/ Inductive Definitions and w-rule \

So far, the only objects we have considered are natural numbers

It is direct (as was noticed by Godel, Gentzen) to extend all the
previous constructions to theory of finite objects, like list, trees,

matrices, ...

We extend the notions of constructive objects by allowing countably

branching well-founded trees




/ Borel “well-defined” sets \

The first example of such “infinitary” objects is given by Borel sets
(1898) that Borel called first “measurable” and then “well-defined”
sets

Borel subsets of Cantor spaces have an inductive definitions
e a propositional formula is a Borel set

e if we have a sequence of Borel sets A4,, then N, 4,, and U, A,, are
Borel sets

We see Borel sets as “symbols” (that are not syntactical objects

however)
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/ Countable ordinals

Countable ordinals are represented as well-founded trees
e 0 is an ordinal
e if we have a sequence of ordinals x,, then sup (x,) is an ordinal

Intuitively sup (z,) represents the supremum of all ordinals z,, + 1




/ o-Boolean algebra

Boolean algebra B with an infinitary operation
Vnx, € B for any sequence x,, € B

If we have such a Boolean algebra we can interpret each closed
formula A of PA as an element [A] € B

[Ve. A(z)] = An[A(n)] [F2.A(2)] = Va[A(n)]

in such a way that if A is provable in PA then [A] =1€ B
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/ o-Boolean algebra

arithmetic

We are going, following Gentzen, to construct the free o-complete
Boolean algebra, and show that it is non trivial

~

If B is non trivial, we have another proof of the consistency of Peano




/ Propositional w-logic
The formulae are described inductively
e a propositional formula is a formula
o If A, is a sequence of formulae then so is A, A,, and V,, A,

We can define = A by induction on A

A sequent I', A, ... is a finite set of formulae Aq,..., A




/ Propositional w-logic \

We define F A as an inductive definition

e - A if A contains propositional formulae A;,..., A, such that
A; V...V A, is a tautology

o FANA,IfEA A, for all n
e FAIfV,A, €A andF A, A, for somen

A proof of - A can be thought of as a well-founded tree
Lemma 1: If HF A and A CT then FT
Lemma 2: If HF A, A, A, then - A, A, for all n
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/ Cut-elimination \

Notice that the system does not state any cut-rule
Instead we show that the cut-rule is admissible
Theorem: If H A, Aand FT',-A then - A, T

The proof is by induction first on A and then on the proof of H A, A
and F, —A

We can then define A < B iff - =A, B
The transitivity of < follows from admissibility of the cut-rule

The reflexivity of < is - A, = A which is proved by induction on A
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/ Cut-elimination \

Theorem: The set of all formulae forms a o-complete Boolean

algebra, which is actually the free o-complete Boolean algebra

Theorem: We have A < B iff A seen as a Borel set is a subset of B

seen as a Borel set

This is how Martin-Lof describes the Borel sets in his book “Notes on

Constructive Mathematics”




/ Gentzen’s first consistency proof \

This first version was rejected by the referees (Weyl? and Bernays),

for wrong reasons, it seems
Later (1970) Bernays presented this version

It contains in germ the idea of the w-rule and suggest naturally a

game interpretation
e FI'if I' contains a true atomic sentence
o FI" AT NASif FT Ay and F T, Ay
o FI'Vz.A(x) if FT', A(n) for all n
o FTif AyVAyeTl'and FT',A4; fori =1 or 1 = 2
o FTif 3x.A(x) € T and F T', A(n) for some n
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/ Gentzen’s first consistency proof \

Notice the asymmetric treatment of V and

Any such proof can be interpreted in an “interactive” way, as a game
between the proof and an opponent

At each move, the proof chooses one formula in the sequent, adding
one instance of dx.A if it chooses this formula

If it chooses a formula A1 A Ay or Vx.A(x) the opponent plays by
replacing this formula by an instance

The proof wins as soon as there is a true atomic formula
Proof tree = strategy
Branch of the tree = possible play

- /
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/ Gentzen’s first consistency proof \

A proof of F A can be thought of as the “finitary meaning” of the
classical validity of A

