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Abstract

Cubical type theory gives a constructive interpretation of the univalence axiom,
which has been one of the central problems in homotopy type theory. In this
thesis we present a version of cubical type theory with explicit partial and
restriction types, also giving a partial semantic justification of the theory using
the presheaf model of cubical sets. Finally we describe the main outcome of our
work, which is a software implementation of the aforementioned type theory,
written in Haskell, which reads and type-checks a source file containing a list
of definitions, allowing then the user to experiment with it.

Keywords: cubical type theory, univalence, restriction types, presheaf cate-
gories, functional programming, Haskell, type-checking.
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Introduction

1 Intuitionistic type theory

The topic of this thesis is type theory, a branch of mathematics and computer
science that traces its origins back to Russell’s theory of types in the early
1900’s, developed to be a solid foundation for mathematics which avoided the
paradoxes. More precisely, we focus on some recent developments of intuition-
istic type theory [ML75], introduced by Per Martin-Löf as a formal system
meant to be a foundation for constructive mathematics. It is based on the
Brouwer-Heyting-Kolmogorov interpretation of intuitionistic logic, which ex-
plains the meaning of the logical connectives in terms of computations, and on
the so called Curry-Howard correspondence (or propositions-as-types [How80]),
whose motto is �a proposition is the type of its proofs�. The main feature of
intuitionistic type theory is the fact that it can also be seen as a functional
programming language, based on the typed lambda calculus, with a type sys-
tem so rich that indeed it can interpret (higher order) logic. It should be noted
that the type system of intuitionistic type theory is much more evolved than
the ones found in ordinary programming languages, as they usually lack depen-
dent types.1 The problem with dependent types is that to keep type checking
decidable, the language must be strongly normalizing, that is every computa-
tion must halt, and this implies the non-Turing completeness of the language.2

Having a very expressive type system allows to state formally (i.e. inside the
type system itself) a specification of a program, so that developing a program
to fulfil its task and proving its correctness can be done at the same time. Al-
though the non-Turing completeness be can a problem, it can be argued that
dependent types remedy a bit, at least for practical purposes, since often it is

1Dependent types are types that depend on a value: a standard example is vector(n),
which is the type of vectors of length n. The dependent type is vector itself, not vector(n).

2The normalizing property is strongly connected to the consistency of the underlying
(intuitionistic) logic: a non terminating computation would be interpreted logically as a
proof of falsum.
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vi Introduction

possible to avoid blocking the computation: an example is the function head

which returns the first element of a list, as it must handle the empty list case
somehow, usually in some artificial way, e.g. by reporting an I/O error and
halting; with dependent types it can be solved easily, by passing not only the
list but also a proof (that is, a term witnessing...) that the length of the list
is not zero;3 by doing this, the empty list case is automatically excluded.

The propositions-as-types paradigm, which may be more appropriately called
proofs-as-programs, is actually practically implemented in some proof assis-
tants such as Coq and Agda, as one can extract automatically a concrete
program, written for example in Haskell,4 that computes the function corre-
sponding to a given proof. To make a possibly trivial example, from a Coq
formalization of Euclid’s proof of the infinity of prime numbers,5 one can ex-
tract an Haskell program that, given a natural number, outputs a prime greater
than that.

Turning back to the foundations, one of the most important features of intu-
itionistic type theory is the treatment of equality, of which there exists two
main notions. The first is the judgmental or definitional equality, which is a
relation between the terms of the theory but is external to it, and expresses
the fact that two terms are convertible to each other, by simplifying the terms
and unfolding the definitions.6 In this thesis we will always write a ≡ b to
mean that a and b are judgmentally equal. The second notion of equality,
often called definitional equality, is more subtle and is internal to the theory
itself: for each pair of terms a and b of the same type A, one can form the type
IdA(a, b), often written more simply as a =A b; an element p of type a =A b is
then a witness that a and b are (propositionally) equal, but this does not imply
that a ≡ b.7 Propositional equality can be seen as an inductive relation, but is
more simply modelled by an introduction rule asserting reflexivity of equality,

3With the notation that we will introduce in chapter 1, the signature of the function, for
lists of naturals, would be head : [n : N] (n > 0)→ vectorN(n)→ N.

