DRAFT

A system of ordinal notations with natural
representations in the second order \-calculus

Harold Simmons
Department of Computer Science
The University
Manchester M13 9PL

September 12, 1994

Abstract

Sort out this boldface; Abstract and boldsymbol

I describe a system of ordinal notations which have straight forward and direct
representations in the second order A-calculus A2. I believe these ordinals
cofinally exhaust those representable in A2.

[Held in 100.../41-.../000-bit.... Last changed September 12, 1994]

1 Introduction

[Held in 100../41../100-bit... Last changed September 12, 1994]

There are now many type systems (formal systems) in use in Mathematics and Theo-
retical Computer Science. Some are designed for quite specific purposes. Amongst these
are the many systems used to analyse various aspects of number theory, analysis (second
order number theory), and restricted versions of set theory. The items [6], [7], [8], [12],
[13], [27], [28], [29], [30], [31], [32] give a fair sample of this material. Other systems are
designed as formatting devices for general purpose use in which more specific systems
can be formalized. Amongst these are the Pure Type Systems [3]; the family of Logical
Frameworks [19]; the Calculus of Constructions [20]; and Martin-Lof type theory [24],
[25]. Many of these have implemented versions such AUTOMATH [5], Nuprl [9], Coq
[11], HOL [18], LEGO [22], and Isabelle. The article [26] is a nice survey of this topic.

Given this plethora of systems how should we compare the strengths and capabilities
of two particular examples? We could present the two systems in the same formalism
and then look for a direct comparison (in terms of a suitable notion of embedding or
translation). This may seem the best thing to do, but what happens if we change (even
slightly) one of the systems or want to compare a given system with a family of systems.

A more general technique for comparison is to attach to each system a measure of
‘amount of interesting information’ coded by the system. These measures are chosen so

1

that a direct comparison between the assigned values is relatively straight forward. In
this context the most common measure used is the class of number theoretic functions
represented in a system. When we do this we expect the assigned measure to be something
like the class of

- rudimentary functions
- primitive recursive functions

- those functions provable total in 15% order number theory

2Ild

- those functions provable total in order number theory

or various well defined subclasses of these.

Many of these classes are generated by a common iterative process, and the ordinal
number of steps required to generate the whole class is a cruder, but still important,
measure of information. When we do this we expect ordinals such as

- the least infinite ordinal w
- the least critical ordinal ¢

- the least strongly critical ordinal I'y

- the Howard ordinal

to be the assigned measure.

To determine such an ordinal measure we need to find both an upper bound and a
lower bound and hope these two bounds agree (otherwise we have merely sandwiched
the value in an interval of ordinals). In general, these two bounds are found using quite
different methods. The upper bound will be computed using some operational behaviour
of the system (such as a proof of strong normalization).

A lower bound can be obtained by representing ordinals (or structures which code
ordinals) directly in the system. This representation should interact smoothly with the
representation of number theoretic functions in such a way that ordinal iteration is cap-
tured in a fairly direct fashion. Furthermore, these representations of ordinals and func-
tions should reflect some of the structure of the system. An ad hoc representation may
work by accident rather by virtue of some inherent property of the system.

In the paper I will produce a lower bound A for the ordinals represented in the second
order A\-calculus A2, (also called the polymorphic A-calculus and system F'). This ordinal
A will be constructed as the limit of a sequence of ordinals

A < Al < A2) < -+ < Ar] < -+

which is closely related to the type structure of A2. Each ordinal A[r] will be represented
in A2 in a rather direct fashion. It turns out that

Al0] = w
A[l] = €
A2l = Ce...

and the gap between A[r] and A[r + 1] increases in order of magnitude as r increases. I
believe the ordinal

A = lim(Alr]|r < w)

is also an upper bound for the complexity of A2. However, I do
not present a proof of this.

The problem of determining the complexity of A2 is not new, but it is usually done in
terms of the corresponding class of number theoretic functions (those which are provable
total in second order number theory). It is unusual to see a direct representation of the
ordinals.

In that excellent little book [16] the complexity of various systems is measured through
the represented functions. Ordinals are hardly mentioned (either as formal objects or
informal tools). In [15] there is a lot of information about ordinals associated with
systems, but almost always these ordinals are not represented directly within the system.

Much of the paper [14] is about the complexity of A2, and sections 5.5 and 5.6 can
be seen as a representation of the ordinal e. However, this representation is not done
explicitly, and the more general problem is not considered.

One place where the direct representation of ordinals is described is at the end of
section 4 of that useful survey [21]. This material, which is based on the work of Coquand
[10], has had a lot of influence on the results presented here.

In essence this paper is a description of how A2 can be used to construct a natural
system of ordinal notations. It should, therefor, be related to the many other systems
of ordinals notations devised. It wouldn’t be constructive (in the non-technical sense) to
survey the literature on this topic. The best places to begin are the accounts [27], [28],
[29] and work backwards from the papers cited there. I should mention also the papers
[1] and [23] which have given me a lot of food for thought. The paper [17] includes a
very readable introduction to ordinal notations (but doesn’t go as far as needed for our
purposes).

What is the idea underlying this and almost all systems of ordinal notations?

Let O be an initial stretch of ordinals which contains all ordinals we may want to use,
but is not too long as to be excessive. If you want to be precise think of O as the stretch
of countable ordinals. We will behave as though O were the only existing ordinals. Thus,
for instance we say

the ordinal @ instead of the ordinal o € O
the set A of ordinals instead of the subset A C O

etc. This, of course, is nothing more than a convenience; it doesn’t imply anything about
a perceived non-existence of other ordinals, we just don’t need the others here.

We want to name as many ordinals (in @) as possible using a small array of gadgets.
We can use the zero ordinal and the successor function o — o + 1. We can describe a
limit ordinal A as the limit of an ascending sequence

A < A1 <+ <A < -+

of strictly smaller ordinals provided the function
AM]:N—> 0

can be described. This function A[-] is a chosen fundamental sequence for \, and it
is precisely the selection of these sequences which is one of the main problems when
designing a system of ordinal notations.
How can we generate notations?
Let
0 =0-0

be the type of ordinal functions. Suppose also we have constructed a function
Next : O

which when applied to an ordinal ¢ produces a larger ordinal Next(and which we can
take as a notation for this ordinal (once we have a notation for ¢ and Next). By iterating
this process we obtain

¢, Next(, Next’(= Newxt(Next(), Next?¢ = Next(Next’(), ...
and, after some preparation, we can take this into the transfinite

Next*(

for a suitable stretch of ordinals . Thus, given a notation for o and {, we produce
a notation for a much larger ordinal. The simplest example of this uses the function
Next¢ = wS.

