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Introduction

In this paper, we present a theory of constructions for higher-order intuitionistic logic. The original
inspirations were P. Martin-Lof Intuitionistic Theory of Types, J.Y. Girard’s system Fw, N.G. de
Bruijn’s Automath, and some ideas of G. Huet about a higher-order notion of Horn clauses. A
first version of this calculus appeared in [17] and an early implementation, written by G. Huet in
CAML, is presented in [20, 21].

After general motivations, we give a formal presentation of the present system of constructions.
We present a skectch of different semantics. The third part is a survey of the main properties of
this calculus (and connections with other logics). Finally, we discuss some possible extensions.

1 Informal motivation

A first attempt at formulating a system aiming at a representation of the full intuitionistic theory
of finite types was P. Martin-Lof 1971 version of Type Theory [57]. However, this theory was based
on the strongly impredicative axiom that there is a type of all types, and this assumption was
shown to be inconsistent by J.Y. Girard [30]. This discovery led Martin-Lof to formulate theories
that do not contain any more intuitionistic simple type theory [60]. We will present here a version
of type theory that expresses naturally Heyting’s semantics of intuitionistic higher-order logic.

Let us recall first what were Martin-Lof’s motivation for having a type of all types. Three
principles entail this idea.

e we want quantification over predicates and propositions,
e Russell’s doctrine of types: the range of significance of a propositional function forms a type,

e the identification of propositions and types.

Indeed, by the first and second points, the collection of all propositions must form a type. If
propositions and types are identified, then this type is also the type of all types.

The idea will be to keep the first and the second principles, but to restrict the third point. We
retain only the principle that to each proposition corresponds a certain type, namely, the type of
its proofs.

A proposition will be characterised by the way it can be proved. The proofs of a given propo-
sition are to be considered as mathematical objects (cf. the “proof-as-objects” paradigm of [10]),
and they must form a type, which is the type of proofs of the given proposition. To any propo-
sition ¢ is thus associated the “type” of its proofs T(p). Furthermore, the possibility of doing
quantification over propositions, predicates, forces the introduction a type Prop of propositions.
Heyting’s semantics of the universal quantification can then be expressed by: if A is a type, ¢ a
propositional function over A, that is an object of type A—Prop, to give a proof of the proposition
(Vz : A)p(z) is to give a function f such that for any object a of type A, f(a) is a proof of ¢(a).
Thus, T((Vz : A)e(x)) has to be isomorphic to the product (z : A)T(¢(z)) of the dependent family
of type T(p(z)) over A.

Let us define o= as (Vx : T(p))p. A quick study of the type system we get shows that
it contains the second-order calculus of Girard-Reynolds. For example, the generic identity will
be the term (AA:Prop)(Az: T(A))z of type (A:Prop)T(A)—T(A). It contains also naturally an
intuitionistic version of simple type theory [13].

The nice point is that we do not need to state any further axioms or deduction rules. The logic
becomes simply the expression of the fact that a proposition is true if, and only if, its corresponding
type of proofs is inhabited.



We have thus extended Howard’s theory of construction to an intuitionistic version of higher-
order logic [43, 13]. In particular, this system leads to some new facts about the interpretation of
the connector 3, problem mentioned in [43], and will allow us to discuss the problem of semantics of
evidence of classical second-order logic (see [14] for a discussion about the semantics of evidence).

2 The system (terms and typing rules)

2.1 Formal presentation

The terms have the following inductive structure.

1. identifiers,
2. the special constant Prop,
3. typed abstractions (Az : M)N and hypothetical formation (Az:M)N,

4. product, that we shall write (z: M) N, where M and N are terms, and universal quantification
(Vz:M)N,

5. application M (N) and instantiation app(M, N) where M and N are terms.

6. type formation T(M), where M is a term.

We adopt the following notations: we write M (M, ..., M},) for M (M,)...(Mp). If the variable =
does not appear free in N, we write (M)N for (z: M)N 1.

An assignment, or context is a list of pairs (z,t) where ¢ is a term, and z an identifier. We shall
write V(B) for the set of identifiers which appear in an assignment B. We define the following
ordering relation on assignments: B C B’ which means that if (z,t¢) appears in B, then it appears
in B’ (i.e. the set which corresponds to B is a subset of the one which corresponds to B').

We define simultaneously what is a valid assignment, and when a term M is well-formed in
an assignment B of type N, relation which is written M : N [B]. If z € V(B), we denote by Bj
the term such that (z, B;) appears in B, and that is the first occurrence in the list B of the form
(z,t). Tt should be noted that the definition of the entailment relation that follows is an instance
of an inductive definition. It is a calculus of derivations of judgements of the three possible forms
B is valid, T type [B] and M : T [B].

2.2 Type Inference Rules

Before reading the formal rules, it may be helpful to have in mind the following special interpreta-
tion: read M type as “M is a (finite) set”, x : A as “z belongs to the set A”, and Prop as the set
with two elements 0.1. T(0) as the empty set, and T(1) the singleton set 0. A valid assignement of
length n will be interpreted as a set of n-tuples. All the rules we give receive then a straigthforward
interpretation.

We have first the axiom Prop type [B], if B is a valid assignment. The second axiom is that
z: By [B], if B is valid, and z is an identifier which appears in B. We have then the rule of context
formation.

!We have to say a word about the problem of bound variables. We propose the following solution: use De Bruijn
indexes (cf. [8]) for bound variables, but keep identifiers for free variables as in [18].



M type [B]
B,z : M is valid
In this rule, we must impose on z that it is an identifier which does not appear in B, and B
may be empty.

M type [B] N type [B,z: M]
(z: M)N type [B]
¢ : Prop [B]
T(p) type [B]
Ptype [B] Qtype[B,z:P] t:Q[B,z:P)]
(Az: P)t: (z:P)Q [B]
M type [B] ¢ :Prop [B,z: M]
(Vz : M)y : Prop [B]
Atype [B] ¢ :Prop[B,z:A] b:T(p) [B,z: A]
Az : Ab:T((Vz : A)p) [B]
Atype [B] Ptype[B,z:A] c:(z:A)P[B] a:A|[B]|
c(a) : [a/z]P [B]
Atype [B] @ :Prop [B,z:A] t:T((Vz:A)p)[B] a:A|[B]
app(t,a) : T([a/z]p) [B]
t:P[B] P=Q]|[B]
t:Q [B]
Here the equality used in P = @ [B] is S-conversion, which can be defined directly at a syntactic
level on the raw terms. The need for conversion rules is for instance explained in [60, 81].

We can define as well S-reduction, and then prove it is Church-Rosser by Tait’s method (see
[57]). This is used in the proof of the next result.

Lemma: (uniqueness of products) if (Vo : A1)p1 = (Vo : Ag)ps : Prop [B] then A; = Ay [B] and
w1 = g : Prop [B,z : A4].

The following propositions are proved by induction. The meta-variables F, E', ... will be used
to denote arbitrary judgements.

Proposition 1: If B, B’ are valid, B C B’, E [B] then E [B'].
This allows us to consider assignment as sets, and not as lists.

Proposition 2: If M : P [B], then P type [B].

Proposition 3: If M : P [B], and M = N : P [B], then N : P [B].
Proposition 4: If M : P [B], M : Q [B] then P = @ [B].

From this, we derive that any judgement has at most one derivation, if we identify terms up to
B-conversion.

This expresses the “uniqueness” of types of a well-formed term (though this uniqueness is only
modulo conversion).