4Haskell, named after the logician Haskell B. Curry (1900 - 1982), is one of the most
commonly used purely functional programming languages, with static typing, type inference
and lazy evaluation as its main features.

5I think it is worth to spend a few words to say that albeit the proof seems not to be
really constructive, since the law of the excluded middle (LEM) is used to test whether the
number N = p1 · · · pn + 1 is prime or not, that instance of LEM is intuitionistically valid,
as the primeness property is obviously decidable.

6The strong normalization property implies the decidability of the judgmental equality.
7We say that the equality is intensional ; it is possible to add the equality reflection rule

(i.e. propositional equality implies judgmental equality), but it would destroy the decidabil-
ity of the type-checking. Note that this implies not being able to even (computationally)
recognize a valid proof.
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and by an elimination rule (also called J-rule) which allows to prove a predicate
about two equal elements a and b of type A, eventually depending also on the
proof that they are equal, by proving only the simpler case where the two ele-
ments are judgementally the same and the equality is given by reflexivity. This
seemingly simple treatment is the bridge to the homotopical interpretation of
type theory, as it gives rise to the so called (weak) ∞-groupoid structure,8

due to the possibility of iterating the equality type: given a, b : A and two
proofs p, q : a =A b, due to intensionality it shall not always hold that p ≡ q,
and indeed it makes sense to form the type p =(a=Ab) q of identifications be-
tween proofs of equality of a and b; then we can continue: given two different
identifications α, β : p =(a=Ab) q, we can form the type α =(p=(a=Ab)q) β, and
so on. The aforementioned structure of ∞-groupoid is given by the groupoid
operations (identity, inverse, composition) induced by the elimination rule for
propositional equality. The crucial fact is that this structure does not collapse,
as one may intuitively expect that there is only one way to prove an equality,
a principle known as uniqueness of identity proofs (UIP); [HS96] first proved
that UIP does not hold in general, by exploiting the so called groupoid model,
where types are interpreted by groupoids, the elements of the type are the
elements of the corresponding groupoid and equality is modelled by arrows in
that groupoid; a counterexample to UIP is then a groupoid with more than an
arrow between two elements.

2 The homotopical interpretation

The groupoid model suggests that types should not be treated just as sets of
points, and indeed an interpretation should exploit the ∞-groupoid structure.
In the homotopical interpretation types are seen as topological spaces and
identities between points as topological paths, i.e. continuous functions from
the unit interval to the type/space. As I said in the previous section, using
the J-rule it is possible to define the operations of path inversion, (a =A b)→
(b =A a), p → p−1, and path composition, (a =A b) → (b =A c) → (a =A c),
p, q → p � q, which satisfy the groupoid laws, but only up to (higher order)
propositional equality,9 e.g. for p : a =A b, p � p−1 need not be judgmentally

8A groupoid is a category where every arrow is invertible, or equivalently is a group
where the binary operation is a partial function (but the inverse has to be total). For an
explanation of what a (weak) ∞-groupoid is, see the next footnote.

9The idea of a weak∞-groupoid is the following: the identities between paths (i.e. arrows,
or 1-morphisms) need not be exact, but instead they can be witnessed by ‘order two arrows’
(or 2-morphisms) between them, which are functors. Functors can be composed horizontally
and vertically, and both operations have their own rules (unit and associativity), along with
an interchange rule of the two operations; these rules need not hold strictly, but again only
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equal to reflA(a), but it can be proved that p � p−1 =(a=Aa) reflA(a). This
is easily explained topologically: the concatenation of a path with its inverse
is almost never pointwise equal to the trivial path at its beginning point,
but is always homotopic to it (note that an homotopy is nothing else than
path between two paths). The connection between homotopy theory, higher-
dimensional category theory and type theory arose around 2006 by the works of
Awodey and Warren [AW09] and of Voevodsky [Voe06], resulting most notably
in Voevodsky’s model of type theory in Kan simplicial sets [KL21].