The choice of ¢ and Next ensure that a < Next*(and initially « is strictly smaller
than Next*(. However, eventually we meet an ordinal v satisfying

v = Next’((1)

and at this point the process is incapable of producing any more notations.
How can we continue?
Let
o =0-0
be the type of operators which convert ordinal functions into ordinal functions. I will
describe a particular operator

[]:0

which, when supplied with a suitable pair

Next: @ |, (:0

will return an ordinal

v = [|Next(

which is the least solution of (1). We then use ‘[] Next(’ as a notation for this v.
This process is iterated to produce a sequence

¢, Next(, [INext(, [J*Next(, [*Next(, ..., []*Next(, ...,

of larger and larger ordinals. As before this closes off at the least solution of

v = [J"Next¢ (2)
and at this point we need to enrich further the allowable gadgetry.
Let
(OYI/ e @Il N @Il

be the type of constructors on operators. I will produce an inhabitant of @ which when
supplied with [], Nexzt and ¢ will return the least solution of (2). You can guess what
will happen next.

Consider the sequence

o9, oM, @,,0", ...
of types generated by
09 =0 : ot = o)’ = o) — o)
for all » < w. I will produce a sequence of inhabitants
Next: @, []:0", [o]: 0", [1]:0%, ..., [r]:00+) .

each of which extracts the least solution of a certain fixed point equation. These inhabi-
tants will have a comparatively straight forward representation in A2. Furthermore, the
whole sequence will be constructed in a uniform fashion, but at first sight it seems that
this uniformity can not be captured in A2 (because it makes use of a type constructor
not available in the system).

Setting
A[0] = w
A[1] = Neztw
A[2] = [|Neztw
Alr + 3] : [v]--- [o] [] Neztw

produces the ordinal stratification of A2.

(The indexing of Next, [|, [0o], [1], ... might look a little eccentric, but it is not
without reason. It is done partly for presentational reasons, but mainly to smooth out
some of the initial stages of the whole construction.)

The remainder of this paper is divided into 8 further sections as follows.

Section 2 sets down the basic concepts used throughout the paper. In particular,
there is a discussion of how the higher order inhabitants of O**+1 (for all £ < w) may be
iterated transfinitely.

Almost all systems of ordinal notations have their origin in the Veblen hierarch o(-,-)
[33] which enumerates (from below) the critical ordinals €, up to the least strongly critical
ordinal I'p. Section 3 contains a quick review and a rephrasing of the construction of ¢
relativized to an arbitrary normal function f : @. I write down the obvious construction
of the operator Fix : " which when supplied with a normal function f and an ordinal ¢,
will return, Fixf(, the least fixed point of f beyond ¢. This motivates what comes later.

Normal functions are the enumerating functions of closed unbounded sets of ordinals.
Section 4 introduces the slightly different notion of a nice function g : @. These functions
are such that for each non-zero ordinal ¢ the iteration function

a = g%¢
is normal. In particular, for each normal function f, the function Fixf is nice and so
a— (Fixf)*¢

is normal. To prepare for later I construct an operator [] : @ which produces the least
solution of

9°¢=v
for a supplied nice ¢ : @ and non-zero ordinal (.

Section 5 relates the construction so far to the standard Veblen hierarchy. Thus we
find that

or(1+B,a) = ([J°(Fixf)) w

for each normal f : @ and ordinals «, f : @. The two occurrences of ‘1 + ’ smooth out
a couple of discrepancies between the two approaches.

Section 6 contains the first of the two main contributions of this paper. Follow-
ing on from section 4 I define the notion of a mice inhabitant of each of the types

Q", 0", 0%, We see that the operator [] : Q" is nice, and I extend this to
construct nice inhabitants [0] : @, [1] : O™, These new operators fit together in
a neat way and are used to produce solutions of certain higher order fixed point equations.
Furthermore, the constructions of [], [o], [1], ... are such that they can be represented

in A2 in a relatively straight forward manner.

As an interlude, and partial justification, section 7 contains a few calculations which
show just how powerful these new operators are.

Section 8 contains the second of the two main contributions of this paper. Natural rep-
resentations in A2 of the operators [|, [o], [1], ... and the ordinals A[0], A[1], A[2], ...
are given. Of course, because of the way these gadgets have been set up, this is now quite
easy. However, there are still one or two minor points to deal with.

To conclude, in section 8 I give a selection of open questions, possible further devel-
opments, and concluding remarks.

From this summary you can see that the crucial idea is that of a notion of niceness
for @,0",0",.... I can define these straight away along with a notion of niceness for

0.

1 DEFINITION. An ordinal ¢ : @ is nice if ¢ > 0.

An ordinal function g : @ is nice if it is monotone and strictly inflationary (in an
appropriate sense) when applied to nice ordinals.

Given a notion of niceness for a type ¢’ = ¢ — o, an inhabitant G : ¢” = ¢/ — ¢’ is
nice if for each nice g : ¢’ the inhabitant Gg : ¢’ is also nice. W

The purpose of the first clause of this definition is to eliminate certain abnormalities
that can occur in ordinal calculations when 0 is involved.

The second clause is the important one from which all other instances of niceness are
derived. This is discussed in detail in section 4.

The third clause of the definition gives us, in turn, a notion of niceness for
Q", 0", 0", This is discussed in detail in section 6. In that section a slightly
different definition is used because it allows us to derive the required properties more
quickly (however, the two notions are the same).

2 Preliminary material

[Held in 100../41-../200-... Last changed September 12, 1994]

As indicated in the introduction N and O are, respectively the concrete set of natural
numbers and a suitable initial stretch of the ordinals. We are interested in the function
space types generated from these base types by

if o and p are types then so is o — p

(where p, o range over these types). Eventually we represent these in A2 (using certain
polymorphic types N and O as base types). Our notation for concrete types closely
matches that for A2-types and, in places, I blur the distinction between the two. In
particular, the compound type

T—0—>p

is punctuated as
T — (0= p)

and not as (7 — o) — p. For each type o we write

o for o—o0

and we may iterate this construction to produce types ¢, ¢, o®, ..., ot . where
o = o — 0o = o0 —s0—0
0,/// — O.I/ —% G.II — O.II — O_/ — 00—
0_(4) = g — g = 0" S50 S0 50 —o0o
st =)y o)

etc. In particular, the concrete types (O) |r < w) are produced in this way.

Given types o and p, and inhabitants
fio—p , s:0
we use the standard notation of A-calculus and write
fs rather than f(s)
for the value of f at s. Furthermore, for
fitT—>0—p , t:7 , s:0

the compound

fts

is punctuated as
(ft)s

(and not as f(ts)) to produce a value in p.

