On the propositions-as-types principle

Thierry Coguand

CMU and INRIA
draft

1 A reformulation of the propositions-as-types principle

We try to present the calculus of construction in such a way that it makes clear the connection
with the first system of Martin-Lof and shows why it is simply an application of the Curry-Howard
analogy between propositions and types to the Church calculus.
1.1 What were Martin-Lf’s motivations for having a type of all types 7
Three principles entail this idea

1. we want quantification over predicates, propositions

2. Russel’s doctrine of types: the range of signifiances of propositionnal functions form types

3. the idenfication of propositions and types

Indeed, by the first and sccond points propositions must form a Lype.

If propositions and types
ide N < 9 3 1 + Y .4 5

soviriptls <A’y

somewhere, as the calculus we obtained by using a type of all types lead to incousistency.

We shall try to formalise a calculus which respects the first and second points, but we shall
restrict the third point. We retain only the idea that cach proposition corresponds to one certain
type, namely its type of proofs.

1.2 A formalisation of the notion of proposition’s type of proofs

We start with the usual Church’s type calculus. One has a special type o of all propositioas, one
constant =: 0 — 0 — o, and one polymorphic constant 1T : (a - 0) — o.

We shall formalise the idea that propositions are types in the following way. Let introduce one
operator T such that

1. if p is a term of type o, then T'(p) is a (new) type
2. if p and 9 are two terms convertible of type o, then T'(p) and T(3) are equals
3. if p and 9 are two terms convertible of type o, then T'(p = 1) is equal to T'(p) — T(¥)

4. if fis of type a — o, tis of type T'(II(f)) and w is of type e, then (t v) is a well-formed term
of type T((f u))

5. if t is of type T(p), then Az®t is of type T(II(Az*p))



Note that these rules simply explain how to trauslate cach proposistions in a type in such a way
that the Heyting’s semantic of propositions in intuitionnistic logic is preserved, i.e. that T(p) can
be thougth as the types of all proofs of the proposition .

We can remark that the arrow between types in the range of T is definable. More precisely,
onc must add the rules

6. if p and 9 are two terms of type o, then T'(p) — T(3) is cqual to T (IT(AzT®)4))

Remark. This has a clear analogy with the new forinulation by Martin-Lof of the universes
formation in his new theory of type. We may be even more precise: take the calculus of Martin-Lof,
and add a (special) universe U with the rules

Atype (z:A)B:U
(Vz: A)B:U
A:U
T(A) type
Atype (z:A)B:U
T((Vz : A)B)conv(Vz : A)T(B)’

Note that the only difference between those rules and the ones of Martin-Lof is the general
product formation (Vz : A)B : U with an arbitrary A type and not only one A of the form T(a)

for a term a of type U. Then, onc get the calculus of construction and a non-predicative (but still
coherent) calculus.

2 is tT 1 tructicn ?

A careful study of the previous calculus shows that it contains the second-order calculus of Girard-
Reynolds. For example, the generic identity is the term AA° zT(A) 2 which is of type

T(TH(AA°T (TI(AzT(4) 4))). Indeed, if A is of type o and z of type T'(A), then z is of type T(A), so,
by the rule for the operator T, AzT(A)z is of type T(H()\:L‘T(A)A)).

The nice point is that we do not need any more to state any axioms and deduction rules for
our system of types. The logic becomes simply the expression of the fact that a proposition is true
if, and only if, the type of its proofs is non empty.

Actually, our calculus contains a lot more. If we try to simplify the notation, and simply omit
the operator T, one gets a part of the calculus of construction as presented in [Coquand, 85].
So this extension of the calculus of Church has still the normalisation property. The calenlus of
construction appears in this way to be the expression of the propositions-as-types principle for the
system of [Church, 40].

This extension of Church’s calculus presents some novelty. There exists now dependant types.
For cxample, the expression (T'(p) — 0) — o) is a type which depends on a term ¢ : 0. It seems
natural to add the rules

if ¢ is a type, and « is a type, then II(Azt) is a type
and also

if u is of type t, then Az%u is of type II(Az“t).
With these new rules, the calculus becomes exactly the calculus of constructions as presented

in [Coquand, 85].

-



3 A new formulation of the calculus. of contruction

Definition. the class of term of the calculus of construction is the class defined by the following
inductive rules !

1. Type and Prop are terms
. an identifier is a term

. an integer (de Bruijn index) is a term

2
3
4. if M and N are terms, then (M N) is a term
5. if M is a term, then A(M) is a term

6

. if M and N are terms, then II(M, N) is a term

We shall not need then any special constant such as =, neither special rulcs of inference.
The motivation is that we shall simply express the proposition-as-types principle: we identify a
proposition with the type of its proofs, so that the previous quantifier (Vz : A)p becomes the
product TI(A, ¢). The A — B is definable as TI(4, B). It scems so that for building a type system
with an associate logic, all we need is to have the A-operation and the product formation. All the
(scmantic) rule about true formulae of Church’s calculus appcear as derived rules of a very simple
typing mechanism.

We shall generalize the previous rules of the construction calculus by the introduction of Type,
the type of so-called “context”, and we shall try to extend this calculus with four levels.
Assignments

the empty assignment is valid
Tisvalid TF M :Type z doecsnot appear in T
T',z: M is valid

Type Inference Rule

T'+M: Prop
T'HM: Type
T is valid
'+ Prop : Type
T is valid z occurs in T with the type M
T'Fz: M
'z: M-N:P
L'k M.N:(Ilz: M)P
I'z: MFEN: Prop
'+ (Ilz : M)N : Prop
N T,z: M+ N: Type
Tk Iz : M)N : Type
TFM:(IIz: A)R THN:A
T'H(MN):[N/1R
THFM:A TFHR:Type A conv R
T'-FM:R

3



4 Application: Peano Arithmetic

Let us introduce a new type Int : Type, the special constants 0:Int,and S : [n: Int|Int, with a
recursion operator rec : [u : Int][P : [z : Int]Prop)[hy : (P0)][h, : [z : Int][h; : (Pz)](P(S7))|(Pu)
with (rec0af) convertible to a, and (rec(Sn)af) convertible to (/(recnaf)) (this appears as a
generalisation of the system T of Godel). Then, our identification of a proposition and types is

sufficient for the derivation of all Pcano axiom, without any other assumption. arokd a s

D'I‘VJ?_D(/&L
5 The calculus of Martin-Lof 1971

It appears now as an attempt of one reflection’s principle. We can view, by the operator T, the
) p p P y P )

propositions as names for certain types. One can ask if each type is so named, and this question
turns out to be equivalent to the question whether the type o is so named. If one introduce a
spccial constant V of type o such that T(V) is cqual to o, then one gets exactly the system of
[Martin-Laf, 71]. i

In this presentation, this appears a bit artificial, and, as a matter of fact, [Girard, 72| has shown
that this assumption leads to a non-normalisable term.

Conclusion

The calculus of construction is the natural expression of the propositions-as-types principle for the
system of [Church, 40]. Ouce we express it, the axioms and inference rules become surpefliuous
and are a consequence of the identification of a truth of a proposition with the fact that its type
of proofs is non-cmpty.