Definition 3: Let B be a valid assignment, a type (of B) is a term M in B such that M type [B].
A proposition of B is a term ¢ such that ¢ : Prop [B]. A small type is a type of proofs of some
proposition, that is a type of the form T(p), with ¢ : Prop. If ¢ is a proposition of B, a proof of ¢
is a term M such that M : T(y) [B], and we say that ¢ is true or valid in B if, and only if, ¢ has
a proof.

One may think of Prop as a type of names of small types. Notice that the small types are
intuitively closed by product over families of small types. If A is a type, and B : (A)Prop, that
is B is a family over A of names of small types, then the product (z:A)T(B(z)) is intensionally
isomorphic to the small type T(Vz : A.B(z)). It should then be clear from this remark in what way
our system contains the second-order A-calculus of Girard-Reynolds.

Let us give some examples to illustrate this point. We write Void for (Va : Prop)a, so that
Void : Prop (and we shall see that T(Void) is indeed empty). We define p—1) as being (Vz : T(¢))v,
so that ¢—1) : Prop if ¢ : Prop and 1) : Prop. We write Unit for (Va : Prop)a—a, so that Unit : Prop
(and it is possible to show that the only element of type T(Unit) is id = (A« : Prop)(Az : T(a))zx,
that is, the polymorphic identity).

Finally, the following notion is the expression of intuitionistic consistency.

Definition 4 We say that a valid context B is consistent if, and only if there exists a proposition
® in B which is not provable in B.

2.3 Some syntactic remarks

As we noticed already, our presentation is not minimal, and we have to relate it to the more concise
presentations of [17, 20] (see below). Mainly since the work of [84, 77], we understand better the
fact that we can present typed calculus in so many different ways. The important distinction is
between derivations and judgement. A sound requirement for a calculus is that any judgement has
at most one derivation. This is the case here, provided we identify terms up to S8-conversion, and
this was also the case for the formalisms presented in [17, 20].

Furthermore, the calculus presented here is more explicit than the one in [17, 20], so that
there is a “forgetting map” between derivations in the present version in derivations of [17, 20].
It is then possible to define by induction on the derivations a “section” of this forgetting map
which is an interpretation of the implicit calculi in the explicit system, and this defines as well an
interpretation of implicit judgement in explicit judgements. The best way to give a semantics of
the implicit calculi, is then first to define a syntactic interpretation of the implicit calculi in the
explicit calculus, and then the semantics of the explicit calculus. See [84] for details. There are
potential problems if we take untyped A-abstraction (see the examples in [77]).

Notice that the Church-Rosser property plays a crucial role when we prove that any judgement
has at most one derivation (in the uniqueness of products lemma above). All the troubles come
because our syntax for terms is still not explicit enough. In general as explained in [84], the
terms have to be still more explicit, i.e. we have to put explicitly types in the application. The
syntax may even be made explicit in such a way that terms become identical to derivations, up
to conversions [77]. Of course, the syntax becomes then more cumbersome, since the application
becomes now something like app(A, Az : A.B,t,u). However, for theoretical study, this calculus
has to be preferred, and the Church-Rosser property is not needed any more at this level. It will
be needed when we try to translate from the implicit system in the explicit one, since we give a
translation of derivations, and the Church-Rosser property seems then crucial to establish that a
given judgement has at most one derivation, see [84].

Whenever there is no possible confusion, we write ¢ for T(¢p) if ¢ : Prop, and we identify the



two A-abstractions and the two applications. We will use the alternative notation A—B for (A)B,
with A, B types, and o= for (Vz : T(p))T(¢), with ¢, : Prop. We consider also informally that
Prop is included in the collection of types, so that we can talk of a small type for something which
is of type Prop. There is a similar “abus de langage” in category theory with the notion of small
complete category (see [41]). A final remark: the work of [84, 77] may be seen as an indication that
all these “abus de langage” are more subtle than they seem, and need a careful meta-mathematical
study. Essentially, the problem is that when we use such facilities, we are working in an implicit
system in which the uniqueness property of derivations w.r.t. judgements may fail. We will however
not carry this discussion any longer here, and limit ourselves to indicating this difficulty.

Thus, we suppose that we are working with the simplified system: first B - z : B, and
Prop type [B] if B is valid, and

A type [B] A : Prop [B]
B,z:A isvalid B,z:A isvalid

P type [B,z : 4] P : Prop [B,z : A
(x: A)P type [B] (z:A)P :Prop [B]

M:P [B,z: A N:(z:A)P [B] M:A|[B]
Az :AM: (z:A)P [B] N(M) : [M/z]|P [B]
M:P[B] Qtype[B] P=Q M:P[B] Q:Prop[B] P=3Q
M Q [B] M- Q [B]

As explained above, there is a syntactic translation of this calculus into the more explicit
calculus, built by induction on the derivation. This justifies to use the more explicit version when
we give the semantics, and to use (and implement) the more implicit version in the examples.

We have just seen that we can think of Prop as a collection of small types. The type Prop
can thus be thought of as a “universe” of Martin-Lof type theory. The essential difference here is
that this universe is closed under any products, not only products over small types. For instance,
(X :Prop)X is still a small type. The meaning of (X : Prop)X involves a typical circularity: it is
an object of type Prop but also defined by a quantification over Prop (see [75]). In particular, we
cannot think of small types as sets ([74]).

Despite this fact, we have, by a suitable generalisation of Girard’s argument [30, 17, 48].

Proposition 5: The calculus of constructions is strongly normalisable.
Corollary: the judgements B is valid, P type [B], M : P [B] are decidable.

See the arguments of [57] for a proof of the corollary. Furthermore, this gives us an algorithm
for testing the conversion of two typed terms: we compute the normal forms of the two terms (by
B-reduction), and then compare syntactically these two normal forms.

It is possible to define a system in which we restrict the product formation only for a family of
small types only over a small types. The axiom for V becomes then

M :Prop [B] ¢ :Prop [B,z: T(M)]
(Vz : T(M))p : Prop [B]

A:Prop [B] ¢:Prop [B,z:T(A)] b:(z:T(A))T(p) [B]
A() : T((Vz : T(4))g) [B]

The system we get is then very close to some Automath systems [7, 36].
We will need also the following examples (see [6, 20]), given in the implicit syntax.




1 = (A:Prop)A
-(A) = A—-L [A:Prop]
Bool = (A:Prop)A—A—A
true = AA:Prop.Az,y:A.x
false = AA:Prop.\z,y:A.y
Nat = (A:Prop)A—(A—A)—A
0 = MA:PropAz:ANf:A—Ax
S = An:Nat.AA:Propdz:ANf:A—A.f(n(A,z, f))

Eq(4,z,y) = (P:A—Prop)P(y)=P(z) [A type,z,y: 4]
AxB = (C:Prop)(A—»B—C)—C [A,B : Prop]
(z,y) = AC:Prop.A\z:A—»B—C.2(C,z,y) [A,B:Prop,z:A,y: B
m(z) = z(A, x:A)Ny:B.x) [A,B:Prop,z:AXx B]

mo(z) = z(B,Az:A\y:B.y) [A,B:Prop,z:A X B]

2.4 Relationship with Automath languages

It turns out that the calculus presented here is mainly equivalent to the Automath version of [7] but
where we allow quantification over (De Bruijn notion of) “type” as well, and this possibility was
actually considered by De Bruijn (in the section 12.6). What follows shows the (maybe) surprising
result that we still get a meaningful calculus by allowing this quantification (see also [9]).