We use lower case Greek letters a, 3,7, (, A, it to indicate ordinals. In general a, 3,7
will be arbitrary ordinals; ¢ usually a base ordinal (of some calculation); A,z limit ordi-
nals; and v a solution of a fixed point equation. There will be occasional breaks of this
convention. In particular, p,o, and 7 are types (either concrete or formal).

We should think of ordinals as templates for long iterations. Given a function f : o
on some type o, there is no problem in producing finite iterates

fr=ids, f'=f, fP=fof, f ...

of f. If 0 comes furnished with a supremum operation \/, (which converts subsets of o
into elements of ¢) then we can continue further. We set

fO = d,
e = o
fAs = Ve{fosla <A}

for all ordinals «, limit ordinals A, and s : 0. We view an ordinal o as a polymorphic
gadget which, when supplied with a type o, a function f : ¢/, and an element s : o, will
return the value f@s of the at-iterate of f at s.

This kind of iteration can be lifted from a base type to higher types. Thus for each
type o we can lift any supremum operation \/, on ¢ to a pointwise supremum \/,, on o’

by
\V,F)s = \[{fs|feF}

for each subset F of ¢’ and s : 0. Using this the above iteration can be rephrased as

fO = idgy
ot = fofe
o= Vel la< A

for all appropriate o, A and f.

This lifting also allows us to iterate an given F': ¢” by

FO = i(la/
Fa+1 — F o Fa
o A— Vo {Fef|a < A}

for all f: ¢’ and ordinals a, A\. The last clause here can be rephrased as
F* =\ {F*|la<A} oras Ffs =\/{F*fs|a<A}

using the lifting \/,» of \/,» to ¢”; or the generating supremum V, on o.
The type O carries a standard supremum operation. This can be lifted in steps to
pointwise suprema on @', @, @”, ... and so it make sense to write

Feffi... [¢

for all F: QM2 f. QD £ 0O ... f : @, and ordinals «, ¢ : Q.

All this is unproblematic in the world of concrete sets and function spaces. However,
the system A2 doesn’t handle arbitrary subsets of types, so we can not expect to capture
the properties of arbitrary suprema operations. Instead of suprema \/, A of arbitrary
subsets A of o, we consider only suprema \/, p of w-sequences p : N — ¢ of inhabitants
of 0. These can be captured in A2.

In these terms the limit leap f* of the iteration of a function f : ¢’ is constructed as

frs = LA r <w}

where A[-] is a chosen fundamental sequence of A (satisfying A = V{\[r]|r < w}). This,
of course, make the iterate f¢ dependent on the notation for the ordinal o and not just
the ordinal itself.

Used in this way we require only suprema of w-sequences p on a type o. Such a
supremum operation can be lifted to ¢” by

(\/U,{qv’ |7 < w})s = \/J{qrs |7 < w}

for each ¢: N — ¢’ and s : 0.

This gives us the suprema operations on @', Q",Q", ... each of which will be written
as \/ (without a distinguishing subscript). However, these must be used with some care.
The type O carries a natural comparison < relation between its elements which ensures

that
VB=\A4

for all subsets B C A C O with B cofinal in A. This is precisely why we can compute
many suprema by suprema of w-sequences. These facilities are not readily available in
0",0",.... To overcome this we restrict our attention to a nice family of inhabitants
of each O") which somehow preserve enough of the comparison property of ordinals.

3 The standard Veblen hierarchy

[Held in 100../41../300-bit... Last changed September 12, 1994]

9

Recall that an ordinal function f : @ is normal if it is strictly monotone and continuous
in the sense that

(sm)a < f = fa< ff

(c) fF(VA)=V{falae A}
hold for all ordinals «, 3, and all non-empty sets A of ordinals. Such a function is
automatically inflationary, i.e. satisfies

(i) ¢ < f¢
for all ordinals (. For technical reasons it is convenient to restrict our attention to those
normal functions f which dominate the function w* i.e. satisfy

w* < fa

for all ordinals . This smoothes out the initial stages of various constructions. The
least such normal function, i.e. w*® itself, is used to generate the Veblen hierarchy. We
relativize this construction to an arbitrary normal function.

We are interested in the fixed points v satisfying

fr=v

for a given normal function f. These fixed points are easy to generate. Given any ¢ : O
choose some ¢ with ¢ < (" and then define a sequence v[-] : N — O by

vl =¢ , vlr+1] = f(v[r])
(for r < w). The monotonicity of f ensures that

(<ol <] << vl <o
and the continuity ensures that

v = \{v[r]|r <w}

is a fixed point of f. Furthermore, if y is any fixed point of f with " < pu, then v < g,
so if ¢ is not too large then v is the least fixed point of f beyond (. For most ¢, in
particular for ¢ = w, we can take (" = (. If ¢ happens to be a fixed point of f then we
can take (" =(C+ 1 or (“.

The continuity of f ensures that the set of fixed points is closed under suprema, and
so is a closed unbounded set. The enumeration of this set is another normal function.
We write f’ for this function, so

f'0 = least fixed point of f
f'(a+1) = least fixed point of f beyond f'«
f'A = V{flala<)}

for all ordinals « and limit ordinals \.
In the particular case f = w*® the function f’ enumerates the critical ordinals, f'a = €,.
The Veblen hierarchy
¢f Ox0—>0

10

on f is generated by

¢7(B+1,-) = enumeration of the fixed points of ¢;(3,)
dr(p,-) = enumeration of the common fixed points of ¢(/3, -)

forall < pu

for ordinals £ and limit ordinals . It can be checked that each function br(B,-) is
normal and dominates all previous functions in the hierarchy. Furthermore, the function
[defined by
ffa = ¢4(a,0)

is normal, and so provides a base function with which we may repeat the whole process.

In the standard case f = w*® the fixed points of f are the critical ordinals, and the
fixed points of f* are the strongly critical ordinals.

I will rephrase the description of this construction.

Starting from a given normal function f, we iterate the operator (-)’ to produce a
sequence

(f@ |8 e 0)

f(O) -

= f
fE+D) = f(ﬁ)/
fB¢ = V{FO¢|B < u}
for all ordinals f,¢ and limit ordinals p. It can be checked that each function () is
normal. Only the passage across limit stages needs a bit of thought. Note also that

of functions. Thus

f®Wy=v & wvisacommon fixed point
of f® forall <

holds for each limit ordinal ;1 and ordinal v.
This allows a neater description of the hierarchy ¢;. We have

¢f(1+,37') — f(ﬂ)/ = f<ﬁ+1) (3)

for all ordinals . This is proved by induction on . For the leap to a limit ordinal f,
letting
e.o.t.c.f.p.o.

stand for
enumeration of the common fixed points of

we have
Gr(L+p,-) = ¢f(p,-) = eot.chlpo. ¢s(f,) foral g < pu

= e.o.t.ctfp.o. ¢p(1+4,-) foral < p

= e.o.t.cfp.o. fOHD forall < p

= e.o.t.cfp.o. f forall f < p

= e.o.t.c.f.po. f* = fr = pltD)

11

as required.
Let
Fix : Q"
be the operator defined by
Fix f(= f°¢
for all f: @ and ¢ : O. (Here (— (is any suitable inflationary function as described
earlier.) Using the previous notation for the construction of fixed points we see that

v[r] = f¢
for each r < w, and hence
v=V{f'Clr <w} = f°¢ = Fixf(
to verify the following.

