An Analysis of Girard’s Paradox
Thierry Coquand

CMU and INRIA

Introduction

The purpose of what follows is to present the paradox of Girard, sligthly modified, and to use it
for gaining an understanding of the connection between type theory and set theory, and also to
analysc the Curry-Howard analogy between propositions and types.

But the main point of this article is that Girard’s paradox has beenn mechanically checked in
an implementation of the typed calculus in the construction’s style. This checking illustrates well
the usc of a type-checker as a proof-checker system. A study of the implemented paradox shows
in particular that some parts in the derivation illustrate in a concrete way the traduction of Topos
Theory in Type Theory. This article claims thus to be a commment of Girard’s result in a resolutely
computer science spirit.

1 Some motivations

We are goiug to study somc extensions of the higher-order Lype system and the construction
calculus. The first questions to answer are: what is the purpose of considering such systems ? Why
is the usual typed calculus not sufficient 7

The point is that the usual type structure with only the arrow and the product does not capture
certain uniforinities. By example, if we waut to write the algorithm “quicksort”, we have in mind
something “parametric” in the data of elements to be sorted and the binary ordering predicate on
it. We want thus to write a gencral algorithin, and to specialize it on given data. This is the notion
of polymorphism implemented in the language ML (cf. [18]). Note that this notion of parametric
type is restricted: we cannot pass our procedure quicksort as a parameter of another program, i.e.
we cannot usc quicksort as an argument, but only as something expecting arguments (here a type
and a binary relation on it). Note also that the type of a parametric algorithm such as quicksort
is not a type-tike int, int — bool,... but it is an object of another sort. There is no circularity in
such a type system.

If we are looking for a real motivation of the full polymorphism (where we can use a type of
a parametric algorithm as a real type), we must consider the analogy between propositions and
types . This is known as the “Curry-Howard isomorphisi®, actually ased for the first time in the
Automath project [4]. We shall see that the term “isomorphism™ is perhaps misleading.

This analogy is the basis of the implemented calculus of constructions (as in Autowath): the no-
tion of arrow between types corresponds to the notion of implication, the notion of “ent-elimination”
corresponds to the Z-reduction. the modus-poncens rule corresponds to the application of & program
to an argument... Note also that some of these operations have a corresponding one iu sct theory:
exponentiations, set-theoretic application,... .

In the world of proofs and propositions, and for building real proofs (in “real” mathematic), we
need quantifications on predicates. We nced to consider the set of propositions closed by such an



.-

operation. This fact is known as the “non-predicativity” of mathematics and it has been noticed
for the first time by Russel (this is the essence of the “reducibility axiom” [22]).

The non-predicative facility is not in the usual version of Automath (though it appears in
an unpublished paper of de Bruijn [5]). The motivation for such a restriction appears to be an
overestimation of the Curry-Howard analogy: if we want a complete analogy between set operations
and proof opcrations (as this is the case in ‘Automath), we have thus to forbid the non-predicativity
for propositions, because such non-predicativity is dubious for sets (and actually, Girard’s paradox
shows that it leads to inconsistency). However, the non-predicativity for propositions appears to be
essential for the development of mathematics (especially if one likes “abstract” and “set-theoretical”
proofs).

I

a)
Rk ol

-

T b
L g S

This remark can perhaps be applied to other systems of proof-checker, where the non-predicativity

is avoided at the two levcls: for the sets and for the propositions. One purpose of this work is to
show that this restriction has sound foundations for the the level of sets, but there seems to be no
reasons to restrict a proof-checker as being predicative, since the non-predicative calculus (which is
the usual one in mathematics) is as casy to implement, has nice properties of termination [11], and
offers a greater power both of concision and of expressivity. These are the principal motivations
(and it appears so to be purely empirical) for the use of the complete polymorphism (at least for
propositions) in the construction calculus.