A difference is that we did not take n-conversion. However, as noticed in [39], we have the
following result:

Proposition: if A\y : A.M(y) : T [B] and y is not free in M, then M : T [B].

For a more precise comparison between all the different systems: Automath, LF, second-order
A-calculus,- - - we refer to [4].

3 Semantics

We present now a few semantics of the calculus. Besides proving consistency and suggesting some
extensions, a semantics may be useful in order to establish independence results. These semantics
are defined first for the system with the explicit syntax, and then, by composition of the translation
from the implicit syntax to the explicit syntax.

3.1 Proof-irrelevance semantics

A first semantics consists in a classical reading of our rules, which forgets everything about proofs.
Types are interpreted as Zermelo-Fraenkel sets, and Prop is interpreted as the two element set
{0,1}. Let T(0) be the empty set, and T(1) be one singleton set. Furthermore, the product,
the A-abstraction, the application are interpreted as the ordinary set-theoretic product, function
formation and application. Finally, if A is a type, and ¢ : A—Prop (Vz : A)p(z) is interpreted as 1
if, and only if, [¢](u) is 1 for every u € [A]. In this semantics, T(Vz : A.¢(z)) will not coincide in
general with (z: A)T(¢(z)). They are in general only sets in one-to-one correspondance (and this
justifies the choice of the explicit system).



Notice a subtle point. When we define precisely this semantics, it is given by induction on the
derivation. So the crucial property that judgements have at most one derivation is needed here.
Notice that this argument does not work with a less explicit syntax, for instance in general if we
use untyped A-abstraction, or if we don’t use the operators T(X) (see [77]). See [84] for a solution
to the problem of the semantics of the present calculus with untyped abstraction.

This semantics, however simple it is (it can be seen as a higher-order generalisation of the truth-
table methods), shows the consistency of our calculus. Indeed, the interpretation of (Vo : Prop)a
is 0, and hence the type (« : Prop)T(a) cannot be inhabited. This was actually the method used
by Gentzen [28] in order to establish the consistency of the simple theory of types. It is completely
elementary, that is, it is “finitist” in the sense of Hilbert and can be carried out formally in a
logically weak system (for instance, primitive recursive arithmetic). A similar semantics has been
used by [82] in order to prove that we cannot derive all Peano axioms in Martin-Lof intuitionistic
theory of types without universes. In our case too, we can use this semantics in order to show that
the proposition Eq(Bool, true, false)=:L is not inhabited.

The fact that there exist elementary consistency proofs has to be contrasted with the nor-
malisation theorem, which cannot have an elementary proof. This can be understood intuitively:
the normalisation theorem will entail not only the consistency of the pure calculus, that is the
consistency of the empty context, but also the consistency of non trivial contexts.

As an example, let us consider a context which expresses the “axiom of infinity”. It is the context
Inf declaring one small type A : Prop, one constant and one unary operation a : A, f : A—A, one
binary relation transitive and antireflexive R : A—A—Prop,h; : (z: A)R(z,z)=L,hy : (z,y,2:
A)R(z,y)=R(y, z)=R(z, z) with the hypothesis hs3 : (z: A)R(z, f(x)).

Proposition: Inf is consistent.

Proof: Using the normalisation theorem, a purely combinatorial argument can be given. We claim that
in the context Inf, by induction on the size of the construction in normal form M, if M has for type a
proposition R(u,v), then u = f"(a),v = fP(a) with n < p, and if M is of type A, then M is of the form
f™(a). Indeed, by induction, such a construction will never use h;.

It results that in the context Inf, R(f™(a), fP(a)) is provable only if n < p (conversely, if n < p,
R(f™(a), fP(a)) is provable). In particular, at least one proposition is not provable and so Inf is consistent.

Heuristically at least, this says that in the context Inf, we can define an infinity of “provably”
distinct elements that are a, f(a), f(f(a)),---. Formally, we can follow the development of arith-
metic as done in [76] where an integer is interpreted as a class of classes over A. It is possible to do
such a construction over an arbitrary type, but we cannot in the general case get all Peano axioms,
in particular not the axiom that zero differs from a successor, and the axiom that the successor
operation is one-to-one. In the context Inf and over the type A, all Peano axioms are provable
(see [3] where such a development is done in a classical framework, and from which is inspired
the context Inf). This shows, in an elementary way, that the normalisation theorem implies the
consistency of higher-order classical arithmetic, and so, by Godel’s theorem, that the normalisation
theorem cannot be proved by means of higher-order arithmetic.

Remark: what we have used here (and is thus not elementary provable) is the result a priori weaker
than normalisation that if a small type is inhabited, then it is inhabited by a term in normal form.
As noticed in another framework by Kreisel [32], this last result may become elementary inside
a context. For instance, in any context which contains z : (A : Prop)A— A, one direct inductive
argument shows that any inhabited small type is inhabited by a term in normal form. We can use
the variable x to “freeze” the redexes.



3.2 Realisability semantics

A more informative semantics is the realisability semantics. The basic idea behind these models is
quite natural: consider this language really as a programming language, then ”at compile time, we
forget any type information to get a untyped program”. This suggests to start with an untyped
universe of combinatory expressions (the “programs”) and to interpret a type as a set of such
progras.

All this can be formalised. We take for the universe of untyped programs the set U of untyped
A-terms. A small type is interpreted as a subset of U (closed under S-conversion), and an element
of a small type is interpreted by the corresponding untyped A-term we get by forgetting all type
informations. The “big” products over a type of a family of small types is interpreted by intersection
(here we use impredicativity of set theory: an arbitrary intersection of a family of subsets of a given
set is still a subset of this set!). Finally, a product (z: A)B(x) over a small set A is interpreted
as the set of A-terms ¢ such that, if u € [A] then t(u) € [B(z)][z/u] (see [21] for the details,
this can be seen as a realisability interpretation of the constructions). For a generic example,
AA : Prop.Az : A.z is interpreted by Az.z and its type (A:Prop)(A)A is interpreted as the set of
A-terms ¢ such that, for any subset A of U (closed under S-conversion), if u is in A, then t(u) € A.
This is indeed the case for t = Az.z.

This model can be used in order to show the consistency of some extensions of the original
calculus. For instance, one may want to add a small type n : Prop, define N = T(n), together
with one constant O : N, and one unary operation S : (N)N. We also add a recursive operator
rec : (P : (N)Prop)P(O)—((z:N)P(z)—P(S(z)))—(z: N)P(z) with the new conversion rules

rec(P,a, f)(O) =a rec(P,a, f)(S(z)) = f(z,rec(P,a, f)(x)).

It is possible to interpret this extension in the realisability model (but this was already possible,
in a trivial way, in the proof-irrelevance model). The simplest way to see it is to add primitive
operations to the “untyped programming languages” (i.e. to extend U with appropriate constants
and 0 rules). Furthermore, in this model, we can check that all Peano axioms are satisfied (and this
does not hold in the proof-irrelevance model, where for instance Eq(N, O, S(O))=:L is not provable).
Hence, we have shown the consistency of the extension of the pure calculus with Peano axioms.

We get a “more mathematically civilised” presentation of this model by using the notion of
D-set of E. Moggi. One difference is that we start with an arbitrary combinatory algebra D instead
of the combinatory algebra of untyped A-terms, and we take partial equivalence relation instead of
arbitrary subsets (see [84, 25]).

This semantics has been generalised to universes in [54].

Finally, let us mention that interesting independence results have been obtained by T. Streicher
using variations of the realisability models, for building, for instance, models without strong sums
of families of small types over a small type [84].