For each normal function f: @ and ¢ : O, the ordinal v = Fix f (is the least
fixed point of f beyond (.

By our restricted use of normality all the fixed points of f lie beyond w, hence we

have
fla = (Fix f)'*w (4)

for all normal f: @ and « : Q.
Setting £ = 0in (3) we have

d7(1,) = (Fix f)!Tw

for all v : @. We wish to extend this to an iterative description of ¢;(1 + 3, «) for all
ordinals a, /3.

4 Nice functions

[Held in 100../41../400-bit... Last changed September 12, 1994]
To continue the development we look at the more general problem of solving
9’C=v (5)

for given g : @ and ¢ : @. Of course to obtain a smooth analysis we need to restrict the
given data ¢, (somewhat.

2 DEFINITION. An ordinal function ¢ : @' is nice if it is monotone and strictly inflation-
ary in the sense that

(m) a < B = ga<gp
() ¢ < g¢
hold for all nice ordinals «, 5,(. W

12

Do not confuse this notion with that of a normal function. The two notions are related
but not the same. To help you distinguish between the two I will use ‘f’ for a normal
function and ‘¢’ for a nice function.

We restrict our attention to equation (5) where the data g,(is nice. Before we can
do this we need at least one example of a nice function.

3 LEMMA. For each normal function f the function Fiz f : @/ is nice.

Proof. Let g = Fix f. By construction we have (< g¢ for all non-zero ¢, and hence
g is inflationary.
For 0 < a < G let
p=ga , v=gp
Le. 1, v are the least ordinals satisfying

a<p=fp , a<f<v=fv

respectively. The built in minimality of ;1 and v ensure that u < v, and hence g is
monotone, as required. W

It is easy to see that the composite g o i of two nice function is nice. Similarly the
pointwise supremum of a non-empty collection of nice functions is nice. Thus the non-zero
ordinal iterates

(9" la €0, a#0)
of a nice function ¢ are all nice.
We need a comparison property.
4 LEMMA. For each nice g : Q' the comparison
goC+p < g™t
holds for all ordinals «, 3, with ¢ nice.
Proof. After fixing «, ¢ this follows by induction on 3.

The base case f = 0 is immediate.
For the induction step, f + f + 1, the induction hypothesis gives

9> g > (>0

(where the central comparison follows since either = 0 and ¢*¢ =, or a # 0 and then
¢“ is nice). Thus, using the inflationary property of g, we have

9ot = g(g° M) > g*tP¢ > ¢ C+ B

to give the required result.
For the induction leap to a limit ordinal A we have

g AL V{g'C |y < a+ A}

V{g*tPC| B < A}

V{g*C+ BB <A}

g CHV{BIB <A} = g*C+A

VIV I

as required. W
We use two particular cases of this comparison.

13

5 COROLLARY. For each nice g : @ both
a<f = g°¢ <4’
(+B< 4%

hold for all ordinals «, B, with ¢ nice.

A little later we will need to show that certain other operators are monotone.
6 LEMMA. For each nice g : @, ¢ : O, if the ordinal v satisfies
g¢ =v
then

holds for all 0 <n < (.

Proof. Note that v # 0, otherwise ¢ = f%C = v = 0, which is excluded. The iterate
f is nice, hence

f'n<f¢=v
which, with v <n+ v < f“n, gives the required result. W

The equation (5) are solved in a uniform way.
7 DEFINITION. Let the operators
S0 -0-0 , [0

be given by
Oh¢a = ¢, [h¢ = (Oh¢)“¢
forall h: @ and o, : 0. W

The operator | | extracts the canonical solution of (5).
8 THEOREM. For each nice g : @, ¢ : O the ordinal
v = [g¢

satisfies
g¢C=v

and is the least such ordinal.

Proof. For each r < w let

v[r] = ({gl)'¢.

Thus,
v[0] = ¢
and
vir+1] = (<gQ) ¢
= (<gO)(<>g)7¢)
= Oglrlr] = g"I'¢

14

for each 7.
Corollary 5 gives
v[r] < g¢+vfr] < ¢MI¢ = vr + 1]
so that we have
C:]/[O] S[/[l] S'SI/[T+1] S o ¥

an ascending sequence. Note also that

v = [Jg¢
= (<{>g0)¢
= V{(OgQ¢lr<w} = V{vir]|r <w}

and we may use v[-] as the fundamental sequence of this defined limit ordinal v.
From this we have

9"¢ = V{g*¢la<v}
= V{o'tl(|r <w}
= V{v[r+1]|lr<w} = v
where Corollary 5 has been used.
Finally, if
g C=n
then, by a simple argument, we have (< p, and v[r|] < p follows by induction on 7.
This completes the proof. B

How does this operator [| help us to generate the Veblen hierarchy?

5 The Veblen jump

[Held in 100../41../500-bit... Last changed September 12, 1994]
For each normal function f : @ and ¢ : ©@ the function

a— (Fix f)4¢

provides an enumeration of the fixed points of f beyond . Only o = 0 does not give
such a fixed point. Since Fixf(is a fixed pont of f, we have Fixf(= f'C for some ¢ < (
A simple induction then shows that

(Fix f)'*¢ = f'(C+)
for all a : @. For the case (= w our restricted version of normality gives (= 0.