3 Univalence and cubical type theory

The simplicial model of Voevodsky satisfies the so called univalence property
(now called univalence axiom), which is about equality of types (i.e. paths in-
side the universe of types), as it says informally that equivalent types are actu-
ally (propositionally) equal. This is important because it adds more structure
to the type-theoretic universe and because it makes possible to identify equiva-
lent structures not in the informal way that it is usually done in mathematics,
but explicitly using the language of type theory.10 To make an example,11

suppose we define two types Nat and Nat’ inductively with the constructors
Z : Nat, S : Nat → Nat and zero : Nat’, suc : Nat’ → Nat’; these two types
are obviously equivalent in some intuitive sense, and suppose for now that
this equivalence is formally witnessed by a suitable term e : Equiv(Nat, Nat’);
the axiom of univalence allows us to obtain a term ua(e) : Nat =U Nat’,
which means we can transport theorems (i.e. terms) from Nat to Nat’ and
vice versa.12 E.g. let us suppose that we have derived [n,m : Nat] (n+m =Nat

m + n); then we get ‘for free’ also [n,m : Nat’] (n +′ m =Nat’ m +′ n). The
univalence axiom is so called because it is not derivable from the other rules
of intuitionistic type theory (and indeed in does not hold in the groupoid
model). In general it is possible to add axioms to intuitionistic type theory, or
to be more precise, to postulate the existence of terms with a given type (i.e.

up to a 3-morphism (natural transformation), and so on. This is a topic of higher category
theory, and indeed a weak ∞-groupoid is defined as a weak ∞-category where every k-
morphism is invertible (note that the fact that a k-morphism is invertible is witnessed by a
k + 1-morphism), for each k ≥ 0.

10Moreover, univalence implies that every construction in the type theory is homotopy
invariant; this, along with higher inductive types (see [Uni13] chapter 6), allows to develop
a synthetic approach to homotopy theory (see [Uni13] chapter 8).

11For a less trivial one, see [Uni13] 2.14.
12The transport is a basic principle of homotopy type theory, derivable from the J-rule,

which is nothing else than Leibniz’s principle of indiscernibles, i.e. for a type family P :
A→ U and a path p : a =A b, we have transportP (p,−) : P (a)→ P (b).
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ex-middle : [A : U](A + ¬A) for the excluded middle). Note that although
the excluded middle is consistent with intuitionistic type theory,13 adding it
makes no more possible to extract a program from a classical proof. Similarly,
the problem with univalence is that it has to be postulated as an axiom, so
proofs using it lose their computational content; the same happens with func-
tion extensionality, which is consistent with the theory (although it is implied
by univalence). We have to be precise by what we mean with the possibility
of extracting a program from a proof, which known as the canonicity prop-
erty : we mean that every closed term that has the type of natural numbers
reduces to a numeral in a computable way.14 It is now clear that finding a
constructive justification of univalence is (or, has been) a central topic in type
theory. Cubical type theory, recently introduced in [CCHM15], allows to prove
univalence while still keeping the computational content of the theory.

The key difference between CTT (cubical type theory) and HOTT (homotopy
type theory) is the treatment of equality: whereas in the latter equality is
inductively defined, in the former it is modelled in a more primitive, topological
manner, i.e. as functions (paths) from a formal unit interval I into a specified
type. To make things more concrete, suppose that a and b have type A, then a
witness of equality between a and b is a function p, called path, of type I→ A,
such that p 0 ≡ a1 and p 1 ≡ a2, where 0 and 1 are the formal representation
of zero and one in the unit interval. We use the notation PathA(a, b) for paths
between elements a, b of type A. The key point is that I is not a type, although
it is possible to abstract over an element of I and to apply a path to elements of
I. It should be kept clear from the beginning that path types do not correspond
exactly to identity types in HOTT, as for example the elimination rule for path
types holds only up to homotopy and not judgmentally.15

An enlightening example with path types is function extensionality, which can
be proved in a surprisingly simple way: suppose that we have a (dependent)
path p : [x : A] PathB(f x, g x) between two functions f, g : A→ B. Then the
term

β ≡ [i : I][x : A] p x i

13But not with the univalence axiom, see [Uni13] 3.2.7. Indeed, the ‘right’ formulation of
LEM is not the naive one we presented, but [A : U] isProp A→ A+¬A, which is consistent,
as it holds in the simplicial model. The predicate isProp classifies the so called mere
propositions, or (−1)-types, which allow to develop classical logic in univalent foundations
(see chapter 3 of [Uni13]).

14This is how the idea of a theory with computational content is formalized: with a
suitable coding every other term of the theory can be thought as a function N→ N.