3.3 Model in domain theory

Domain theory has been developped in order to give a semantics of simply typed A-calculus with
fixed-point [78] (and it was realised later that it could be used also to give a semantics of untyped
A-calculus). It is then natural to try to extend this semantics to a non-standard model of a
richer type theory, for instance the present theory of constructions, by interpreting a type as a
domain. We get the interpretation of a family of types via the remark that there is a natural
notion of “approximations” between domains: the embedding-projection pairs. We can thus define
a “dependent domain” over a fixed domain D as a Scott-continuous (that is preserving directed



colimits) functor from D, seen as a category, into the category Dom®? | of domains with embedding-
projection pairs as morphisms.

We get in this way an interpretation of type theory with products over dependent families.
Notice that in this interpretation, any type is inhabited (at least by L). The main problem is the
interpretation of Prop and V. A candidate for Prop seems to be the “flat” domain Bool;. For a
given domain D, we try then to interpret V : (D—Prop)—Prop in the following way: if f : D—Prop
takes the value L then V(f) is L. Otherwise, if it takes the value false, V(f) is false. Finally, in
the remaining case, f takes only the value true and V(f) is defined to be true. Over an infinite flat
domain « however the universal quantification V : (a¢—Prop)—Prop is not “continuous”: on each
finite approximation f of the constant function Az.true, V(f) is L, but V(Az.true) is true. Intuitively,
the “Tarskian” computation of V(f) which uses an infinity of values of f is not computable. Thus,
we cannot use Bool| as an interpretation of Prop.

3.3.1 Domain of domains

A first solution to this problem has been given by D. Scott [62, 80], using the notion of closures,
following a suggestion of P. Hancock and P. Martin-Lof. Another solution using finitary projections
has been found [1]. The rough idea is that everything is interpreted as a point of some “big” domain.
The main drawback of these models is that they interpret a richer theory which is known to be
“inconsistent” as a type theory, since there is a type of all types. Furthermore, these models are
“not canonical” in the choice of the “big” domain to start with. However, direct generalisations are
very convenient for showing the equational consistency of various extensions of the present calculus
(strong sums, recursive types,--- see [12]). This seems to indicate that there is nothing wrong
with having a type of all types in a programming language which contains already a fixed-point
operator [11]. However, what is missing here is an adequacy theorem that relates the operational
and denotational semantics (like the one proved in [72] for the language PCF), which is a priori
problematic, since the method used ordinary for proving these results is similar to the reducibility
method used in the proof of normalisation, and we know that a calculus with a type of all types
does not verify the normalisation property [30, 63, 18, 45].

3.3.2 Category of domains

As discovered by J.Y. Girard [31], it is possible to interpret polymorphism in a model where the
interpretation of a type is an arbitrary domain (and not as a point of a special “big” domain),
so that we get really a “canonical” model of type theory in domain theory. Quite naturally, a
dependent family of domains over all domains is interpreted as a continuous functor from Dom®*
to Dom®”. Girard used in [31] a somewhat non-standard notion of domain and morphisms between
these domains, but in [22], it is shown that his semantics of the product of a functor F' is nothing
but the domain of sections of the Grothendieck cofibration of F', that is the domain of all continuous
(and stable) family (¢x) such that tx € F(X) (see [22, 64]). From this remark it is possible to
develop a model similar to Girard’s one, but with ordinary Scott-domains and continuous maps
[22]. What is crucial in these models is that any domain is a directed colimit of finite domains.
The general picture that emerges from the study of this family of models is then that a small
type is interpreted as a domain, and a type in general will be interpreted as a category, which shares
a lot of properties of domains, but at a categorical level [19]. Typically, the category of domains with
embedding-projection pairs as morphisms is such a category (and is the interpretation Dom®¥ of the
large type Prop), but also the category of Scott-continuous functors (that is, functors that preserve
filtered colimits). All these categories C' will have the property that for any Scott-continuous



functor F from C to Dom®F the collection of its continuous sections ty € F(X) is a domain
for the pointwise ordering. This has been done in details for Fw in [23], with complete algebraic
lattices for small types and locally-finitely presented categories for general types. Some elements
for a generalisation to Scott-domains or dI-domains are in [19] (see also [85]). One may object
generally to these models that they are not faithful to the Curry-Howard notion of proposition as
types, since any type is now inhabited (by L). However, it is possible to define a notion of total
object (see the appendix of [31]) to remove L, and the notion of partial proofs suggested by these
models may have some applications. We can also mention that there is no problem here to extend
the adequacy theorem of [72] to the present framework (with the system of constructions instead
of simple typed A-calculus).

In [42], besides a careful analysis of what is a categorical model of dependent types, is presented
a topos-theoretic formulation of the complete algebraic lattice model, that may be a key step for
a conceptual understanding of the general picture. One starting point is that any domain can be
seen as a locale, hence as a special kind of topos. The idea would then be that a type in genera
has to be interpreted as a logical theory, i.e. a topos. As an application, it is shown that this
model contains a type of all types (which corresponds to the locally finitely presented category
of left-exact categories). To look for a topos-theoretic version of Girard’s model seems to be an
interesting problem (see [47] for a topos-theoretic interpretation of stability).

Finally, an important remark is that the constructions of all these domain models of polymorphic
systems are all elementary (this elementary character is only lost when we try to define what are
the total objects, see the appendix of [31]).

4 A few properties

4.1 Conservativity over Fw

In [29], J.Y. Girard introduced a functional system which is an extension of Gddel system T', in
order to generalise the Dialectica interpretation to higher-order arithmetic (see [33]). It is also
explained in [29] how this calculus can be seen as a system of natural deduction for intuitionistic
higher-order propositional logic. It is thus not surprising that the language we have developed
contains F'w as a subsystem.

In Fw, = is a primitive constant, and we need to introduce the clause that M=-N is a term if
M and N are terms. We add the rules

M :Prop[B] P:Prop[B] N:P[B,z:M]
(Az : M)N : M=P [B]
M : Prop [B] N :Prop [B]
M=N : Prop [B]

Furthermore we do not allow the rule of product formation

M type [B] N type [B,z: M|
(z: M)N type [B]

if M is a small type. Typically, we cannot form a type like (A:Prop)(P: A—Prop)(z: A)P(z)=P(z).

A nice and simple result (noticed by V. Breazu-Tannen using a tool developped by Ch. Mohring)
is that the calculus of constructions is a conservative extension of Fw. This is shown by giving
a “forgetting” map & from constructions to Fw (which can be seen as a modified realisability
for construction into Fw, see [67]). Intuitively, this map forgets all dependencies. For instance,



E((Va: Prop) (VP : a—Prop)(Vz : @) P(z)) is (a, 8 : Prop)a—/f (see [67, 68]). This forgetting map
is the identity on terms that are in Fw, and preserves the typing: if M : N in the system of
constructions, then £(M) : E(N) in Fw. From this, we deduce

Proposition If M, N are terms in Fw, then M : N is provable in the calculus of constructions if,
and only if, M : N is provable in Fw. Furthermore if M is a type of Fw, then M is inhabited in
Fuw if, and only if it is inhabited in the calculus of constructions.

4.2 Connection with Higher-Order Logic

An elegant formal system is “minimal” higher-order logic (this is the system used in [69]). The
types and the terms of this system are the same as the terms of Church’s simply typed theory [13].
The types are built from the ground type Prop by the arrow operation, written here a— 3. The
terms are built by A-abstraction Az : .M, by application M(N), and by typed variables. There
is a constant=-: Prop— Prop—Prop (we write p=-1 for=-(p,%)) and a “polymorphic” constant
V : (a—Prop)—Prop (we write as usual (Vz : a)p for V(Az : a.¢)). A proposition is a term of type
Prop.