The higher-order logic of Girard (which can be viewed as a system of notation for the proofs
in the higher-order predicate calculus) is completely implemented in the construction calculus, by
using the nice notations of Automath. Experimentations with this system has shown however that
this system does not capture enough uniformity. This means that the usual way of presenting
higher-order logic (as [6], or as in topos, if one wants intuitionnistic logic) is not sufficient for a
real development of mathematics. This fact is already noticed in the Principia, and this has to be
connected with the fact that this is the last work where it is attempted to construct in a completely
“symbolic” way the foundation of mathematics.

Here is an example of what is lacking. Let Prop be the type of the propositions (i.e. * in the
system of [9], Kind in the system of (13], () in [11], and o in [6]). Suppose we want to state and
prove the Knaster-Tarski theorem about fixed-points of increasing functions over a complete order.

What we want is to present a general version of this theorem, in such a way that it can be
applied in different “concrete” given complete orders (by example, for the set of subsets of a given
set, with the inclusion for the order, or the sets of relations over a given set, with inclusion). In
the construction calculus, the sets of predicates (resp. relation) on a given “type” A is represented
by A — Prop (resp. A — A — Prop). If we prove the thcorem of Tarski for A, we want then be
able to replice A by something of the form B — Prop, or B — B — Prop. It appears thus that
the range of the variable A must be what is called a “context” in the construction calculus (the
motivation of this name Was that, in some way, such object, as B — Prop, B — B — Prop are
the internalisation of the notion of type environment), and what is called kinds in (17], in [19] and
in [13]. This shows that it is perhaps misleading to take A of type Prop, as it is suggested by the
Curry-Howard analogy between types and propositions, and as it was done in first attempts, with
tlic constructions [9].

We need thus a notion of “context” variable, or “Type” variable, to state general theorems and
to be able to instanciate them in concrete situations. It is worth to notice that what we need is
exactly what is called “typical ambiguity” in the Principia [22]. This is the possibility of writing
and proving general statements uniformly in some type. We present the gencral calculus thus
obtained at the end of this paper, which is basically higher-order logic, with a (weak) notion of
“type” variable. This scems to be the exact analogue of the polymorphism of ML (this remark is



made precise later).

In summary, attempts of writing mathematical proofs in the constructions system show that
the natural “level” of the objects which represent “sets” is the level of contexts (or Kinds in [13] or
“ordres” in [11] or types in [6]) and that we nced an extension of the usual higher-order caleulus
by the introduction of “context” variables. These considerations raise the question: is it possible
to add the general polymorphism at the level of the types, in the same way that one can try to
extend the usual language by the addition of the second-order types. The motivations are very
strong: we know that such an extension is possible at the level of propositions, and this seems to
be only the “internalisation” of the notion of “type” variable in the system.

The paradox of Girard shows that such an extension is not possible, as far as we want to
preserve the termination property and the logical expressiblity of the language.

We must now make precise the terminology, as similar objects are named.in very different ways
in the litterature. The * of [9] is renamed in Prop and the type of “contexts” is denoted by Type.
So, our Prop is what corresponds to the “*” of [9], to the Type of [17] and [13], to the () of [11],
and to the o of [6]. Our Type is what corresponds to the “context” of [9], to the Kind of [13], the
“orders™ of [11] and the usual notion of types in [6]. This notation scems consistent: the Type
of [13] has to be renamed in Prop, so long it is not clear if the types of a programming language
corresponds really to the propositions of higher-order logic, or to the “types” of this logic (we have
to choose the “level” of the programs).

The presentation of rules differs from our preceding presentations in one point: the use of an
explicit constant for the product. The motivation for the use of an uniform notation [z : A]B for
the (typed) abstraction and for the product was the hope that such an uniformity will be reflected
in the implementation. Experimentation has shown that this scems not to be true, and it is clearer
to distinguish in the notation (and in the abstract syntax) the product and the abstraction. It is
then not necessary to keep all typed information for the abstraction, and the abstraction becomes
thus an unary operator, as in [16].

