type of structures, e.g.

Σ(X : U) X × (X → X → X)

This introduces dependent types, e.g. one can form the type N → U

25



Univalent Type Theory and Modular Formalization of Mathematics

Universes

The same limitation of simple type theory holds for the notion of elementary
topos

This limitation holds also for the notion of sheaves

As soon as one wants to describe a 〈〈sheaf 〉〉 of structures one needs to replace
the notion of sheaf by the notion of stack

For instance if we let F (V ) be the collection of sheaves over V

We have a natural restriction map F (V )→ F (W ) for W ⊆ V

This does not define a sheaf but a stack: 3 by 3 condition for glueing and
glueing is only unique up to isomorphism

26



Univalent Type Theory and Modular Formalization of Mathematics

Dependent types

Logical operations = construction on types following the dictionnary

A ∧B A×B = Σ(x : A)B

A→ B A→ B = Π(x : A)B

(∀x : A)B(x) Π(x : A)B(x)

(∃x : A)B(x) Σ(x : A)B(x)

A ∨B A+B

27



Univalent Type Theory and Modular Formalization of Mathematics

Dependent types

de Bruijn (1967) notices that this approach is suitable for representation of
mathematical proofs on a computer (AUTOMATH)

Proving a proposition is reduced to building an element of a given type

〈〈This reminds me of the very interesting language AUTOMATH, invented by
Dijkstra’s colleague (and next-door neighbor) N. G. de Bruijn. AUTOMATH is not
a programming language, it is a language for expressing proofs of mathematical
theorems. The interesting thing is that AUTOMATH works entirely by type
declarations, without any need for traditional logic! I urge you to spend a couple
of days looking at AUTOMATH, since it is the epitome of the concept of type. 〉〉

D. Knuth (1973, letter to Hoare)

28



Univalent Type Theory and Modular Formalization of Mathematics

Type of identifications

Introduce a new type Id A a0 a1 as the type of ways of identifying a0 and a1
(de Bruijn’s notion of 〈〈book equality 〉〉, Martin-Löf, 1973)

Different identifications for different A (not as in with set theory)

This type formation can be iterated since we can compare two given
identifications

So we can form Id (Id A a0 a1) p0 p1

Note that this, like universes, introduces dependent types in the language

29



Univalent Type Theory and Modular Formalization of Mathematics

Type of identifications

We can then stratify types

-proposition Π(x0 x1 : A) Id A x0 x1

-set Π(x0 x1 : A) isProp (Id A x0 x1)

-groupoid Π(x0 x1 : A) isSet (Id A x0 x1)

Type theory appears as a generalization of set theory

We also define isContr A to be A× isProp A

30



Univalent Type Theory and Modular Formalization of Mathematics

Laws of identifications

The logical laws of identifications are

refl a : Id A a a

Id A a0 a1 → B(a0)→ B(a1)

Laws formally similar to the ones of equality in simple type theory

The third law is quite mysterious and was found by Martin-Löf in 1973

Π(a : A) isContr (Σ(x : A) Id A a x)

31



Univalent Type Theory and Modular Formalization of Mathematics

Laws of identifications

The mathematical law of identification is the univalence axiom

The canonical map Id U A B → Equiv A B is an equivalence

where

Equiv A B = Σ(f : A→ B)isEquiv f

isEquiv f = Π(b : B)isContr(Σ(x : A)Id B (f x) b)

This formally generalizes propositional extensionality

Equiv A B generalizes uniformly logical equivalence (between propositions),
bijection (between sets), categorical equivalence (between groupoids), . . .

32



Univalent Type Theory and Modular Formalization of Mathematics

Abstract data types

The type of groups (in a given universe) will be

Σ(X : U) isSet X ×X × (X ×X ×X)× . . .

Given a group (G, p, e, f, . . . ) it is impossible to have access to the 〈〈 internal 〉〉

of G and form the statement “does 0 belong to G”

We 〈〈hide 〉〉 the internal structure of the group

Invariance by isomorphisms (Tarski-Lindenbaum, Gandy)

Representation independence (Morris, Reynolds, . . . )

Type theory is more abstract/modular than set theory

33



Univalent Type Theory and Modular Formalization of Mathematics

Extensionality

In simple type theory, one extensionality axiom for each possible type formation
(proposition or function type)

Univalence axiom corresponds to the case of equality for universe

Generalization of the propositional extensionality axiom of simple type theory

It implies function extensionality (Voevodsky, 2010)

34



Univalent Type Theory and Modular Formalization of Mathematics

Extensionality

In simple type theory, one can give an interpretation of the system with
extensionality in the system without extensionality

Russell proves that logical connectives preserve logical equivalence in

〈〈The Theory of Implications 〉〉 American Journal of Mathematics, Vol. 28, 2,
p. 159-202, 1906.

Gandy generalizes this to simple type theory in

〈〈On axiomatic systems in mathematics and theories in physics 〉〉 PhD thesis,
University of Cambridge, 1953.

