/ Inductive Definitions \

We suppose given a decidable and monotone property G(o) of finite

sequences of binary words
“Mononotone” means G(o) - G(ow)
We want to describe the property B(o) that ¢ is “barred” by G

B(o) holds if G(¢) or B(ow) for all w

We have a logic of finite objects, but the predicate B(o) involves
implicitely an existential quantification over a potentially infinite
well-founded tree

- /




/ Inductive Definitions \

In general B(o) is not decidable

We are going to define a non-standard semantics of B(o) such that
w.r.t. this semantics, the law of excluded-middle holds

This will show that one can assume excluded-middle for B(o)

without having a contradiction




/ Inductive Definitions \

Historical survey of J. Zucker in Troelstra “Mathematical
Investigation of Intuitionistic Arithmetic and Analysis,” LNM 344

J. Zucker analyses ID{ using Godel’s dialectica interpretation,
introducing a non computable operator, the same as Hilbert’s

fle) =0—= f(u(f) =0

and showing that one can find a computable majorant of all
functionals defined from it, so that the introduction of 1 does not
matter for computing bounds

The reduction of ID{ to ID; was known before (Kreisel), but with an

indirect argument via elimination of choice sequences

Before Buchholz’ introduction of the {2 rule, it was not known that

\ID% was reducible to IDq /




/ General facts about Kripke models

Let M be an arbitrary poset

Theorem: The collection of downward closed subsets defines an
Heyting algebra for the operations

F1—>F2:{:c€M|‘v’y§az.y€F1—>y€F2}
N E; = NE;

We suppose given a distinguished downward closed subset 1. C M

Theorem: The collection of all subsets of the form F' — 1 is a
Boolean algebra H for the operations

\/z'Fz' = ﬂz(FZ —)J_) — 1 N\; Fz = ﬂiFi

N
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/ A special case: phase semantics \

If M is a meet-semi lattice, and F' C M we define
Fr={zeM|VyeFzAycF)}
Lemma: F+ = F — 1 and, more generally
Fir—oF={xeM|yeF —>xANyec Fy}

A fact is a downward closed subsets of M of the form F+

Thus the Boolean algebra H can be defined as the Boolean algebra of

all facts
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/ Reduction of ID{ to 1D,

General strategy: we define a meet-semi lattice M with a subset

1 C M using inductive definitions in a constructive way

M will be defined in finite terms, but the definition of L uses an

inductive definition

We build M in such a way that, relative to the corresponding
Boolean algebra of facts H, we have a model of ID§

In this way, we have “explained” ID{ using only ID;
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/ Inductive Definitions \

The element of M will be finite sets of formulae of the form B(o), o

finite sequence of words
A = B(oy),...,B(ox)
The meet-semi lattice operation is the union
We define inductively - A.
e - A, B(o) if G(o) holds
e - A B(o)if H A, B(ow) for all w
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/ Inductive Definitions \

- B(o) means that G, classically or intuitionistically, bars o

The meaning of - B(o1), B(02) is that, classically, o1 or o2 is barred

by G
This is not the same as - B(o1) V F B(o2)

When trying to prove
|‘B(O’1>,B(O'2) — |_B(0'1)\/'_B(0'2)

one needs
Vw.FVGw) — FVYw.G(w)

which is not valid intuitionistically
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/ Phase semantics model \

We have a “phase space” (M, 1) where M is the set of finite sequents
and | the set of provable sequents

Let X C M be a fact
Lemma: - A, B(ow) for all w iff - A, B(0o)
Corollary: A, B(ow) € X for all w iff A, B(o) € X




/ Semantics of /Dy \

[B(o)] = B(o)" ={A € M| F B(o),A}
Lemma: We have [B(o)] = M if G(o) holds
Lemma: We have N, [B(ocw)] C [B(o)]

Lemma: If we have a family of facts X (o) and A € X (o) whenever
G(o) holds, and, for all o, we have A € (N, X (ocw)) = X (o) and
- A, B(og) then A € X(09)

Corollary: B, as an H-valued predicate, satisfies the induction

principle

(Vo.G(o) = X (0)) A (Vo.(Vw. X (ow)) = X(0)) — BCX

- /
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/ Semantics of D5 \

We have [B(o)] = M iff - B(o) iff B(o) holds classically
We have [-B(0)] = M iff for all A we have - A whenever - A, B(o)

Let H be the collection of all facts. We interpret B as an H-valued
predicate o — B(o)+
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/ Semantics of [ Df
Lemma: if B(o) € A then A € [-B(0)]
Lemma: [-—B(o0)] C [B(0)]

Theorem: o — B(o)' is an H-valued model of ID§
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/ Inductive Definitions \

Buchholz could extend this reduction for ID; to ID,, for all finite n,

and even for transfinite n

However the situation is subtle for n > 2, or for the semantics of
negative statements for n = 1: there is no known effective way to
explain the classical truth of ~B(o)

Cut-elimination for ID; is achieved only for positive sequents (this is

known as partial cut-elimination)

- /
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