2 The rules of typing

We suppose known the basic notions of A-calculus , such as B-reduction. The terms we use have
the following structure

1. constants: Prop, Type
2. identifiers, and numbers (de Bruijn indexes)
3. abstraction A(N) and product TI(AM, N). where M and N are terms

4. application (M N) where M and N are terins

We adopt the following notation: if M is a term and z an identifier, then Az.M denotes the
following termn: first, replace cach occurrence of 7 in M by the appropriate number (as in [3}).
and then make the abstraction. So. the identifier + Jdoes not appear in Ar. M. By example, if Af
is (2 Ay.(y = z)) (which denotes (2 M1 = 2))) then Ao M owill be Al Ay.(y 2 z)) (whick denotes
A1 A(1 2 2)).

With this convention, all problemiz about bound variables disappear [31. Tlhere are two kinds of
variables: identifiers for the “free™ variables, and numbers for the “bounds™ variables. The same
convention holds for product, and thus (Ilz : A)(z y) denotes TI{A, (1 y)).



The notion of reduction is the usual one (cf. [1]), and we consider a product as irreductible
for the reduction (we can also admit the reduction inside the product, but we choose the notion
of reduction as cffectively implemented). This relation is noted red. We note conv the smallest
congruence on terms (for abstraction, product and application) which contains the reduction.

We now present rules of typing of the extension of the construction calculus where we allow
“context” variables and general polymorphism on them This calculus will be named in the sequel the
“general polymorphic calculus”. We present these rules in the way they are effectively implemented
in the language ML, and then discuss their “intuitive” meaning.

The rules construct some typing sequents, i.e. sequents of the form B + M : P, where B is a
list of typings z : A, where z is an identifier and M, P are terms. This relatlon can be read as “M
is a valid term of type P in the type assignment B”.

2.1 Assignments
1. The empty assignment is valid
2. If Bis valid, and B+ M : Prop, (or B+ M : Type) then B,z : M is valid, for any identifier
z which does not occur in B
2.2 Type Inference Rule
1. If B is valid, then B F Prop : Type

2. If B is valid, and z is an identifier which occurs in B with the type M, then BFz: M

3. B,z: Mt N:P,then BFAz.N: (Ilz: M)P
4. ¥ B,z: MV N : Prop (resp. Type), then B+ (IIz : M)N : Prop (resp. Type)
5. fBFM:P,BFN:A, and Pred (Ilz: R)S, with R conv A, then BF (MN): [N/1]S

We can, as in Automath-like languages, define the degree of a term (cf. [4]) with degree(Type) =
0. We have then

Definition . We shall say that M is a Type if, and only if, degree(M) = 1, and that M is a
Prop if, and only if, B+ M : N with % conv Prop

Proposition 1. if B~ M : N, then degree(M) = degree(N) + 1, and degree(M) is 1,2 or 3

’

Proposition 2if B~ M : N, and degree(A7) = 3 (resp. 2) then we have B+ N : Prop (resp.
B =N Type) -

This presentation is very compact, which is convenient for the implementation, but not very
“Intuitive”. It is worth it to compare this presentation of a typed calculus, which contains higher-
order logic, with more standard presentations of higher-logic, such as [23]. The main differences
with the caleulns of Church fapart the fact that we hiave a notion of type variable) are first, the fact
that this calenlus i intuitionniztic and sccondly, the fact that we are mar iipulating proofs and not
only propoesitions, se that we have a A-calculus at two differents levels Apart from these (essential)
diffcrences, this system appears as a direct generalisation of Chureh’s system, with the addition of
type variables and a “double” quantification on these variables.

Note that we can define the arrow by M — N = II(M,N) if M,N are both Types, and
M = N = II(M,N) if M,N arc both Props, in the sanc type assignment. We have thus two

4



notions of arrows. The notations are justified by the considerations of the first section: we must
view Types as scts (and the — is viewed as exponentiation), and Prop as the type of propositions
(and the = is viewed as implication). These are only analogics, which can be made precise with
the connection with Topos Theory (as donc in [12]). As usual in that kind of system, the absurd
proposition can be coded as (IIp : Prop)p.

