
A Calculus of Definitions

1 Type theory

We describe how to implement a core type theory. This is very close to a functional programming
language with λ abstraction and data types defined by constructors and functions defined by
case on these data types. The difference with ordinary functional programming is that we can
do computation on types.

The canonical types are either dependent product types or labelled sums.
The canonical elements are either λ-abstraction or functions defined by case or in constructor

form.
We also have a universe of small types, with which we can do computation on types.
Like in any functional programming language we have a let (or where) construct, with which

we can define elements by mutual recursion. It is possible in this language to define in a mutual
recursive way (small) types and functions1.

Interestingly, the language now looks very much like the language Lazy ML (one precursor
of Haskell), where data types are also represented as labelled sums.

1We can represent induction-recursion in this way.

1

2 Some examples

N : U = 0 | S N

(/\) : N2 -> N2 -> N2 = (0 -> \ b -> 0 |1 -> (0 -> 0 |1 -> 1))

N2 : U = 0 | 1

N1 : U = 0

N0 : U = () -- empty labelled sum

T : N2 -> U = (0 -> N0 |1 -> N1)

neq : N -> N -> N2 =

(0 -> (0 -> 1 |S m -> 0) |S n -> (0 -> 1 |S m -> neq n m))

mutual

flist : U = Nil | Cons (a : N) (as : flist) (T (notin a as))

notin : N -> flist -> N2 =

\ a -> (Nil -> 1 |Cons b bs -> neq a b /\ notin a bs)

W (A : U) (B : A -> U) : U = Sup (a : A) (f : B a -> W A B)

tree (A : U) (B : A -> U) (C : (a : A) -> B a -> U)

(d : (a : A) -> (b : B a) -> C a b -> A) (x : A) : U =

Sup (y : B x) ((z : C x y) -> tree A B C d (d x y z))

2

3 Programming language

Programs
M,A ::= vk | M M | λM | Π A A | M D | c ~M | B | L

Definitions, Branches and Labelled Sums

D ::= [~M : ~A] B ::= c1 M1, . . . , ck Mk L ::= c1 ~A1, . . . , ck ~Ak

Environments, Contexts and Values

ρ ::= () | ρ, u | Dρ Γ ::= () | Γ, V

u, V ::= Mρ | u u | Xl | c ~u | Π V V

Access rules
v0(σ, u) = u vk+1(σ, u) = vkσ

and if ρ = [~M : ~A]σ then
viρ = vi(σ, ~Mρ)

Evaluation rules
(M1 M2)ρ = M1ρ (M2ρ) (M D)ρ = M(Dρ)

(Π A F)ρ = Π (Aρ) (Fρ) (c ~M)ρ = c (~Mρ)

(λ M)ρ u = M(ρ, u) (c1 N1, . . . , ck Nk)ρ (ci ~u) = Ni(ρ, ~u)

3

4 Type-checking rules

ρ,Γ `k A (ρ,Xk), (Γ, Aρ) `k+1 A
′

ρ,Γ `k Π A (λA′)

ρ,Γ `k ~A1 . . . ρ,Γ `k ~An

ρ,Γ `k c1 ~A1, . . . , cn ~An

ρ,Γ `k ()→ ρ,Γ, k

ρ,Γ `k A (ρ,Xk), (Γ, Aρ) `k+1
~A→ ρ1,Γ1, l

ρ,Γ `k A, ~A→ ρ1,Γ1, l

Rule for recursive definitions

ρ,Γ `k ~A→ ρ1,Γ1, l ρ1,Γ1 `l ~M : ~Aρ

ρ,Γ `k [~M : ~A]

Rules for elements

ρ,Γ `k () : ()ν

ρ,Γ `M : Aν ρ,Γ ` ~M : ~A(ν,Mρ)

ρ,Γ `k M, ~M : (A, ~A)ν

ρ,Γ `k N : Π V F ρ,Γ `k M : V

ρ,Γ `k N M : F (Mρ)

(ρ,Xk), (Γ, V) `k+1 N : F Xk

ρ,Γ `k λN : Π V F

ρ,Γ `k vn : Γ!n

ρ,Γ `k ~M : ~Aiν

ρ,Γ `k ci ~M : Lν

(ρ, ~Xk),Γ + ~Xk : ~A1ν `k+l1 N1 : F (c ~Xk) . . . (ρ, ~Xk),Γ + ~Xk : ~Anν `k+ln Nn : F (c ~Xk)