15Anyway, it is possible to define a data type Id in CTT from path types so that they
correspond exactly to HOTT’s identity types, making it possible to interpret HOTT inside
CTT (see [CCHM15] 9.1, due to A. Swan).
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is a path in A→ B between f and g, because

β 0 ≡ [x : A] p x 0 ≡ [x : A] f x ≡ f

and similarly β 1 ≡ g. Note that what we did is basically just swapping [i : I]
with [a : A] to get from p to β.

Equalities can be visualized as paths between the two endpoints, whose line
structure can be thought as a degenerate ‘1-dimensional’ hypercube, described
by the formula i = 0 ∨ i = 1.

p 0 p 1
p

Homotopies, that is paths of paths, can be viewed as squares, or in other words
2-dimensional hypercubes. In the figure below, α is an homotopy between the
paths α 0 (or [j : I] α 0 j, with endpoints α 0 0 and α 0 1) and α 1 (or
[j : I] α 1 j, with endpoints α 1 0 and α 1 1). We explicitly represent
the axes for clarity; note that the structure can be described by the formula
i = 0 ∨ i = 1 ∨ j = 0 ∨ j = 1.

α 0 1 α 1 1

α 0 0 α 1 0
[i:I] α i 0

α 0 α 1

[i:I] α i 1

i

j

Disposing only of the interval does not bring us very far: the real power of CTT
is the compositional structure (or Kan structure) that each type is equipped
with. Indeed, the syntax of CTT is modelled in a way that reflects a model of
type theory in cubical sets [Hub16], where each type has to satisfy the so-called
uniform Kan condition, which is a generalization of the homotopy-theoretic
Kan condition which informally says that for each n-dimensional hypercube
missing one ‘face’ there is a complete hypercube that extends it. For example,
suppose we have a term of type A defined on all the sides of a square except
the top (we say that the type of that term is a partial type), that is on the
extent i = 0∨i = 1∨j = 0; then we can obtain a term defined on whole square
(the filler) which extends the partial one. One easy application of composition
is the concatenation of two paths, which we show in section 1.2.2. Another
application is the derivation of the transport function, which allows to transfer
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properties along paths, i.e. paths PathA(x, y) induce functions P x→ P y for
each P . Composition is defined inductively on the type family, which requires
great care especially for the universe of types.

We use the notation [ϕ]A for the type of partial elements of A defined on
the extent ϕ and [ψ → t]A for the type of (total) elements of A which agree
with t on ψ. We talk respectively of partial and restriction types; the latter is
used for example to assert that the composition agrees with the given partial
term under the incomplete hypercube, or in other words that the composition
extends the partial term. We remark that although the concept of partial type
is very important for the presentation, it remains implicit in [CCHM15] and
in the cubicaltt implementation.16

4 Contributions of the thesis

In this thesis we investigate and implement a modification of cubical type
theory with explicit partial and restriction types, that is a type theory with:

• Basic type formers of intuitionistic type theory: empty and unit types,
naturals, (dependent) products, (dependent) sums, coproducts.17

• A universe of types U;

• A formal unit interval I with endpoints 0 and 1. Although not being
considered a type, it is possible to define and apply functions with domain
I, i.e. paths.

• Formulas built from atomic ones of the kind (i = 0), (i = 1) and
(i = j), where i, j : I are called dimension names, using the opera-
tions ∧ and ∨.18 Formulas are used only in partial and restriction types
and in compositions; note that a conjunctive formula describes a face of
a hypercube and a formula in disjunctive normal form describes a union
of faces, that is a sub-polyhedra of an hypercube.

• Partial types of the form [ϕ]A, where A is a type and ϕ is a formula in
disjunctive normal form. The meaning of [ϕ]A is that of a type defined

16https://github.com/mortberg/cubicaltt
17Unit, sums and products is all that is needed to define non-inductive ADTs (algebraic

data types). The empty and unit types will actually be derived types, the latter defined
using a partial version of the naturals.

18Formulas of the form (i = j) are needed for higher inductive types, which we do not
treat in this thesis. We decided to handle this kind of formulas anyway, in case of future
upgrades of the implementation.

https://github.com/mortberg/cubicaltt
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only of the extent ϕ. To define partial elements, we use systems, written
as [ψ1 → t1, . . . , ψn → tn], where ϕ is the disjunction of the ψ’s, and ti
is the term associated to the face described by the conjunctive formula
ψi (note that we have to ensure that the terms agree whenever the faces
overlap, that is on the edges, described by the conjunction of the formulas
of the two faces).