We have two sorts of quantifications on a variable of type Type. A quantification at the same
level (Tlz : Type)N : Type, if N : Type (with the hypothesis z : T'ype) and a quantification on the
level of Prop,(Tlz : Type)N : Prop, if N : Prop (with the hypothesis z : T'ype). We shall sce that
the core of the paradox lies in this double quantification. Notice that the second quantification has
a “set-theoretic” interpretation: it’s only the formation of an universal statement on “set”, but the
first quantification has no such meaning (it has to be a product over all sets).

If we want to have the usual higher-order type system, all we have to do is to restrict the
formation of type assignments by forbidding the introduction of type variables. We obtain thus
the calculus of constructions [7].

Note finally that the fact that type assignments are sequents and not sets, allows ourselves to
present a system without “typable conditions” on identifiers.

We shall now show how to prove the following

Theorem (Girard’s paradox). There exists a term M such that - M : (TIlp : Prop)p, and
no termn satisfying this condition is normalisable.

3 The paradox

What follows is a comment of the “type-checked” version of Girard’s paradox. The intuitive idea
is the following: the set of all well-founded transitive relations cannot exist. This is thus analogous
to the usual Burali-Forti paradox, but there is a supplementary trick to show that it is possible to
build a type of all well-founded relations in the general polymorphic typed calculus.

The paradox is described also in [15], but Martin-Lof uses the sum and the integer as primitives.
As we do not have the exact traduction of the sum and the integer in the “pure” system with only
arrow and product as constructors (cf. [9]), it would be very heavy, if one wants an effective version
of the paradox (i.e. type-checked) to use such a derivation.

Instead, we shall use one intermediate between [11] and [15].

We want first to emphasize one important point for the coding of mathematics in type theory.

3.1 How to represent sets in type theory

If we want to represent the notion of relation in type theory. the most natural attempt is to take
a parameter A @ Type, with a paramcter 2 : A — A — Prop. This approach does not work
when we try to built the notion of “segment” for the relation 1 and the object z : A, which mmnst
represent the set of all y such that R(y, z). This segment has to be a type. with a binary relation
on it, which captures the usual notion of segment. But we do not have enough type formations
to construct the type correspondinge to thisz notion (at least, not in a direct way. we can actually

“code” the notion of suins, cf. {15], but the terms we could consider by thiz method would be

more cotnplex than the oue obtained by the method deseribed bel w). This difficulty appears very
naturally when we try to construct the Burali-TForti paradox in the general polymorphic calculus.

Fortunately, there is a way to turn around this difficulty (and this is the way that is build the
notion of sets in [22]). We code the notion of set as a pair of a type A : Type and a predicate

onit P : A — Prop. Then, we represent the notion of relation as a type A together with a

5



predicate P : A — Prop and arclation R : A — A — Prop on it, and for representing the
scgment determined by the element z of type A. all we have to do is to rostrict the predicate P
with predicate Ay.R(y,z). This is the way chosen for the construction of the paradox.

This predicate can be looked as an “existence” predicate on the type A, but we see that there
is very pragmatical reasons to its introduction. Another example is if one wants to state somcthing
about a class of predicates on a type. In general, the statement is only true for extentionnal classcs,
and so one has to relativize the assertion with the extentionality predicate on'the types of predicates
of predicates.

Actually, the best way for coding the notion of sets is the following: a pair of a type A : Type and
a binary relation E : A — A — Prop, with a proof p that this relation is symmetric, and transitive
(this notion contains the previous one: take for the predicate P the term ) z.E(z, z), which can
be thought of as an “existence” predicate on the type A). We did not take this representation in
our type-checked version, as the previous one is sufficient for the derivation of the paradox, and
produces a smaller A-term for this derivation. The derivation of [11] uses this translation of set
in type theory. The first reason that the second translation is better is that it allows to state
general statements, prove them in all generality, and then instantiate them in “concrete” situation,
such as the type of predicate on a given type, with the extentional equality. The sccond reason is
that this is exactly the way of representing topos theory in type theory [12]. We can see that this
representation is very natural, as soon as we try to develop mathematics in type theory.