35



Univalent Type Theory and Modular Formalization of Mathematics

Extensionality

For instance, quantifiers are functionals (I → bool)→ bool

They are extensional operations since if P and Q are two extensionaly equal
predicates on I then ∀(x : I) P x (resp. ∃(x : I) P x) and ∀(x : I) Q x (resp.
∃(x : I) Q x) are logically equivalent

The starting point of Gandy’s relative consistency proof for extensionality is
then that each constant is an extensional operation and to be extensional is
preserved by abstraction and application

36



Univalent Type Theory and Modular Formalization of Mathematics

Extensionality

Can we do the same for dependent type theory?

It does not seem possible to do it in one step like in simple type theory

Instead, we proceed in two steps: first a 〈〈 relational 〉〉 model, which can be
seen as a higher-order generalization of the reflexive graph model of type theory
(cubical sets)

37



Univalent Type Theory and Modular Formalization of Mathematics

Extensionality

In this model, the type of 〈〈 relations 〉〉 on a type A can be seen as an exponential
AI where I is an interval type

We can internalize an approximation of the identification type Path A a0 a1

Almost all rules of the identification type are satisfied but the transport
function

Path A a0 a1 → P (a0)→ P (a1)

38



Univalent Type Theory and Modular Formalization of Mathematics

Extensionality

This is a presheaf model

Γ is interpreted by a presheaf

Γ ` A is interpreted by a presheaf on the category of elements of Γ

Γ `M : A is interpretation by a global section of this presheaf

U(X): collection of U-presheafs on the category of elements of X

39



Univalent Type Theory and Modular Formalization of Mathematics

Equivalence relation

From homotopy theory, we get a suitable generalization of equivalence relation

Lemma: If A subpolyhedra of B then B × 0 ∪A× I is a retract of B × I

where I is now the closed unit interval [0, 1]

On the relation between the fundamental group of a space and the higher
homotopy groups
Eilenberg 1939, Fund. Math.

40



Univalent Type Theory and Modular Formalization of Mathematics

Extensionality

If A subpolyhedra of B

Proposition: Given two homotopic functions f0 f1 : A→ X and an extension
f ′0 : B → X of f0 there is an extension f ′1 of f1 homotopic to f0

Proofs of basic results about homotopy “can be obtained quite neatly by
repeated, and sometimes tricky, use of this general lemma” (Bourbaki’s notes on
homotopy by Eilenberg, 1951)

If we think of Γ ` A as a higher-order reflexive relation, to satisfy Eilenberg’s
condition can be thought of as expressing that this relation is an equivalence
relation

41



Univalent Type Theory and Modular Formalization of Mathematics

Extensionality

Eilenberg’s condition can be expressed internally (using the notion of partial
element to represent subpolyhedra)

If we have γ ∈ ΓI and a0 ∈ Aγ(0) and a partial section a(i) ∈ Aγ(i), i ∈ I
with a(0) = a0 then can extend this to a total section ã(i) ∈ Aγ(i)

For empty extent we get a transport function Aγ(0)→ Aγ(1)

But this condition is expressed in the context ΓI and not in the context Γ

42



Univalent Type Theory and Modular Formalization of Mathematics

Extensionality

For cubical sets we can find a type R(T ) such that

the set of terms in ΓI ` T is in bijection with the set of terms in Γ ` R(T )

This is a dependent version of a right Kan extension (thanks to discussions
with Christian Sattler)

ΓI → ∆ naturally isomorphic to Γ→ R(∆)

For cubical sets, the path functor, which is the right adjoint of the cylinder
functor, has itself a right adjoint

This follows from the fact that the cylinder functor preserves representables

43



Univalent Type Theory and Modular Formalization of Mathematics

Extensionality

Hence, for cubical sets we can find a type C(A) defined in the same context
as A which expresses that A is a higher-order equivalence relation

This defines C : Ui → Ui for each universe Ui

One can build elements

πC : C(A)→ (Π(x : A)C(B))→ C(Π(x : A)B)

σC : C(A)→ (Π(x : A)C(B))→ C(Σ(x : A)B)

uiC : C(Σ(X : Ui)C(X))

44



Univalent Type Theory and Modular Formalization of Mathematics

Interpretation of Extensionality

[x] = x
[M N ] = [M ] [N ]
[λ(x : A) M ] = λ(x : [[A]])[M ]

[Π(x : A) B] = (Π(x : [[A]])[[B]], πC [A].2 (λ(x : [[A]])[B].2))
[Σ(x : A) B] = (Σ(x : [[A]])[[B]], σC [A].2 (λ(x : [[A]])[B].2))
[Ui] = (Σ(X : Ui)C(X), uiC)

[[A]] = [A].1

[[x1 : A1, . . . , xn : An]] = x1 : [[A1]], . . . , xn : [[An]]

Theorem: If Γ `M : A then [[Γ]] ` [M ] : [[A]]

45



Univalent Type Theory and Modular Formalization of Mathematics

Interpretation of Extensionality

[A].2 computes by induction on A the proof that [A].1 is an equivalence
relation, i.e. a proof of C([A].1)

We see that, for getting a model, the exact form of the constants πC, σC, uC
does not matter

However the exact definition of these constants might be important if we want
elegant/efficient computations (and there seems indeed to be significant possible
simplifications w.r.t. our published version)

In the simplicial set model, to be an equivalence is a property and not a
structure

46