With this we have

[J(Fix f)¢ = least v with
(Fix f)*¢ =v

= least v with

ffl¢+v)=v

= least v with
(<v=fv = Fixf'¢

15

for all (suitable) normal f : @ and nice ¢ : Q. In this calculation we have assumed that
the least v satisfying

ffiC+v)=v
is so large in comparison with ¢ that 1 4+ v = ¢ 4+ v = v. This is a modest requirement
on f and is true for all normal functions we want to use in practice, but just to be on

the safe side I have put in a warning condition of suitability.
This result show that

[J(Fix f)¢ = Fixf'(
holds for all (suitable) normal f : @ and nice . Notice how this virtually uncouples the
effect of the ordinal argument (. We extend this to show

[J°(Fix f)¢ = Fix fO)¢ (6)

for all (suitable) normal f: @ and 3, : @ with ¢ nice.
This is proved by induction on 3, and only the induction leap to a limit ordinal s is
not immediate. For this case we have, for each ¢ : O

H(Fix)¢ = V{P(Fix F)C] B <)
— V{FixfO¢| B < i}

= the least v with
(<v=fBy
for all B < p

= the least v with
C<v=fWy = Fix fW¢

to give the required result. You should give some careful thought to the reasoning behind
the third step.
We can now use (3,4,6) to get

65(1+B,a) = fP'a = (Fix fO)*w = ([(Fix f)) T w

le.
¢r(1+ B,a) = ([JP(Fix f))*w

for all o, 5 : O and (suitable) normal f : @. This is the rephrasing of the construction
of the Veblen hierarchy.
As a particular case we have

frA+p8) = ¢;(1+5,0) = [°(Fix f)w
so we are now interested in solving
L"(Fix f)¢ = v

for given ¢ : 0. We can see a theme developing here.

16

6 Nice operators

[Held in 100../41../600-bit... Last changed September 12, 1994]

What have we done so far? We have defined a notion of niceness for inhabitants
of O and (¥, and we have shown how each normal function f : @ produces a nice
function Fixf : @f. We have also constructed an operator [] : @ which extracts the
solutions of certain fixed point equations. In particular, for a given normal function
[: @, appropriate combinations of ordinal iterates of [| and Fixf generate the Veblen
hierarchy ¢;(-,) on f.

We are now ready to start moving up the higher order types

o, 0", Q" ..., oD (7)

to produce particular inhabitants.
We will define a notion of niceness for each of these types. We will also mimic the
construction of [| to produce operators

o] :@" , []:0" ..., []:0¢3 . (8)

in such a way that each of [], [o], [1], ... is nice (at the appropriate level). Note how
these operators are indexed. As you read this development you may think that they
should be indexed in a different way. However, after experimenting with several versions
I believe the present system allows the smoothest development

The operators (8) will be generated in a uniform fashion by mimicking the construction
of []. Furthermore, each instance [¢] of this construction will be representable in A2
and, I believe, this will provide a collection of ordinals which
cofinally exhaust those representable in A2.

Consider first a general type O**+2) in the sequence (7). Thus k is any natural number
and the particular case £ = 0 gives @”. This type may be decomposed as

okt — o) 00 5... 50 20— 0

to display how an inhabitant H : Q®**2) must receive its arguments. Thus H requires a
sequence

h:O® b O® a0, 0

of arguments to produce
Hhhk L]7,1C : O.

an ordinal value. For the most part the parameters hy, ..., h; do not have a great effect
on the calculations and when k£ = 0 they are not there at all. It is therefore convenient

to condense the list
hp---h;y to h

and write
Hhha for Hhhy---hio.

This condensing notation should be used with some care for it appears to conflict with
the bracketing convention.

17

9 DEFINITION. For each k < w, an operator G : O%**2) ig nice if it is monotone and
inflationary in the sense that

(m) a < f = Ggga < Gggp
(i) 99¢ < Ggg¢

hold for all nice
g: 0%+ g0 g OO

and nice ordinals a, 3,(. W

This, of course, is a definition by recursion. Starting from the known niceness prop-
erties for @ and @ we use the Definition to generate the niceness properties for the
sequence (7). I will use g, G for arbitrary nice operators.

The first new niceness property is that for @” (in which case the list g is empty). We
already have an example such an operator.

10 LEMMA. The operator [] : Q" is nice.

Proof. The required monotone property follows by Lemma 6.
Consider

v=[]g¢

where g : @ and ¢ : O are given nice inhabitants. Then
g'¢=v
(and v is the least such ordinal). We can not have v = 0, for otherwise
(=g ¢=v=0
which is specifically excluded. We can not have v = 1, for otherwise
O0<(<gl=rv=1
which is contradictory. Thus 1 < v and hence Corollary 5 gives
9¢ <g"¢=v[]g¢
to verify the required inflationary property.

We now repeat and extend the development of Section 4. T will state without proof
the first few properties.

- If G : O%+2) and g : O*+Y are nice then so is Gg : Q%+,
- The composite G o H of two nice operators G, H : O**2) is nice.

- The pointwise supremum of a non-empty collection G C O**2) of nice operators is
again nice.

18

- For each nice G : O**+2) the non-zero ordinal iterates
(GYa €, a#0)
are all nice.
I will deal with the comparison properties in full.
11 LEMMA. For each |l < w and nice
G: 02 .0 g:00, ... g O

the comparison
G99¢ + B < G*PggC

holds for all ordinals a, 3, with nice.

Proof. After fixing a,(and the parameters g, gx,..., g1 (where g = g;---¢;) this
follows by induction on /.

The base case f = 0 is immediate.

For the induction step, # — (+ 1, the induction hypothesis gives

Gt PggC > G9g(> (>0

(where the central comparison follows since G®gg is nice for all «, even o = 0). Thus,
remembering that G®P¢ is nice, we have

GO fC = GG) FC > G*TPgg¢ > Gogg(+ B

as required.
For the induction leap to a limit ordinal A\ we have

V{G79gC |y < a+ A}

V{G*PggC|f < A}

V{G*gg9(+ G| < A}

Go9gC +V{B|B <A} = GgC+ A

Ga+/\gg<

VIV Il

as required. Wl

As before we need two particular instances of this comparison.
12 COROLLARY. For each | < w and nice
G:0MD g0 g .00, ..., g O

both
a< f = Gg(< GPggC

99¢ + f < GPgg¢
hold for all ordinals «, 3, with nice.

A little later we will need a monotone property.

19

13 LEMMA. For each | < w and nice

G : Q2 g : QD g 00 g1:0,¢:0
if the ordinal v satisfies
G'99¢ = v
then
G'ggn = v

holds for all 0 <n < (.
Proof. A simple argument show that v # 0 and hence
G"ggn < G"99C = v
since [V gg is nice. Also, using Corollary 12
v < ggn+v < G'ggn

to give the required result. B

We are now ready to construct the operators (8) and show that they are all nice.

For a given [< w let
p=00, . p =00

and set
o = O+
so that O+2) = ¢/ and
O =¢"=¢'s0—5p—-—p—0.
The case | = 0 is allowed, in which case the parameter types p, ..., p; disappear. We

use the abbreviations in the following Definition.
14 DEFINITION. Using the abbreviations described above, for each | < w let
o' —so—p—-—pp—=-0-0 , [1]:0"=0¢H
be the operations given by
(OHhh(a = H*hh¢ , [1JHhh(= (<OHRRC)YC

for all
H:d' h:o h:p,...,hi:p

and a, ¢ : @ (where h is the usual condensing). B

Note that the iterate (-)* used in the construction of <i> is that on o, whereas the
iterate (-)* used in the construction of [1] is that on Q.
What do these operators do?