For example, the definition of the intentional equality on a type A follows the idea of Leibnitz:
Two elements z and y of type A are intentionally equal if, and only if, there is a proof of the
“proposition” (IIP : A — Prop)P(z) = P(y). 1t is then possible to prove that this relation is
reflexive, symmetric and transitive (cf. [9] and [11]).

For simplification, we shall use in the sequel the usual mathematical terminology, instead of
the effective coding in the type theory, as far as there is no difficulty in the translation.

In our effective derivation, we have to use a “purely logical” definition for the notion of well-
foundation. First, we define the notion of eternal predicate P for a relation R : P is eternal if, and
only if, for all z such that P(z), there is a y such that P(y) and R(y,z). Then R is well-founded
if, and only if, all eternal predicates are void. It scems to be a good point for the use of typed
system to mechanize mathematical inferences that we have to choose rather “abstract” definition
of concepts for doing an explicit derivation, as it is this kind of definition which fits best in type
theory.

3.2 The core of Girard’s paradox

Once we understand how to code the nsual notion of set theory in typed system, the writing of the
preliminary for the “Burali-Forti™ paradox is straigthforwasd (andd all these desivations could be
done in higher-order logic). Now, we have to understand why the introduction of Type variables
opens the door to the paradox.

First, to derive the paradox, it is uscful to remark that all we have to do is to construct a

“univerzal notation system for relations” in the following meaning.

Definition. A universal system of notation for relations is a type A Type togetlier with a
term ¢ : (I1B : Type)(B — B — Prop) — A, such that if (B, R) and i(C, S) are intentionally
equal, then (B, ) and (C, S) are isomorphic.

It is then known how to derive a contradiction, once we have such terins, and the important
thing is how to construct them.



One possiblity for the construction of such a type, perhaps the simplest one, is to take for A
the type ((TIB : Type)((B — B — Prop) — Prop)) — Prop, and for ¢ the term AB. AR Az.z(B, R)
(this scemns to be a little simpler than the one of [11]). This can be motivated by the usnal way
of embedding a type A in his type of class (A — Prop) — Prop. This is a general method of
construction in the Principia [22]. For excmple, we can view pairs over the types A and DB as
elements of type (A — B — Prop) — Prop. Here, this mcthod solves our problem of the definition
of an universal system of notation for relations. '

Supposc now that (B, R) and ¢{(C, S) are intentionally equal as defined in the previous part,
ie. that we have a proof of (ILP : A — Prop)P(i(B,R)) = P(i(C,S)), then we have to show
that (B, R) and (C, S) are isomorphic. Let Isom be the relation which expresses the isomorphism
between two relations (whose exact construction is not relevant here). Then we can instantiate the
given proof of equality between (B, R) and ¢(C, §) on the predicate Q = Az.z(F), where F is
the term AD.AT.Isom(B,R,D,T). Then, Q(i(D, T)) is convertible to Isom(B,R,D,T), and as
the isomorphism is a reflexive relation, we obtain in this way a proof of Isom(B, R,C, S). All the
derivation is completely described in the appendix.

This shows that the “syntactic” explanation of the paradox is the double quantification on the
Types. One has a clear semantics: the quantification (Ilz : Type)N, if N : Prop (it corresponds
only to an universal statement on all sets), but the second one (Ilz : Type)N, with N : Type, has
no corresponding one in set theory (it should be a product over all sets).

The reason why all terms of type (IIp : Prop)p are not normalisable is a straigthforward
combinatorial reasoning (cf. [14]). The “surprising” fact is that this A-term “explodes” by 8-
reduction. If we look at the process of reduction as the process of “understanding” one proof we
can say that the “proof” of Girard’s paradox becomes more and more complex when one try to
understand it !