We can define what is a “true” proposition relatively to a list of “hypotheses” T', relation that
we write I - ¢ true, inductively as follows: first I - ¢ true if ¢ € T, then

I, 1 true
Tk o= true
I'F =1 true T'F @ true
I'F 4 true
T+ @ true
Ik (Vz: a)p true
T'F (Vz: a)p true
T+ [t/z]p true

(%)

()

In the rule (**), it is supposed that ¢ is a term of type «, and in the rule (*), that the variable
z does not occur free in I'.

This logic is known as “minimal” higher-order logic. It may seem quite poor, but (as known
already from Russell [75]), other intuitionistic connectives are then definable (see [30, 21], the
general principle is that the coding of a connective is the direct expression of its elimination rule).
Let us give only here the representation of the existential quantification which will be used later:
for a type A and a predicate ¢ over A we define 3z : A.p(x) as the proposition Vp : Prop.(Vz :
A.p(x)=p)=p. If a is an object of type A and b an object of type T(p(a)) then we can build as
expected a proof pair(a,b) of 3z : A.o(x). However, given an object z in T(3x : A.p(z)), there is
no way to compute from z its components (this will be proved indirectly below by showing that
the existence of the two projections contradicts the consistency result).

Furthermore, we can consider Leibniz’ equality [76]: if z,y are two terms of type A, we define
Eq(A4, z,y) as (P: A—Prop)P(y)=P(z). This corresponds to the following rule: if Eq(A,z,y) and
we want to prove the proposition ¢(z), then it’s enough to prove ¢(y). We thus do not need to
introduce a primitive notion of equality as in Martin-Lof type theory.

The system Fw can be seen as a language for expressing the proofs of this logic. We have
seen how to embed Fw in the pure calculus of constructions. From this, we get a translation of
intuitionistic higher-order logic in the system of constructions. From the conservativity result of
the calculus of constructions over Fw, we deduce also that this translation is conservative, that
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is a proposition ¢ is provable in intuitionistic propositional higher-order logic if, and only if, it
is inhabited as a small type of the system of constructions. This last result can be seen as a
(constructive) completeness theorem: a proposition is provable in higher-order logic if, and only if,
its translation in the system of constructions (its “semantics”) is true. By using the normalisation
theorem, we can prove a similar result for intuitionistic first-order logic (see [57]).

Proposition The calculus of constructions is a conservative extension of minimal propositional
higher-order logic.

Remark: We thus get another consistency proof for the system of constructions by (elementary)
reduction to the consistency of higher-order logic.

Higher-order logic is ordinarily presented with an extensionality axiom, In this case, as ex-
plained in [2], it is better to take the (extensional) equality as the only primitive symbol and it is
then possible to define all other logical connectives from it (this is the solution chosen in [51] for
instance, see also [35] that presents a proof-checker based on this logic). The connections between
extensional higher-order logic and topos theory are explained in [51]. It is thus important to relate
the intensional presentation of higher-order logic given above to an extensional one.

Such an interpretation was done by R. Gandy in [27]. But the spirit of this translation goes
back to Principia [76]. The idea is to define for every type an extensional equality by induction. On
the type Prop we take the logical equivalence as equality. On the type a—/f we take as extensional
equality Eq, g(f,9) = Vz,y : @.Eq,(,y)=Eqs(f(z),g(z)). We then say that an element z of type
« is extensional if, and only if Eq,(z, ), and we have an interpretation of extensional higher-order
logic in intensional higher-order logic.

By composing these two interpretations: topos theory in extensional higher-order logic, and
extensional higher-order logic in intensional higher-order logic, we thus get a translation of topos
theory inside intensional higher-order logic. There is actually a direct way of building the free topos
from intensional higher-order logic: an object of the free topos is defined as a pair of a type A,
together with a partial equivalence relation on it R : A—A—Prop. A morphism between (4, R)
and (B, S) is a relation f : A—»B—Prop which is “functional” with respect to R and S as in [51].

In [13], Church introduces a ground type ¢ of individuals. In the system of constructions
described so far, we can introduce only “small” types D : Prop. We can then translate faithfully
any result of higher-order logic in the context with one proposition variable D : Prop (notice however
that the conservativity over higher-order logic is not clear, and that the previous realisability method
will not help).

4.3 Categorical semantics

We put this section here, since categorical “semantics” are really more translation of a type-theoretic
formalism in categorical terms than true semantics. We have seen the connection between higher-
order logic and topos theory: extensional higher-order logic is the “internal language” of topos
theory. This connection is sometimes used in topos theory in order to prove logically a categorical
result. We know also that the calculus we consider is richer than type theory: each proposition
gives rise to a “small” type, the type of its proofs.

This suggests in a natural way two questions: is there an extensional version of the calculus
of constructions, and what is the categorical version of such a calculus? For the first question, it
seems possible to introduce a primitive equality type, as in one version of Martin-Lo6f type theory
(the one described in [61], and used in [15]). The system we get has not been studied yet. The new
formation, introduction and elimination and conversion rules are the following.
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c:I(A, z,y)
c=r:I(Az,y)

The categorical notion that generalises topos theory in that we have an explicit representation
of proofs (the principle of “proof-irrelevance” holds in topos theory as well as in classical set theory)
seems to be the following one: a locally cartesian closed category with a small complete category
[41, 25]. In [25] (where such categories are coined “dictos”) an alternative description is given which
emphasizes one interesting phenomenon [41]: if we have a small complete category C in a locally
cartesian closed category F, then there is a reflection from E to C, so that, intuitively, in these
models, each type has “a best approximation” in term of small types or propositions. This fact
is also true in the algebraic lattices/ locally finitely presented category model [42]: given a locally
finitely presented category its “reflected” complete algebraic lattice is the ideal completion of the
canonical preorder associated to any small aubcategory of generators.

The categorical presentation of the intensional theory is described in [42, 49, 50, 25, 84].

4.4 Representation of data types

There are representations of data structures in the system F' (originated in [59], see for instance
[6, 52, 20]) that we can use as types of individuals. We have given already the coding of the type
of booleans and natural numbers.

Let us give only some remark for the case of the natural number. We can define the iterator
over small types An:Nat.AA:Prop. Az: A\f: A—A.n(A,z, f), which is reminiscent of the expression
of a weak natural number object in category theory. One can then represent primitive recursive
functions, via the usual coding of iterations and products [52, 20]. For instance, for the predecessor
function we define first the function F(z) = (S(m1(2)),71(z)) of type (Nat x Nat)—(Nat x Nat) and
then pred(z) = Az:Nat.mo(z(Nat x Nat, F, (0,0))).

Let 7 be the canonical representation of the integer n in the system F, that is AA:Prop.Ax:
AMNf:A—A.f"(z). Let us say that a function f from integers to integers is representable (in the
system of constructions) if, and only if, there exists a term M :Nat—Nat such that, for any integer
n, we have M () = f(n). Though it may seem difficult even to represent the predecessor function,
the class of functions that we can define of type Nat—Nat is actually very large.

Proposition: A function is representable (in the system of constructions) if, and only if, it is
provably total in higher-order arithmetic.

Proof: The simplest proof is the one described in [67] (see [32] for the definition of provably total): by using
the modified realisability of the system of constructions in Fw described above, we are reduced to a similar
statement for Fw which was proved in [29] using the Dialectica interpretation and in [67] using a realisability
method (from an idea of P. Martin-Lof [59]).