ρ,Γ `k B : Π (Lν) F

ρ,Γ `k D Dρ,Γ + ~M(Dρ) : ~Aρ `k+l N : V

ρ,Γ `k N D : V

where B = c1 N1, . . . , cn Nn, L = c1 ~A1, . . . , cn ~An, D = [~M : ~A], l = | ~A|, li = | ~Ai|

Γ + () : ()ν = Γ Γ + u, ~u : (A, ~A)ν = Γ, Aν + ~u : ~A(ν, u)

We can add a universe U of small types with computation rules Uρ = U .

4

5 Reification

Each branch B has a name fB and each labelled sum L a name dL associated to it.

Rk Xl = vk−l−1 Rk ((λM)ρ) = λRk+1(M(ρ,Xk)) Rk (u1 u2) = Rk u1 (Rk u2)

Rk (Π V F) = Π (Rk V) (Rk F) Rk (c ~u) = c (Rk ~u)

Rk (Bρ) = fB(Rk ρ) Rk (Lρ) = dL(Rk ρ)

Rk () = () Rk (ρ, u) = (Rk ρ,Rk u) Rk (Dρ) = Rk ρ

5

6 Projection and conversion

In order to get η-conversion, we introduce the projection functions

p Lρ (c ~u) = c (q ~Aρ ~u) with c ~A in L
p Lρ k = k
p (Π a f) w = x 7→ p (f(p a x)) (w(p a x))
p Uj Lρ = Lρ
p Uj (Π a f) = Π (p Uj a) ((p Uj) ◦ f ◦ (p a))
p Uj Ui = Ui if i < j
p Uj k = k
p k k′ = k′

q ()ρ () = ()

q (A, ~A)ρ (u, ~u) = v, q ~A(ρ, v) ~u where v = p (Aρ) u

and when introducing a fresh value vk of type Aρ we use p (Aρ) vk instead.

6

7 Infinite structures

The main idea is to use closure to represent infinite structures. We use it already to represent
recursive data types and recursively defined functions, and we use it now to represent streams.

A first attempt would be to have a notion of “lazy” constructors so that (c M)ρ is canonical.
For a “strict” constructor (c M)ρ reduces to c (Mρ). From the user point of view, each
constructor is used in a “generative” way. This means that if we define

ω = s ω ω1 = s ω1

then ω and ω1 are not convertible.
However it is then not possible to give good sense of dependent case. For instance if we

define the type Ω = s Ω and ω : Ω by ω = s ω then we cannot typecheck

f : (x : Ω)→ C(x) f (s y) = b

since b should have type C(s y).

7

8 New terms

We extend the syntax of our language with

M,A ::= l1 : A1, . . . , ln : An | l1 = M1, . . . , ln = Mn | M.l

with the new computation rules

(M.l)ρ = Mρ.l (l1 = M1, . . . , ln = Mn)ρ.li = Miρ

and the new typing rules
ρ,Γ `k A1 . . . ρ,Γ `k An

ρ,Γ `k (l1 : A1, . . . , ln : An)

ρ,Γ `k M1 : A1ν . . . ρ,Γ `k Mn : Anν

ρ,Γ `k (l1 = M1, . . . , ln = Mn) : (l1 : A1, . . . , ln : An)ν

ρ,Γ `k M : (l1 : A1, . . . , ln : An)ν

ρ,Γ `k M.li : Aiν

This is a good modularity test. We don’t have to change the other clauses (in particular the
clauses for checking recursive definitions).

8

9 Examples

We can define the type of streams stream A = (hd : A, tl : stream A). The constant stream 0
of type stream N would be 0s = (hd = 0, tl = 0s). Then 0s.tl and 0s are convertible.

One can define cons a as = (hd = a, tl = as). But notice then that if we define us =
cons 0 us then the semantics of us is ⊥. So the function cons cannot be used to define the
constant stream 0.

This corresponds to the syntactical fact that the normal form of 0s is finite and is

(hd = 0, tl = 0s)D

where D is the definition 0s = (hd = 0, tl = 0s) while the normal for of us would be the infinite
expression

(hd = a, tl = as)(a = 0, as = (hd = a, tl = as)(a = 0, as = (hd = a, tl = as)(a = 0, as = . . .)))

9