It is worth it to note that we use only a tiny part of the general polymorphism on types. The
paradox appears as soon as we allow ourselves to consider the “polymorphic” types (as in ML,
with one universal quantification) as real types. Note also this derivation seems very close in spirit
to the derivation of [20] for a construction of a contradiction for a system of Quine, that uses a
generalisation of the notion of “systematic ambiguity” of the Principia.

4 Applications of the previous construction

4.1 “Type is of type Type” is inconsistent

The first application is the inconsistency of the first calculus of Martin-Léf [14]. This can be secn
as the generalisation of the calculus of Church (but, in an intuitionnistic framework), where we
add that there is a type Type of all types.

The precise formulation of this system is simply the one given in the sccond section, and
replacing everywhere Prop by Type. All the previous derivation of Girard's paradox can then be
translated in this system, and we obtain thus a non-normalisable term in this system. This is the
way Girard derives a paradox in the 1971 system of Martin-Lof,

There have been proposed some programming or specification langnages which contains the idea
of a type Type of all types, together with the fact that this type is also of type Type [2]. Though
the termination property is not the primnary concern of the computer programmer, it scems very
iniportant to study the “computationnal” relevance of Girard's Paradox (what scems to be lost
forever is the possibility of doing proofs about programs in such systems).



4.2 CAT is not a CAT

It appears it is possible to apply the ideas used in the typed-checked paradox to derive a contra-
diction from the fact that therc is a category of all categories.

Definition. Let C be a category, the order R(C) is defined on 0bj(C) by R(C)(a,bd) if, and
only if, C(a,b) is non void and C(b, a) is void; then we shall say that C is well-founded if, and only
if, R(C) is a well-founded ordering.

Definition. Let C and D be two categories, then a functor F between C and D is said to
be dominated if, and only if, there is an object y of D such that, for all object z of C, we have

R(C)(F(z),y).

Proposition. The “category” which has for objects all well-founded categories and for mor-
phisms the identities and the dominated functors does not exist.

The reason is that we can reproduce the typed-checked example if such a category exists. This
shows that it is not possible to add a special type “Cat” to the theory of types of Church which
captures the idea of the category of all categories. :

Conclusion

In view of this paradox, and of the considerations of the first section, it is natural to consider the
restricted system where we do not allow the formation of product II(M, N) when M is Type. The
system is exactly the system described in the second section, with the restricted product formation
for the rule 2.2.4. It seems that we obtain by this way a complete formalisation of the system used
in the Principia (but in an intuitionnistic framework) with the notion of “typical” or “systematic”
ambiguity. This system can so be thought of as the language ML, where we add a special type
Prop, which is the type of the specification of the programs. A more detailed study of this system
will appear in [8].

Experiments with this system show that this is a good generalisation of the calculus of con-
struction. We can now, for example, define “abstractly” the equivalence rclation related to a
preordering, and prove that this is an equivalence relation. The important point is that we can also
instantiate this “abstract” situation on a “concrete” given preordering, by example the inclusion,
and specialize both the definition and the proof, obtaining thus the concept of extentional equality,
and the proof that this is an equivalence relation.

It seems thus that the difficulty raised by Girard’s Paradox can be in practice solved in a
consistent way. .

All these considerations raise the following problem about the Curry-Howard isomorphismn
between propositions and types: is this really an isomorphism ? It scems that there is a problem
of “levels™. We have the choice a priori for the level of programs, as term of degree 3 or of degree
2. If we choose the degree 3, then we have the general polymiorphisin for programs (it is shown
in {7 that we can add the dependent produet in o consistont way). If we choose the degree 2,
then we lose definitely the general polymorphism, but we have a clear set-theoretic semantics for
the programs and a clear way for the development of proofs about programs in the construction
system.