It should be said however that this representation of data types and recursors is not completely
understood yet. As emphasised by J.L. Krivine, these representations theorems are extensional, and
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what matters as much is the intensional aspect. But the coding of primitive recursion via iteration
and pairing (though all right from a denotational point of view) seems pretty bad intensionally.
For instance, the computation of the predecessor of 7 will be in n S-reduction steps (for the normal
order evaluation), and it is in one step with a system that has primitive recursion built-in (like
Godel’s system T').

It should be noted also that, although we can state the induction principle

(P:Nat—Prop) P(0)=((z:Nat)P(z)=P(S(z)))=(x:Nat) P(z)
we have the following negative result:

Proposition: The induction principle over Nat is not provable.

Proof: By the normalisation theorem, we are reduced to show that in the context
P : Nat—Prop, h; : P(0), hs : (x : Nat)P(x)=P(S(x)),n : Nat

there is no term in normal form of type P(n). Indeed a term built from h; or hs will prove something of the
form P(0) or P(S(z)) and the variable n is not convertible to 0 or to a term of the form S(z) (since they
are distinct normal forms).

All these facts are strong motivations for the extension of the system with inductively defined
types as primitive (see below, and [71, 24]).

4.5 Inconsistent extensions

In our proof of consistency, the possibility of interpreting a type as a set (in Zermelo-Fraenkel sense)
was crucial. Roughly speaking, this is the only known consistency criterion. That is, whenever
a functional/logical system does not have such a property, it is likely that some form of Russell’s
paradox, or Burali-Forti paradox will apply and show the inconsistency.

4.5.1 The system U

The first example is Girard’s system U (see [30]), that I will adapt to the present formalism.
Following [18], we explain it first for logical systems, and then we derive what it means in term of
constructions.

The type structure of minimal higher-order logic is the simply typed A-calculus (and simply
typed A-calculus was historically created in [13] for that). As noticed in [58], simply typed structure
presents unnatural restriction, since we cannot formulate a statement for an arbitrary type. A
possible attempt to overcome this restriction is to start with the second-order A-calculus instead of
the simply typed A-calculus.

We thus enlarge the types of higher-order logic with type variables and product over type
variables Ila.T'(«) where T'(«) is a type expression where @ may occur as a variable. At the level
of terms, we have to introduce an abstraction over type variables, so that Aa.M is of type I1a.T ()
if M is of type T'(«) (with the usual restriction that o cannot occur free in the type of the free
variables of M), and instantiation of a term to a given type, so that M(7) is of type [7/a]T if T
is a type and M a term of type Ila.T'(«). Notice that the constant V is now a constant of type
ITav.(a—Prop)—Prop. The system we get is called U™ in J.Y. Girard’s thesis [30].

But we want also to state (and prove) generic statement. For that, we introduce a new constant
A which is of type (IIa.Prop)—Prop (and we write A a.¢ for A(Aa.p)). We express thus universal
quantification over all types. Another view of this system would have been to consider it as an

13



extension of the second order A-calculus, with one special type Prop, and special constants for
implications and quantifications.
We add then the new rules of inference:

T'F ¢ true
T F Aa.p true
I'F Aa.p true
L'k [a/T]p true

()

()

In the rule (**), it is supposed that 7 is a type, and in the rule (*), that the variable « doesn’t
occur free in T'.

If we think of our types as sets, it seems clear that we get an inconsistent system: we cannot
form an arbitrary product over all sets and get a set (in general it will be “too big”). We have
to be careful however since it is not always obvious to translate a set-theoretical result in term of
types (for instance, Russell’s paradox shows at once that there cannot be a set of all sets, but it’s
not so clear that there cannot be a type of all types). This intuition is however correct: we can
derive a paradox similar to Burali-Forti paradox [30, 18, 45].

It is less clear what is the situation for the system U~ where, intuitively speaking, the power of
second-order constructions seems to have no counterpart in the logic. Actually, in [73], Reynolds
stated a conjecture that is roughly equivalent to the consistency of U™, which is the existence of
a set-theoretic model of polymorphism. In [74], Reynolds found actually a proof that there is no
setO-theoretic model of polymorphism, with a quite general notion of set-theoretic model. This was
using a paradox similar to Cantor’s paradox It is possible to translate in type theoretic terms the
argument of Reynolds. The trick is that the construction of an initial T-algebra (see [74]) which
uses in set-theory a “big” equalizer becomes in type theory the expression of an induction predicate
over the type which is a weak initial T-algebra (see [24]). This shows that the system U~ is also
inconsistent.

A striking corollary of the inconsistency of the system U is that a type system with a type of
all types contains non-normalisable terms [30, 18]. Indeed, it is possible to interpret the system
U in such a type system in such a way that propositions are interpreted by types, and that a
proposition is provable in U if, and only if, its corresponding type is inhabited. In particular, the
type (X : Type)X is inhabited. We know that S-reduction preserves typing, and a closed term in
(X : Type)X cannot be in head-normal form. Hence, a closed term of type (X : Type)X is not
normalisable.

Intuitively, we cannot say that all types are (isomorphic to) small types in a consistent way.

4.5.2 Representation of existence

We have seen in the representation of existential quantification that from a given proof of Jz :
A.p(x), we have “no access to the two components of this proof”. We know however (by using
the normalisation theorem) that any closed proof of this proposition reduces to one term of the
form pair(a,b) where a is of type A and b a proof of ¢(a). We can thus try to internalise this
remark and to add to the system a “choice operator” which extracts the two components of the
proof of an existential statement [43]. Notice that this conflicts with the intuition that we get
from the proof-irrelevance (or the realisability, or the domain model). Indeed, the existential type
Jdz : A.p(z) becomes them a name for the type Xz : A.T(¢(z)), but this type is not “small” in
general. For instance, in the domain model, it will be in general a large category, and not at all a
domain. There is nothing wrong a priori with having these choice operators if A is itself small.
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From these remarks, it is not surprising that we can prove a contradiction from the introduction
of the two projections for existential types. This can be done directly as in [18]. It has also been
noticed [44, 38] that we can interpret T'ype : T'ype in this system by building a small type of all
small type B = dz : Prop.Unit : Prop. We can indeed build two operations ¢ : Prop— B and
E : B—Prop such that for A : Prop, E(e(A)) is convertible to A (we take e(A) = pair(4,id), with
id : Unit its canonical proof, and FE(z) = m1(z)). Now, we have the following results.

Lemma: If we add to the system of construction a small type B : Prop together with operations
E : B—Prop, € : Prop—B and with the conversion rule A = E(e(A)) [A : Prop], then we any small
type is inhabited.

Indeed, it is possible to interpret the Type : Type calculus, where the types are interpreted as
the small types of the calculus, and Type itself is B. We will see in the next section that we can
weaken the hypotheses, and suppose only that we have (A : Prop)A< E(e(A)) (but then, we must
use the inconsistency of the system U, and not only the one of T(:)T()).

From this, we deduce that if we introduce the two projections for the existential types, then we
can build an element of type (A : Prop)A, and such an element cannot be normalisable (for there
is no normal form of type (A : Prop)A and reduction preserves typing).

This shows that for an impredicative theory of constructions, we cannot have an existential
quantification with choice operators. This is to be contrasted with a predicative version of a theory
of constructions, such as Martin-L6f Type Theory [60], where existence is presented with two
projections (this is motivated by the constructive meaning of existence).