For instance a proof of - dzVy.f(z) < f(y) explains what means the
classical “truth” of dzVy.f(x) < f(y)

With this meaning, what is meant is not a natural number for =, but
a strategy for finding eventually x where we are allowed to backtrack

in our choice
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/ Gentzen’s first consistency proof
Example with £(0) =5, f(1) =7, f(2) = 3, f(3) = 4, ....
Proof x =0

= JaVy. f(z) < f(y),Vy.£(0) < f(y)

Opponent y = 3
= JzVy. f(z) < f(y), f(0) < f(3)

Proof x = 3
- 3aVy.f(2) < f(y), £(0) < £(3),Vy.f3) < f(y)

Opponent y = 1
= Jzvy. f(z) < f(y), £(0) < f(3), F(3) < f(1)

Qhe proof wins!
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/ Cut-elimination \

We get another proof of consistency of arithmetic, since it is direct
that there is no cut-free proof of 1 =0

Also, if we have a cut-free proof of a statement dz.A(x) with A

quantifier-free, then we can extract from this proof a witness ng such
that A(ng) holds

But we get more than consistency: we explain the classical truth of
arithmetical statements
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/ Cut-elimination \

With the usual first-order formulation of Peano arithmetic in sequent

calculus we do not have a complete calculus with only cut-free proofs
With the w-rule we get a complete cut-free system

A cut-free proof of a formula can be seen as a constructive
explanation of the classical truth of this formula

It is the same for Borel subsets of Cantor space: a proof tree for
A < B can be seen as a constructive explanation of inclusion between
Borel subsets, thought of as set of points

- /

15




/ Generalised inductive definition \

We have manipulated objects that can be thought of as well-founded
countably branching tree, given by inductive definitions

The logic of such objects is called I1D4
The 1 refers to the fact that the branching is at most countable

If we use also classical logic when reasoning about such objects the
logic is called ID{
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/ A concrete example in 1D \

We represent the notion of well-quasi-ordering

First we define embedding w C w’ between finite binary words, with
e empty word

e C 0011 011 C 1000101 11 C 1010

A finite sequence of words o = wg ... w,_1 is good iff G(o) iff there
exists ¢ < j < n such that w; T w;

A finite sequence of words 0 = wy ... w,_1 is barred by G iff B(o) if
G(o) or B(ow) for all w

Higman’s lemma (particular case) states that B(c) holds for all o

- /
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/ A concrete example in 1D \

Notice that for this example, G(0) is a decidable property
B(o) will be also decidable, but is not decidable a priori

If we start from an arbitrary decidable property G(o) the
corresponding predicate B(c) of being barred by G will not be
decidable

The main problem in the next lecture will be to show, starting with
an arbitrary decidable G, that we can assume B(c) to be decidable

without having a contradiction

- /
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/ A concrete example in 1D, \

We represent the tree of minimal bad sequences

We consider w’ < w lexicographic ordering on binary words

We define M (o) by induction on o

M (e) holds and M (ocw) holds iff M (o) and B(cw’) holds for all
w' < w

This definition is in ID4

We can then state that GG is a bar on the tree defined by M
(definition in IDy)

By (o) iff G(o) or By (ow) for all w such that M (cw)

The “minimal bad sequence” argument can then been thought of as a
roof of By;(e) — B(e)

\_ Y,
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/ Generalised inductive definition

For arithmetic, or reasoning about finite objects, we have seen that

classical logic can be explained in term of intuitionistic logic

Does this work for ID¢7? There is a problem because
B’(0) = =—B(0) does not satisfy a priori

(Vw.B'(cw)) — B’ (o)
Indeed, one would need something like
(Vw.m—A(w)) = = (Vw.A(w))

which is not valid intuitionistically

In the next lecture, we shall give a reduction of ID{ to 1Dy

N

~
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/ Exercice \

In w-logic gives a proof of, with f: N — N

Vo - (f(n) Z0A f(n) Z1), A Vinsn - f(m) =0, Ay, Vipsn . f(m) =1

which states that if f takes only the value 0 or 1 then it takes
infinitely many times the value 0, or infinitely many time the value 1

Explain why the last statement is not intuitionistically valid
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