Girard’s paradox secms to have some connections with the result of Reynolds [21] that there is
no set-thcoretical models. Actually, this can be used to show that there is no extensionnal models
with a polymorphic notion of equality (cf. [11]), but it does not seem that it entails directly the

8



gt VL

Reynolds’s theorem, as his definition of what is a set-theoretic model has very weak conditions.
It is likely that the derivation of Reynolds can produce a non-normalisable term in the general
polymorphic calculus, but not shorter that the typed-checked one. More generally, this raises the
following questions: is it possible to derive another kind of paradox in the general polymorphic
calculus (for example, Russel’s paradox) ? If possible, could the different ideas behind these
paradoxes be characterized by the behavior of the corresponding A-terms by reduction ?

The derivation of a paradox in the general polymorphic system can be seen as the syntactical
counterpart of the fact that there is no set-theoretical model of the second-order typed calculus.
This is morever perhaps an explanation of this non-existence: the typed systems showed in this
paper are formal systems whose syntax is as complex as what is usually regarded as semantics (i.e.
set-theory).

References

[1] H. Barendregt “The lambda -Calculus: Its Syntax and Semantics.” North-Holland (1980).

[2] R. Burstall and B.Lampson “A kernel language for abstract data types and modules.” Lecture
Notes in Computer Science 173, Springer-Verlag, 1984

[3] N.G. de Bruijn “lambda-Calculus Notation with Nameless Dummies, a Tool for Automatic
Formula Manipulation, with Application to the Church-Rosser Theorem.” Indag. Math. 34,5
(1972), 381-392.

[4] N.G. de Bruijn “A survey of the project Automath.” in Curry Volume, Acc. Press (1980)
[5] N.G. de Bruijn “Some extensions of Automath: the Aut-4 family” unpublished paper (1974)

[6] A. Church “A formulation of the simple theory of types” Journal of Symbolic Logic (1940),
56-68 ' '

[7] Th. Coquand “Une Theorie des Constructions” these de 3eme cycle, Paris VII (1985)
[8] Th. Coquand “Modeles de la theorie des constructions” en preparation (1986)

[9] Th. Coquand, G. Huet “Constructions: A Higher Order Proof System for Mechanizing
Mathematics.” EUROCALS5, Linz, Springer-Verlag LNCS 203 (1985).

[10] Th. Coquand, G. Huet “Concepts Mathematiques et Informatiques formalises dans le Calcul
des Constructions” Papier presente au Colloque de Logique d'Orsay (1985)

[11] J.Y. Girard “Interpretation fonctionnelle et elimination des coupures de 'arithmetique d’ordre
superieur” These d’LEtat, Paris VII (1972)

(12, J. Lambek “From types to sets™ Advances in mathematics 35 (1980)

13; D.B. MacQueen and R. Sethi “A higher-order olymorphic type system for applicative lan-
g p
guages” Symposium on Lisp and Functionnal Programming, 243-252 (1982)

[14] P. Martin-Lsf “A Theory of Types” unpublished (1971)

[15] P. Martin-Lof “An intuitionistic theory of types: predicative part” Logic Colloquium, North-
Holland (1975)



6] P. Martin-Lof “intuitionistic Type Theory” Bibliopolis, (1980)
[17] A.-R. Mcyer and J.C. Mitchell “Sccond-order Logical Relations” extended abstract (1985)
(18] R. Milner “A theory of type polymorphism in programming” JCSS 17(3), 348-375 (1978)

[19] J.C. Mitchell “Lambda Calculus Models of Typed Programming Languages” Ph. D. thesis, -
M.LT. (1984) '

[20] J.B. Rosser “The Burali-Forti paradox” Journal of Symbolic Logic 7, 1-17 (1942)

[21] J.C. Reynolds “Polymorphism is not Set-Theoretic” Lecture Notes in Computer Science 173,
Springer-Verlag, 1984

[22] B. Russel and A.N. Whitehead “Principia Mathematica” Volume 1,2,3 Cambridge University
Press (1912)

[23] G. Takeuti “Proof Theory” North-Holland, part- I (1975)

10