This property can be interpreted by saying that the use of the existential type “hides” some
information in such a way that it is impossible to get it back. It has been suggested by J. Mitchell
and G. Plotkin [65] to use existential types for the representation of abstract data types.

4.5.3 Semantics of evidence for classical logic

It seems clear that we can extend the interpretation of propositions as sets for intuitionistic propo-
sitional logic to classical logic simply by adding a special element 74 : A + = A. The goal of this
section is to show that such an addition for an impredicative logic will trivialise any explicit con-
siderations of proofs, so that the proof-irrelevance principle follows from the assumption that the
logic is classical and impredicative.

The intuition behind this result is the following. It has been noticed by Spector [83] that if we
add to predicative analysis the axiom of choice and the law of excluded middle, then we get a logic
as strong as impredicative analysis. We can thus expect to get two levels of impredicativity if we
add the magic element 74 : A + —A, and we can then apply the inconsistency of the system U to
ge the inconsistency of this extension (with the “propositions-as-types” meaning, that is all types
become inhabited).

Lemma: The following context
B : Prop, E: B—Prop, €: Prop—B, H : (A : Prop)ASE(e(A)),

is inconsistent.

Intuitively, this says that there cannot be any “reflection” from the “category” of small types
into one small type.

Proof: The proof of this lemma, is by a direct interpretation of the system U in that context. The small
type B is used for the representation of the type of truth-value of the system U and in general the types of
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the system U are interpreted by small types. We define =, : B>B—B, V; : (A : Prop)(A—B)— B, and
A : (Prop—B)—B.

=1 = (Ap,q: B)e(E(p)—E(q))
Vi = (A :Prop)(Af: A-»B)e((z : A)E(f(x)))
/\ = (AF : Prop—B)e((A : Prop)F(A)).

This gives an interpretion of the system U. We thus get that for any p : B, E(p) is inhabited. In
particular, if A : Prop, E(e(A)) is inhabited, and so A is inhabited. This means that the given context is
inconsistent.

In order even to state the next result, we need to extend the calculus of constructions with
disjoint sums & la Martin-Lof. This means that we add a new type forming operation A 4+ B type,
if A type and B type, with the rules that (M) : A+ Bif M : A, j(N): A+ B if N : B. Finally, if
A type, B type, C(z) type [z : A+ B], then

M(z): Cli@)lz: A] N(y):CG)ly:B) P:A+B

if(P, M, N) : C(P)
with the conversions rules that if(i(z), M, N) = M(z) : C(i(z)) [z : A] and if(j(y), M,N) = N(y) :
C(iy)) ly: Bl.

Proposition: In the calculus of construction with disjoint sums, the existence of a classical operator
?: (p:Prop)T(p)+T(—(p)) implies that any small type has at most one element for Leibniz equality.

Proof: We consider the small type of booleans Bool = (A:Prop)A—A—A, with true = (AA : Prop)(\z,y :
A)z : Bool and false = (AA : Prop)(Az,y : A)y : Bool. It is enough to show that Eq(Bool, true, false), where
the equality used is Leibniz equality, since for any small type A and any a,b: A, we can define f : Bool—+A
such that f(true) is convertible to a, and f(false) is convertible to b.

If we have ? : (p:Prop).T(p) + T(=(p)), we are in classical logic and we can reason by cases. Hence, we
can suppose that —(Eq(Bool, true, false)). We then show L by reduction to the previous lemma.

We define the map E : Bool—Prop by E(p) = Eq(Bool, p, true), for p : Bool. For the map ¢ : (Prop)Bool,
we consider, for p : Prop, ?(p) : T(p) + T(—(p)), and we take

e(p) = if(?(p), Az : T(p))true, (Az : T(—(p)))false).

We can then show, by using the hypothesis —=(Eq(Bool, true, false)), that, for an arbitrary A : Prop, 4 is
equivalent to E(e(A)), hence the result by the lemma.

This implies that the only “model” of such a theory is the “proof-irrelevance” model, where we
interpret Prop as a set with two elements, and each type is either empty, or with only one element. In
particular, a non-trivial “small complete category” [41] cannot satisfy the choice principle. This says
also intuitively that there cannot be any realisability like interpretation of impredicative classical
logic (see [14] for such an interpretation for predicative classical logic).

5 Some possible extensions

Does the constructive proof of Gédel’s Incompleteness Theorem suggest any reflection principles
that could be added to the theory preserving its constructive character? Would this be a way in
which an “abstract” theory of proofs might become interesting again? There seems to be quite a
number of things to think about this area, and the theory of constructions, in this form or another,
gives us a way to making the questions and answers precise (D. Scott [79]).
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5.1 Addition of universes

As pointed out in [58], the simple theory of types, although proof theoretically quite strong, has
some unnatural limitations: it does not talk about arbitrary set, but instead, talks about individuals
or sets of individuals, or sets of sets of individuals, ---. In [57], the assumption that there is a type
of all types which was formulated avoids this problem, but, as we have seen, this is inconsistent
with the proof-as-objects idea. There is however another possible solution to this difficulty, which
is to use a reflection principle (as in [60]).

For the expression of this reflection principle, we introduce a special type U, called a universe,
together with the assumptions that U is closed under products: if A is a type in U and B : A—U,
then (z:A)B(z) is a type in U, and Prop : U. With this addition, we can introduce type variables
X : U, then state, and prove, theorems in a generic way in X, like the fact that the inclusion
relation between predicate over X is transitive. The consistency of this extension is clear since
we can extend the proof-irrelevance semantics to this new calculus, by taking for [U] the set V,
of all hereditarily finite sets. Notice however that this consistency proof is no longer elementary,
and indeed, by considering the type of “predicative” Church numerals (X : U)(X - X)—>X—X,
it is possible to interpret higher-order arithmetic in the empty context, so that there cannot be
any elementary consistency proof any more. In [54], the realisability model (and in [55, 5], the
normalisation proof) is extended to the system with universes.

An interesting problem is to characterize the proof theoretic strength of higher-order logic
together with the reflection principle. It seems likely that we can interpret Zermelo set theory by a
direct extension of the usual representation of Zermelo set theory with the bounded comprehension
axiom in higher-order logic (see [34] for details), to a representation of the full Zermelo set theory
in higher-order logic with the reflection principle.

In practice, it seems that we do not need to use more than one or two universe levels. One
natural question however is to relate this kind of reflection principle to the one studied by Turing-
Feferman [26] (see [46] for examples of the use of the reflection principle). One is tempted to
iterate this “universe principle”, at first over the integers [61, 18, 54] (in particular notice the slight
improvement in the formulation of [54], which introduces explicitely a subtyping relation that
expresses really the cumulativity of the universes). G. Huet has proposed a notion of “universe
polymorphism” [40, 37]. We then get a system which combines impredicative formations (at the
level of propositions), and predicative logic (at the level of types), and we know furthermore from
Girard’s paradox that such an extension is, in some way “the best possible” [18]. It may be
interesting to illustrate ideas from [53] in the system with universe polymorphism, and to try to
develop a mechanical study of predicative reasoning (as started in the introduction of the second
edition of Principia [76]).