• Restriction types of the form [ψ1→ t1, . . . , ψn→ tn]A, where A is a type,
and for each i, ψi is a conjunctive formula and ti is a term of type [ψi]A.
The meaning of [ψ1 → t1, . . . , ψn → tn]A is that of the type of elements
of A that on each ψi are convertible to the given ti. Analogously to
systems, terms on overlapping formulas must be checked.

The handling of formulas requires special attention during type-checking and
evaluation, managing individually the special cases of partial and restriction
types. In particular, during type-checking we must pay attention to ‘propagate’
partial and restriction types (e.g. from f : [ψ → g](A → B) and a : A, the
application f a shall have type [ψ → g a]B; inferring just type B results in a
loss of information); during evaluation, some terms which we call neutral (i.e.
terms for which we don’t have a definition at that moment of evaluation) have
to be annotated with their type, and this has to reflect the typing rules. The
need for annotation is that a neutral term with restriction type may have a
true formula, which means that the whole term shall be reduced to the term
associated with the true formula. Several choices about the exact rules to be
admitted have been made and are presented in chapter 1.

After introducing the theory in the first chapter, in the second one we describe
a category-theoretic semantics for this type theory using presheaf models; in
particular we explain how to model partial and restriction types, also describ-
ing the connections with the subobject classifier available in any presheaf cat-
egory, as is the category of cubical sets. Finally we describe an interpretation
of the syntax into cubical sets, stating a soundness theorem for that semantics.
We do not deal with the full semantics needed to handle univalence (i.e. Kan
cubical sets [Hub16]).

Finally in chapter 3 we describe the details of the Haskell implementation
of this type theory, using most notably a bidirectional type-checker and the
normalization by evaluation technique. The result is a program which, given
in input a file or a list of declarations (i.e. of the form name : type) and
definitions (i.e. of the form name : type = def), type-checks it and then starts
a REPL loop where it is possible to input new declarations and definitions
and to infer the type of the given terms. The full code can be found at
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https://github.com/mattia-furlan/MasterThesisCTT.

We remark that the focus of this thesis is the treatment of explicit partial and
restriction types, and the purpose is not a full implementation of cubical type
theory; indeed, in the implementation we have not developed composition for
the universe of types, so that univalence is not yet provable; moreover, an
efficient and smart implementation of composition is still to be engineered.
This may be a direction for future work; other features that could be added
to make the implementation more complete and user-friendly are:

• An infinite hierarchy of universes U0 : U1 : . . . , with a mechanism of
universe polymorphism,19 which can be implicit (that is, handled by the
program) as in Coq, or explicit (that is, handled by the user with a
specific syntax) as in Agda.

• The possibility of defining custom inductive types, or even higher induc-
tive types.

• Implicit arguments when defining functions, which allow to shorten sig-
nificantly the code written by the user.20

19By universe polymorphism we mean the ability to define functions uniformly with respect
to all the universe levels. For example, with the implicit approach, one wants to write simply
f : [A,B : U]U = . . . to mean that f is a function which given two types A and B of any
universes Un and Um, produces a type in the universe Uk where the definition lives (which has
to be inferred by the program). f itself is element of an universe, of level max{n+1,m+1, k}.

20Example: apply : [A,B : U][f : A→ B][a : A] B; the first two arguments A and B need
not be specified when calling apply, since they can be deduced from the argument binding
to f .

https://github.com/mattia-furlan/MasterThesisCTT
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Chapter 1

Theory

1.1 The basic type theory

We first present the basic intuitionistic type theory underlying our implemen-
tation, which we will then extend with the constructs of cubical type theory
(interval, systems, partial and restriction types).