20

15 THEOREM. For each | < w and nice
G: 0D g 0D g O, o120, C:0

the ordinal
v = [1]Ggg¢

satisfies
G"99¢ = v

and is the least such ordinal.

Proof. For each r < w let

Thus,
v[0] =¢
and
vir+1] = (<>Gggl) ¢
= (<>GggQ)((<>Ggg()'()
= OGgg(y[r] = G"Tlgf¢
for each r.

Corollary 12 gives
v[r] < 9g¢ +vlr] < GMgg¢ = vr + 1]
so that we have
C:]/[O] Sy[l] S ...Sy[/r_'_l] S...
an ascending sequence. Note also that
v = []Ggf¢

= (<>Gggl)“C
= V{(DGggQ)¢|r<w} = V{v[r]|r <w}

and we may use v[-] as the fundamental sequence of this defined limit ordinal v.
From this we have

G"99¢ = V{G%gg(|a <v}
= V{G"Tlgg(|r < w}
= V{vr+1)|r<w} = v

where Corollary 12 has be used.
Finally, if
G'99C =1
then, by a simple argument, we have ¢ < p, and v[r] < u follows by induction on 7.
This completes the proof. B

With this we have a whole battery of nice operators.

16 THEOREM. For each | < w, the operator [1] : OW+3) s nice.

21

Proof. The monotone property follows from Lemma 13.
Let v = [1]Ggg(for the usual G, g, g,(. Then

G"99¢ =v
and a simple argument shows that 1 < v. Corollary 12 now gives

GggC < G"g9g¢ =v = [1]Ggg(
to verify the inflationary property. W

It is time to put these operators to work.

7 The Veblen leap

[Held in 100../41../700-bit... Last changed September 12, 1994]
The new operators [o], [1], [2],... are very powerful. Let me illustrate this.
Each normal function f generates a sequence

(M7 <w)
of ‘symbolic powers’ as follows.
flo = 4dg
fll = Fixf
2 = [O(Fixf)
B = [C(Fixf)

fo8 = [[0 O)(Fixf)

Using these set

for each r < w to produce ordinals
Al0] < All] < A2l < -+~

which, for the case f =w®, I believe will cofinally exhaust the ordinals
representable in A2. To help our understanding of this we construct a second se-
quence

(f[r] |71 L w)
of normal function by
Jio] = f
o = (Fixf)w
f[Q]Oz == Da(Fin)w
f[g]a = [oj*[] (Fixf)w

forga = (190 [0 OJ(Fixf)w

22

where in the general case, fI"*4 I have written r’ for r + 1 as the index of the outermost
L]
Notice that
ful+a)=fa |, fga=f"1+a)

and each function fj,41) enumerates a set of fixed points of f which become more and
more sparse as 7 increases. Trivially we have

A[T] — f[r]l = f[T+1]0
(with a slight discrepancy in the first identity for the case r = 0). We also have
Alr +1] = fw = Fix fpjw

(and I suggest you go through a proof of this).
For the particular case f = w*® these give the following.

A[0] = w
All] = Fixfw = ¢
Al2] = Fixflu = e,
A[3] = Fixftw = T

To continue further let us write
o] [)(Fixf) = Fix f®

where f® is some function which dominates at least f*. We may repeat the previous
steps starting from f® in place of f to obtain some ordinal

A®[3] = [o] [(Fix/®)w

which will be very much larger than I'y. This is still nowhere near A[4].
We have

12 (J(Fixf)w = [o]([o] [J)(Fixf)w
= least v with
(L] L) (Fixflw > ([o] [)"(Fixf)w
for all small v : @. The case 7 =1 gives
[0]? [(Fixf)w > A[3]
the case v = 2 gives

] O Fixflw > ([o] [1)*(Fixf)w
([o] LN(([o] [))(Fixf))w
= ([0} [)(Fixf®)w = A®[3]

and the cases v = 3,4,5,... give larger and large ordinals. Of course the actual value of
v that we need is enormous. Now remember that

Al4] = [1] [o] [J(Fixf)w = (least v with [0]" [](Fixf)w = v)
and you begin to see just how big A[4] is.

23

8 Representation in A2

[Held in 100../41../800-bit... Last changed September 12, 1994|

The gadgets Fix, [], [o], [1], ... and ordinals A[0], A[1], A[2],... have been con-
structed in such a way that the representation in A2 is almost routine. However, there
are still one or two minor points to be considered.

Let me remind you of the essentials of A2.

The types p,o,7,... are generated from a stock of variables X by

T = X|o—p|VX.p

where the first two clauses generate the simple types, and the third clause is used to
produce polymorphic types. The raw terms 7,s,¢,... of A2 are generated from a stock
of identifiers « by

t = x|Az:or|ts|AX.r|to

where the first three clauses generate the simple terms.
A statement is a pair
toT

which is read as ‘the terms ¢ is correctly formed to inhabit 7’. There is a derivation
systems which manipulates judgements

PRt
where the context I' is a finites sequence of declarations
&y

controlling the range of variation of free identifiers z of the subject ¢ of the statement ¢ : 7.
In other words, a judgment is a statement in context. (Strictly speaking, the context I'
should also list the type variables which are allowed to occur free in the statement, but
we don’t need to worry about that here.)

The derivation system extracts the correctly formed judgements. Simple abstraction
and application are used to convert statements

Tip ' t:oco—=p,s:o

into statements
Az :or):0—p : ts:p

respectively. Polymorphic abstraction and application are used to convert statements
rip , t:VX.p

into statements
(AX.7): (V.p) : to : p[X = 0]

respectively. Here p[X := o] is the result of replacing the free occurrences of X in p by
0.
There is a reduction relation
t1 D> 1ty

24

on terms. This removes simple and polymorphic redexes from terms by
Az :or)spb> rlz:=s , (AX.r)o > r[X = o]

where [z := s] and [X := o] are substitution operators.
We want to produce types and terms which represent the ordinal gadgets constructed
earlier. For this we first need a representation of the natural numbers in A2.
A successor structure
S = (8, a, suc)

is a domain S furnished with a particular element @ : S and an operation suc : S’. By
iterating suc we produce a sequence

a = suca, suca, suc’s, suc’a, ...

of elements of S. We regard the natural number n € N as a polymorphic gadget which,
when supplied with a successor structure & will return the element suc™a of the carrier
S of &. Thus n is a kind of choice function which when supplied with an index & will
return a selected element from the domain indexed by &.