5.2 Strong sums

We have seen that we cannot add strong elimination rules for the existential quantification, so
that existential quantification becomes a “strong sum”. However, the proof-irrelevance semantics
suggests that it is possible to add a strong sum for the types. We add the terms (M, N), the
pairing operation pair 4 (M, N) and the rules

A type P type [z: A]
¥(A, P) type

In the following three rules, we assume implicit the hypotheses:
A type and P type [z : A].
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M:A N:Pz:A]
pairZ(A,P)(Ma N) E(AaP)

Q type [z (A, P)] M : (& A)(y: P)Qpairyu.p)(#:y)
Elim(M) : (z: 2(4,P))Q
Q type [z:X(A,P)] M :(z:A4)(y:P)Qpairga,p)(z,y)] a:A b:Pld
EIim(M)(pairE(Ayp) (a,b)) = M(a, b):Q[pairE(A,P)(a, b)]

As in [61], from these operators, we can define the two projections. Since we have an interpretation
of these rules in the proof-irrelevance model, we know that this extension is consistent. We write
Yz : A.B(z) for 3(A, B) with A type, and B : A—Prop.

One interesting application of strong sums is the representation of mathematical theories, and
this is particularly powerful when combined with universes [70, 56]. A theory will be defined by its
carrier part which is a type, and its axiomatisation, which is a predicate over this type. For instance,
the theory of reflexive relation is defined by the carrier part 7' = X(U,\A : U.A—A—Prop), and
the axiomatisation is the predicate 1 = Elim(AA : UAR : A—A—Prop.(z: A)R(z,z)) which is of
type T—Prop. A reflexive relation can then be seen as an object of type (T, ). A way to think
of this last type is as the “subset” of objects in T' that satisfies 1, or as the type of models of the
theory defined by T" and ).

We can now consider the notion of morphisms, or interpretations, between theories. For in-
stance, we can consider the notion of converse of a relation. We define first a function conv : T—T
by conv = Elim(AA : UAR : A—A—Prop.pairp(A, A\z,y : A.R(y,z))). We can then remark that we
have a proof of (z:T")1(x)=(conv(z)). This interpretation has thus two parts: one part is defined
purely at the level of support, and the other part is purely logical.

This seems to be a general phenomenon: an interpretation between two theories ¥(71,11) and
Y (T, 1) will have one carrier part f : T1—T5, and one logical part in (z:T%)91 (z)=(f ().

We can think of X(7,1) as the type of models of the theory defined by the pair (T,).
Interpretations between two theories (7%,%1) and (T»,12) are the maps f : T3 — T such that
(z:T1)(v1(x))2(f(z)) holds, so that they are themselves elements of the type of models of the
theory defined by (T1—To, Af : T1—To.(z:Th)¢1 (z)=92(f(2)))-

If we want to internalize this discussion, we have to use two levels of universes. We define the
type Theory : Uy as X(Up, AA : U;.A—Prop). We have an evaluation mapping Mod : Theory—U;
defined by Mod(Th) = Elim(Th)(AA : U\ : A—Prop.E2(A4,v)). We can now define what is a
morphism between two theories MOR : Theory—Theory—Theory by defining

mor(T1, %1, Ta, 1h2) = pairneory (T1—=T2, Af : T1—Th.(z: T1 )31 ()= (f (7))

and MOR(Th1,Th2) = Elim(Thl)()\Tl H Ul.)\’lﬁl :Tl—)PI’Op.
EIlm(Th,Q)()\TQ : Ul./\’(/)g :T2—>Prop.mor(T1, ’(/)1, TQ, ¢2)))

If F is an object in Mod(MOR(T'hy,Ths)), and S; an object in Mod(T'hy), then we can apply
F to S, yielding an object in Mod(T'hy). That is, we have an object application in

(Thy, Ths : Theory)Mod(MOR(T'hy, Ths))—Mod(Th1)—Mod(T'hs).

The remark that it was possible to internalize the representation of theories in the calculus itself
was explained to me by R. Pollack (from discussions with Z. Luo).
From what we just said, there is no object in

(Thy, Ths: Theory)(Mod(Th1)—Mod (Ths))—Mod(MOR(Thy, Ths)),
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so that, a priori, there is a problem to interpret the operation of simple type A-calculus with
theories. However, it is quite possible to define a product operation X : Theory—Theory— Theory,
and to interpret the equational presentation of cartesian closed category [51] in this framework.

There are three (at least formal) analogies that seem quite interesting: the first is the distinction
between runtime and compile time that is discussed in [12] as an argument for avoiding dependent
types (for compilation), the other is E. Moggi’s notion of modules for SML [66], the last one is the
interpretation of the implication in realisability (see [68]).

5.3 Inductive Types

As we noticed before, there are some problems in the impredicative representation of inductive
types. It is thus natural to try to extend the core calculus with a primitive notion of inductively
defined types. We shall not give here the full theory (see [71, 24]), but only illustrate some points
about such an extension.

For the natural number object, we want to introduce one type Nat (a priori, it is not clear
whether we want this type to be small or not) with one constant 0 : Nat and one successor operation
S : Nat—Nat. We then introduce one elimination operator rec with the rule

P(z) type [z : Nat] a:P(0) f:(z:Nat)(P(z))P(S(z))
rec(a, f) : (x:Nat)P(x)

We add the new conversion rules that rec(a, f)(0) = a and rec(a, f)(S(z)) = f(a,rec(a, f)(z)),
for x : Nat.

With the operator rec, we have simultaneously the possibility of building terms and of proving
properties by induction over Nat. Furthermore, since Prop is a type, we can define by induction
propositions, predicates,... For instance, we can define the property Z of being equal to 0 by
rec(true, Az : Nat.\y : Prop.false) with true = (A:Prop)(A)A (actually any true proposition will do)
and false = (A:Prop)A. We can also define the predecessor function as rec(0, Az,y : Nat.z). From
this, we can deduce the other Peano axioms: the axiom (z:Nat)—Eq(Nat, S(z),0) follows from the
existence of the property Z, and the axiom (z,y : Nat)Eq(Nat, S(z), S(y)) =Eq(Nat, z,y) follows
from the existence of the predecessor function.

If we do not ask Nat to be a small type, then the proof irrelevance semantics gives a consistency
proof. As expected, this semantics is not elementary, since we need an infinite set in order to
interpret Nat. If we want Nat as a small type, then the semantics has to be more subtle than
the proof irrelevance semantics, since in this semantics, small types are interpreted as sets with
at most one element. It turns out that the realisability interpretation works here, by interpreting
Nat as the set of untyped A-term of the form Af.Az.f"(x) (or by adding special constants 0, S, rec
to the untyped A-calculus with the new conversion rules rec(a, f,0) = a and rec(a, f,S(x)) =
f(a, rec(a, f,z))).

With one universe U, we can internalize the recursion operator as a constant of type (P:Nat—
U)P(0)—((z: Nat)P(x)—P(S(z)))—(z : Nat)P(z). With this extension, we can also (as in [60])
define by induction families like P(n) = A™, with A type, and we can define, for instance the notion
of sums of a n-tuple of integers as a term of type (n:Nat)Nat"—Nat, which could be defined only at
the meta-level before. The combination of universes and inductive types is thus extremely powerful
for the internalisation of meta-arguments (see [46]).
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Conclusion

We have presented a possible expression of Heyting’s semantics for intuitionistic higher-order logic,
and extended for this purpose Howard’s theory of constructions. The notion of construction de-
velopped here is however still too crude for being suitable for the interpretation of intuitionistic
mathematics (in particular we have not considered at all the difficult problem of the representation
of choice sequences). The goal of our approach was only to show that a type-theoretic presentation
of intuitionistic mathematics is possible (in opposition to a categorical or set-theoretical setting).
We hope that it will be interesting to mechanize and illustrate proof-theoretic results (like the real-
isability method or the Dialectica interpretation) in such a framework and that it will help towards
the understanding of the mystery of impredicativity.
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