First of all we define the syntax of the terms of the basic theory. It is worth
pointing out that what we call terms is different (more general) than terms usu-
ally intended in non-dependently typed λ-calculi, as there one can distinguish
between types and terms (that is, the syntactic objects that can be assigned a
type) regardless of the type-checking. Instead in dependently typed λ-calculi
one cannot do this distinction, but can only define what is a type in a context
(A is a type in context Γ if Γ ` A : U) and what is a term of a given type
in a context (a is a term of type A in context Γ if A is a type in context Γ
and Γ ` a : A). Therefore, here by term we mean a syntactic object of the
language, which can also be ill-typed.21

Definition 1.1 (Terms). Terms are inductively defined by:

1. Variables x, y, z, . . .

2. A universe of types, U.

3. A ‘let-definition’ mechanism of the form [x : A = M ]M ′, where x is a
variable and A, M and M ′ are terms; it means ‘let x be of type A and
judgmentally equal to M inside M ′’.

21In the literature they are usually called pre-terms or raw terms.

1



2 Theory

4. For Π-types, i.e. (dependent) function types:

(a) Abstraction [x : A]M , where x is a variable and A, M are terms.
It is used both for the λ-abstraction for terms (i.e. λx : A.M) and
for dependent product types (i.e. Πx : A.M). The context in which
a term of that form is used clears the ambiguity. When x does not
appear in M , we shall simply write A→M .

(b) Application (M1M2), where M1 and M2 are terms.

5. For Σ-types, i.e. (dependent) pair types:

(a) Dependent sum types 〈x : A〉M , where x is a variable and A, M are
terms. When x does not appear in M , we shall simply write A∗M .

(b) Pair constructor (M1,M2), where M1 and M2 are terms.

(c) Projections M.1 and M.2, where M is a term.22

6. For coproduct types:

(a) Coproduct types A+B, where A and B are terms.

(b) Left and right injections inl M and inr M , where M is a term.

(c) Elimination rule for coproduct types: given terms A (type family),
Ml (left case), Mr (right case) and M , split A Ml Mr M is a
term.

7. The type of natural numbers, N, along with the constant Z and the unary
constructor S. Moreover, for terms A (type family), M0 (base case), Ms

(successor case) and N , ind A M0 Ms N is a term, which represents the
induction principle (i.e. the elimination rule) for N.

For brevity we do not include neither the empty type, as it can be defined
using the impredicativity of the universe,23 nor the unit type since it will be
possible to derive it later too using cubical concepts (section 1.2).

22The two projections allows to define the elimination rule (or induction principle) for
Σ-types; otherwise one can take the elimination rule as a primitive, and then define the two
projections using it.

23The empty type, logically corresponding to falsum, is defined as empty : U = [X : U]X.
The eliminator principle for the empty type is nothing else that the ‘ex falso quodlibet’ law
(false implies anything), which is straightforward to derive: ind-empty : [A : U] empty →
A = [A : U][b : empty] b A. Impredicativity means that one can form types of the form
[X : U]Y , so that X quantifies over all types of the universe, including the one being
defined.
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The syntax can be presented more succinctly with a formal grammar, as fol-
lows, where x is a generic variable and A,B,M (eventually subscripted) are
meta-variables for terms.

A,B,M ::= U | x
| [x : A = N ]M (Let-definition)

| M1 M2 | [x : A]M (Π-types)

| 〈x : A〉M | (M1,M2) | M.1 | M.2 (Σ-types)

| A+B | inl M | inr M | split A Ml Mr M (Coproducts)

| N | 0 | S | ind A M0 Ms M (Naturals)

It is important, especially for the implementation, to isolate a subset of the
terms, known as neutral terms and denoted with K, which is composed by
terms in β-normal form, i.e. terms that do not contain any redex, that is
eliminators (function application, projections .1 and .2, split and ind) applied
to constructors of the same type. Neutral terms are: variables, all the terms
whose main ‘term-constructor’ is not an eliminator,24 and eliminators applied
to a neutral terms only. Therefore, the grammar for neutral terms is the
following:

A,B,M ::= U | K
| [x : A]M (Π-types)

| 〈x : A〉M | (M1,M2) (Σ-types)

| A+B | inl M | inr M (Coproducts)

| N | 0 | S (Naturals)

K ::= x | K M | ind A M0 Ms K

| K.1 | K.2 | split A Ml Mr K (Neutrals)

We also consider values, i.e. the results of the evaluation of terms (evaluation
will be discussed in section 1.1.4), as neutral terms, excluding the abstrac-
tions [x : A]B and 〈x : A〉B, extended with a closure operator of the form

24By the main term-constructor I mean the root of the tree associated to a term. For
example, the term ([x : N] plus x (S Z)) Z has function application as its main term-
constructor.
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closure(M,Γ),25 where M is an (unevaluated) term of the form [x : A]B or
〈x : A〉B and the closure environment is specified by the context Γ (discussed
in section 1.1.2). We write meta-variables representing values in bold, i.e. v,
to distinguish them from terms.