To implement this idea in A2 let

N = (VX)X - X' — X]

and set
n o= AX . dz: X, \y: X' .y"x
for each n € N. Here the compound term

T

3

Y
is constructed recursively by
Yz = z
vz = yx
y’r = y(yx)
y’r = y(y’e)
yk'Hx y(yk)a:

(and so this notation conflicts with the usual bracketing convention for terms). With this

we see that A is a type and
Fn:N

(and, in fact, these terms n are all the normal inhabitants of A'). Notice that when n is
supplied with a carrying type o, an inhabitant « : o, and an inhabitant s : ¢’, the term
noas reduces to the composite s"a.

It is straight forward to provide representations of the standard number theoretic
functions.

You may be more familiar with the type VX.X” and the term

mua=AX. y: X', z: X.y"z

25

as a representation of n. This version has a slightly flaw which can lead to incorrect
representations of some standard functions. The type A used here avoids these problems.
We use the same idea to simulate various aspects of the ordinals.
A limit structure
6 = (8, a, suc, lim)

is a successor structure (S, a, suc) furnished with an extra attribute
lim:(N—S)—S

which converts sequences p : N — S of elements into a ‘limit’ element limp. Given a
notation for an ordinal a (expressed in terms of the successor function on ordinals and
limits of fundamental sequences) we may use this notation to produce an element a& of
the carrier S of the limit structure &. We view the notation as a recipe for combining the
attributes a, suc, lim of &. Note that the value oG depends crucially on the notation
for «, not just on the ordinal itself.

To implement this idea in A2 let

LX) =WN—-X)—X
for each variable X. More generally, for a type o let
L(o) =N —0)—>0
to obtain the type of ‘limit creators’ over o. Set
0 = (VX)X - X' - L(X) — X]

to obtain our polymorphic type of ordinal notations. The idea is clear. We wish to attach
to as many ordinals o as possible a term "o with F "a™ : O such that when supplied
with a name (o, a, s,[) for the limit structure &, i.e. when supplied with

- a type o0 naming a domain S

-+ a term a naming an element of §

- a term s naming an operation on S

- a term [naming a limit creator for S

the term
"o loasl

will provide a recipe for naming the element oS of S.
Finite iterations are easy to deal with. For each n € N let

™ u= AX Az Xy X1 L(X) .y
to obtain F "n7: O. The prefix

AX dz: X,y: X' L(X)

26

will occur quite a lot (since it is the prefix of all normal inhabitants of @). I will condense
this to
AXzyl

to make various terms easier to read. For instance
n' = AXaxyl.y"x

and the term
fin := M N . AXzyl . uXxy

satisfies
Ffin: N — O and finn o> "o’

for all n € N.
The type O carries its own limit structure. Set

0:="0"=AXzyl.2 , S=Xa:0.AXzyl.y(aXzyl)

to produce a successor structure on O. Notice how S successfully captures the step
f*— fotl = fo fe for iterating functions.

Let S := N — O, so that § houses the names of fundamental sequences of limit
ordinals (and other sequences of ordinals as well). Using this set

L= p: S AXayl . l(Au: N .puXayl)

and observe how this captures the limit leap for function iteration.
What about the ordinal w? We view this as an instruction to iterate a supplied
function all the way up the natural numbers and then take the limit using a supplied

limit creator. The term
w = AXazyl . l(Au: N . uXzy)

captures this idea. It is easy to check that
Fw:0 |, Lfin>>w

since, of course, fin : S names the canonical fundamental sequence of w.

We could now produce representations of the standard ordinal functions. It isn’t
necessary to do this here since we don’t need the details of these representations. We can
begin to look at representations of Fix, [], [o],

Consider the term
Fix 2= Ah: O A : O.wO(IC)hL

where | : O' is a representation of some suitable inflationary function ¢ — (. To see this
is a correct representation of Fix suppose the term f : O’ names a normal function f and
(7 : O names (: Q. Then setting "¢’ 7 = 1"¢", we have

Fix f7¢7 o> wO™ ¢ L > L(Au : N . uO™(7)
which names the limit of the sequence
Fi ¢

27

ie. f“C, which is Fixf(.
The two operations <>, [] (given in Definition 7) are easy to represent.

O u= A O NG a:0.a0ChL , [] == M O, XO.wOl ()L
It is easy to check that
FO:0—-0-0 |, F []:0"

and a few simple calculations show that the term behave in the correct way.

The representation of the operators <> and [1] is not quite so straight forward. Con-
sider the Definition 14 of <> and the abbreviations given just before. With ¢ = @U+1)
the construction of <{i> involves an ordinal iterate H® of an operation H : ¢’ and at limit
stages p this involves a pointwise supremum

\/U{Hah la < u}

in ¢. This will be computed as
\/J{H“[T]h |ra < w}

where 1[-] is a chosen fundamental sequence of . To implement this use of \/, we need
a limit creator on ¢. This will be lifted from the limit creator L on O.
Consider the following term.

o= AX AN LX), Ap: N — X')\x: X I(Ow: N . pux)

It is easy to check that
E A (VXO)[L(X) — L(X7)]

and, on inspection, we see that for each type p, the term {} p captures the way we lift a
supremum operation on p (for w-sequences) to a pointwise supremum on p'.
Let (L; |l < w) be the sequence of terms defined by

L =tOL , Ly =0y
(for each [< w). It is easy to check that
F L £(O0H)

holds, and the two reductions

L, o> Ap: N — QU D> Ap: N — O,
My 0Ok OO My : 0O, . kg O
A :O. ALz O,
L(Auw: N . puhy - -+ hiQ) AXzyl,
TR
puh(X xyl

follow by a straight forward induction over .

28

We now set

&> = AH : OWD))\ D) [[J == AH:0H \p: 00,
My OO by OO Ay OO by OO
A,a:0. A O.
(O VRHL)RC wOC(HRRE)L

where I have used a condensing notation (h for f;---hy) and I have inserted a pair of
brackets in the terms for <i> to isolate the important part.
You should convince yourself that these are correct representations of <:> and [i].
With all this machinery available representations of the ordinals Afr] are easy to
produce.

Let f be a given term representing some base function f. For convenience let
N = Fixf

and think of this as the ‘next fixed point’ function.
In the first instance we can formally mimic the construction of the ordinals A[r].

