One main goal of proof theory, since the debate between Poincaré and Russell, has been to analyse impredicative definitions

Typically: a real number x is defined as a set of rationals q such that q < x. Given a formula $\phi(X)$, for instance

$$(\exists q. X(q) \land q > 0) \land \forall q_1, q_2. q_1 < q_2 \rightarrow X(q_2) \rightarrow X(q_1)$$

the g.l.b. of the collection of all X such that $\phi(X)$ is given by the predicate

$$\forall X.\phi(X) \to X(q)$$

This predicate is defined by quantification over all possible predicates

Such a definition looks circular (Poincaré)

In this case, the predicate can be rewritten as $q \leq 0$, so the circularity is only apparent

Takeuti formulated, in the 50s, a sequent calculus for second-order arithmetic, and conjectured cut-elimination

He could prove cut-elimination for a restricted version to Π_1^1 -comprehension

Kreisel, by analysing the proof in a review, noticed that the argument can be represented in an intuitionistic system of inductive definitions

Buchholz found a variation of the Ω -rule that allows a more direct interpretation of Π_1^1 -comprehension in term of inductive definitions

A particularly simple version of this reduction is obtained by showing the normalisation of a restricted fragment of system F with only quantification over finite objects

One main intuition can be found in Lorenzen (1958): it is possible to explain the classical truth of a statement

$$\forall X.\phi(X)$$

where ϕ does not have any quantification on predicates, by saying that

$$\phi(X)$$

is classically valid, where X is a variable

We know how to express this using inductive definitions

For instance, it can be seen in this way that

$$\forall X.X(5) \rightarrow X(5)$$

is valid, without having to consider all subsets of \mathbb{N}

To take another example, with

$$\phi(X) \equiv (\exists q. X(q) \land q > 0) \land \forall q_1, q_2. q_1 < q_2 \to X(q_2) \to X(q_1)$$

it is possible to show directly that

$$\vdash \phi(X) \to X(q)$$

is provable in ω -logic, with X variable predicate, iff $q \leq 0$.

Furthermore this reasoning will only involve inductive definitions, and not the explicit consideration of all subsets of \mathbb{Q}

If

$$\vdash X(q_0), \forall q > 0. \neg X(q), \exists p < q. X(q) \land \neg X(p)$$

is provable then, by inversion

$$\vdash X(q_0), \neg X(q_1), \exists p < q. X(q) \land \neg X(p)$$

is provable for each $q_1 > 0$

It is direct to see that if $0 < q_1 < q_0$ then

$$\vdash X(q_0), \neg X(q_1), \exists p < q. X(q) \land \neg X(p)$$

is not provable

System F was introduced by J.Y. Girard (1970) for giving a Dialectica interpretation of second-order arithmetic

One can show the normalisation of system F, but only by using in the meta-language impredicative definitions

$$T ::= \alpha \mid T \to T \mid (\Pi \alpha)T$$

Each close type can be interpreted in a natural, but impredicative way, as a set of $untyped \lambda$ -terms

It is then direct to show that all terms in such a set are normalisable

This can be interpreted as a normalisation theorem for the following typing rules

$$\begin{split} \frac{\Gamma \vdash x : T}{\Gamma \vdash x : T} & x : T \in \Gamma \\ \frac{\Gamma, x : T \vdash t : U}{\Gamma \vdash \lambda x \ t : T \to U} & \frac{\Gamma \vdash u : V \to T \quad \Gamma \vdash v : V}{\Gamma \vdash u \ v : T} \\ \frac{\Gamma \vdash t : (\Pi \alpha) T}{\Gamma \vdash t : T[U]} & \frac{\Gamma \vdash t : T}{\Gamma \vdash t : (\Pi \alpha) T} \end{split}$$

where Γ is a finite set of type declaration x:T, and in the last rule, α does not appear free in any type of Γ .

We consider the following types

$$T ::= \alpha \mid T \to T \mid (\Pi \alpha)T$$

where in the quantification, T has to be built using only α and \rightarrow .

Then the normalisation theorem can be shown without impredicative definitions

General strategy: we define a Kripke model using only finite objects

We interpret the usual proof of normalisation, interpreting each type as an H-valued predicate

We build H in such a way that, relative to this model, each impredicatively defined predicate required for this proof is equivalent to a predicate defined using only quantifications on finite objects

References

Aehlig, Klaus "On Fragments of Analysis with Strengths of Finitely Iterated Inductive Definitions." PhD thesis, 2003

Buchholz, Wilfried; Schtte, Kurt "Proof theory of impredicative subsystems of analysis." Studies in Proof Theory. Monographs, 2. Bibliopolis, Naples, 1988.

Lorenzen, P. "Logical reflection and formalism." J. Symb. Logic 23 1958 241–249.