A[0] o= W
A[1] m= Nw

A2 m= [JNw

Alr+3] o= [0] N

These terms are not in normal form but can be reduced somewhat to produce rather
compact (but still not normal) forms.
Consider the sequence of terms

do e f

01 = Aa:0O.aOwNL

) = Aa: 0. (eO'N[]Ly)w

63 = da:0. (OéO’l D I:O:'Ll)N(.L)

bs = Aa:O.(aO" [o] [1]Ly) ONw

brps = Aa: O (@O 7 (L,43) [] - - - [(]Nw

where, in the general case, I have written 7" for r+2 and ' for r+1. All of these represent
ordinal functions and, at some stage, you might convince yourself that 6, represents the
function f,] of the previous section.

Using these terms we can perform a series of reductions.

Alr+1] > wOwé,L
>> L(Au: N . uOwé,)
D> AXzyl . l(Au: N uOwé, Xayl)

29

This final term is still not in normal form because of the component &,, however you can
see the shape of the normal form beginning to appear.
For small 7 the terms 6, reduce further to obtain terms representing

All] = e, A[2] = €., A[3] = Ty, A[4] =7, ...

and you may like to work out what these are.

9 Possible developments

[Held in 100../41../900-bit... Last changed September 12, 1994]

There are several obvious questions and directions that should be investigated.

How does this system of notations relate to other, more standard, systems? In par-
ticular, what is the relationship to the notations produced using the ¥-functions (as
described in section 7 of [29])? It seems that the ¥-generated ordinals lie somewhere
between A[3] and A[4] (unless, of course, we are allowed to use larger ordinals to index
the enumeration of smaller ordinals).

How do the ordinals of proof theoretic interest fit into the system described here?

In particular, the position of A relative to all the ordinals representable in A2 should
be determined. Initially I thought (and claimed) that A was the least ordinal not rep-
resentable in A2. Peter Aczel disputed this claim and suggested that A bounds those
ordinals representable using only a “shallow” type structure in some appropriate sense.
It is thus of interest to isolate precisely what is needed to represent as a single term the
construct fundamental sequence A[-] of A.

Either way I suggest that A should occur quite naturally in various proofs of global
properties of A2.

[Held in 100../41../A-refs... Last changed September 12, 1994]

References

[1] P. Aczel: Describing ordinals using functionals of transfinite type, J. Symbolic Logic
37 (1972) 35 - 47.

[2] P. Aczel, H. Simmons, S. Wainer: Proof Theory, Cambridge University Press (1992).

[3] H. Barendregt: Introduction to general type systems, J. Functional Programming 1
(1991) 125 - 154.

[4] H. Barendregt: Lambda calculi with types, pp. 117 - 309 of Handbook of Logic in
Computer Science, vol 2, Oxford University Press (1992).

[5] N. G. de Bruijn: A survey of the AUTOMATH project, pp. 580 - 606 of To H. B.
Curry: Essays on Combinatory logic, Lambda calculus and Formalism, Ed J. R.
Hindley and J. P. Seldin, Academic Press (1980).

[6] W. Buchholz: Notation systems for infinitary derivations, Arch. Math. Logic (1991)
277 - 296.

30

(7]
8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

W. Buchholz: A simplified version of local predicativity, pp. 115 - 147 of [2].
S. R. Buss: Bounded Arithmetic, Bibiliopolis (Naples, 1985).

R. L. Constable et al: Implementing Mathematics with the Nuprl Proof Development
System, Prentice-Hall (1986).

Th. Coquand: Une théorie des constructions, These de troisiéme cycle, Université
Paris VII, (January 1985).

G. Dowek at al: The Coq Proof assistant User’s Guide version 5.6 Rappport Tech-
nique 134, INRIA-Rocquencourt CNRS-ENS (Lyon 1991).

S. Feferman: Logics for termination and correctness of functional programs, Logics
from computer science --- LOOK UP.

S. Feferman: Logics for Termination and Correctness of Functional Programs, II.
Logics of Strength PRA, pp. 195 - 225 of [2].

S. Fortune, D. Leivant, M. O'Donnell: The expressiveness of simple and second-order
type structures, J. Association Computing Machinery, 30 (no 1, Jan 1983) 151 - 185.

J-Y. Girard: Proof Theory and Logical Complexity, vol 1, Bibliopolis (Naples 1987).

J-Y. Girard, Y. Lafont, P. Taylor: Proofs and Types, Cambridge University Press
(1989).

J. H. Gallier: What is so important about Kruskal’s theorem and the ordinal I'y? A
survey of some results in proof theory, LOOK UP REF.

M. J. C. Gordon: HOL: a proof generating system for higher-order logic, pp. 73
- 128 of VLSI Specification, Verification and Synthesis, ed. G. Birtwisle and P. A.
Subrahmanyam, Kluwer (Dordrecht, 1988).

R. Harper, F. Honsell, G. Plokin: A framework for defining logics, pp. 194 - 204
of Proceedings second Symp Logic in Computer Science (Ithaca, New York) IEEE,
Washington. I have also seen a later reference with same title

G. Huet: The Calculus of Constructions, Documentation and user’s guide, Version
V4.10, Rapport Technique INRIA (1989).

G. Huet: A uniform approach to type theory, chapter 16, pp. 337 - 397, of Logical
Foundations of Functional Programming, Ed. G. Huet, Addison-Wesley (1990).

Z. Luo and R. Pollack: The LEGO proof development system: A user’s manual,
LFCS report ECS-LFCS-92-211, University of Edinburgh (1992).

L. W. Miller: Normal functions and constructive ordinal notations, J. Symbolic
Logic 41 (1976) 439 - 458.

P. Martin-Lof: Intuitionistic Type Theory, Bibiliopolis (Naples, 1984).

31

[25] B. Nordstrém, K. Petersson, J. M. Smith: Programming in Martin-Lo6f’s type theory,
Oxford University Press (1990).

[26] L. Paulson: Isabelle: the next 700 theorem provers, pp. 361 - 386 of Logic and
Computer Science, ed. P Odifreddi, Academic Press (1990).

[27] W. Pohlers: Proof Theory, an introduction, Lecture Notes in Mathematics vol 1407,
Springer-Verlag (1989).

[28] W. Pohlers: Proof theory and ordinal analysis, Arch. Math. Logic. 30 (1991) 311 -
376.

[29] W. Pohlers: A short course in ordinal analysis, pp. 29 - 78 of [2].
[30] M. Rathjen: Proof-theoretic analysis KPM, Arch. Math. Logic (1991) 377 - 403.

[31] M. Rathjen: Fragments of Kripke-Platek Set Theory with Infinity, pp. 251 - 273 of
[2].
[32] W. Sieg: Herbrand analyses, Arch. Math. Logic (1991) 409 - 441.

[33] O. Veblen: Continuous increasing functions of finite and transfinite ordinals, Trans.
American Math. soc 9 (1908) 280 - 293.

32