The only change we make in the abstract syntax is that we annotate neutral
values with their (evaluated) type, written as vt. As will become clear later,
type annotations are required in order to simplify cubical expressions: for
example if the variable x has type [i : I][(i = 0) → a, (i = 1) → b]A,26 which
means that x must be equal to a when i = 0 and to b when i = 1, then the
evaluation function shall reduce x 0 to a, but it must know the type of x to
do so. Note that type annotations are not needed for the basic theory, but
it makes the presentation simpler to understand if we introduce them first in
this simpler case.

Having defined terms and values, we give the rules to form a whole ‘program’,
that is a list of declarations, definitions and examples,27 which we formalize
in the following grammar, where A,B,M are meta-variables for terms. Note
that this part, albeit being practically important, is formally superfluous, since
a sequence of definitions and declarations may be replaced by a single term
using the abstractions [x : A] and [x : A = M ];

Program ::= [TopLevel]

TopLevel ::= Definition | Declaration | Example
Definition ::= x : A = M

Declaration ::= x : A

Example ::= M

1.1.1 Syntactical constraints

It is well known that one has to be careful with variables when performing
reduction of terms, because there might occur a ‘capture of variable’, even in
seemingly ‘safe’ cases, as the example shows (from [vBJ77]).
Supposing that

a : (A→ A)→ A→ A, b : A→ A→ A,

25The point of evaluation is avoiding unnecessary syntactical substitutions, by reducing
redexes only when the body of a term is free of abstractions. This is accomplished by using
closures.

26Later we will call a type of this form a path type, and say that x is a path between a
and b in type A.

27An ‘example’ is a term whose type will be inferred, if well-typed.
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the term

([u : (A→ A→ A)→ A→ A→ A] u (u b))([z : A→ A→ A][y, x : A] a (z x) y)

is well typed and the reduction chain starts as follows:

([u : (A→ A→ A)→ A→ A→ A] u (u b))([z : A→ A→ A][y, x : A] a (z x) y)

→β ([z : A→ A→ A][y, x : A] a (z x) y)(([z : A→ A→ A][y, x : A] a (z x) y) b)

→β ([z : A→ A→ A][y, x : A] a (z x) y)([y, x : A] a (b x) y)

→β [y, x : A] a (([y, x : A] a (b x) y) x) y

At this point it is necessary to rename one of the bound variables x, otherwise
the term would reduce to

[y, x : A] a ([x : A] a (b x) x)) y

which is not correct. The point of this example is that the capture of variable
problem might happen even if in the starting term each binding variable is
declared only once and the variables used in the sub-terms forming function
applications are all different.

This problem must be handled with great care if one implements β-reduction
syntactically, which is moreover inefficient; instead, we use the normalization-
by-evaluation technique (see section 1.1.4), which defers actual substitutions
until the body of a function is free of abstractions, by using closures, so that
when the substitution is made, only the variables that were originally bound
in the body of the function will be substituted by the corresponding terms.

There is a second subtlety that we must address, that is the eventual shadowing
of names. Consider the following context:

x : N, y : N = x, x : N→ N.

If this has to be accepted, the program must handle somehow the fact that
y of type N seems to get assigned an object of type N → N; for example,
Agda allows this by using indexes to discriminate between variables with the
same name,28 but this approach can still be confusing to the user. Instead,
we decided to forbid name shadowing, so that the implementation is simpler.
Note that the name shadowing check is done every time a context is expanded,
i.e. with each new ‘top-level’ declaration or definition and when type-checking

28A technique called namespaced De Bruijn indices, see https://www.haskellforall.

com/2021/08/namespaced-de-bruijn-indices.html.

https://www.haskellforall.com/2021/08/namespaced-de-bruijn-indices.html
https://www.haskellforall.com/2021/08/namespaced-de-bruijn-indices.html
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an abstraction. It has to made clear that the following context is valid, as the
two variables x are not in the same scope:

fun1 : N→ N = [x : N] x

fun2 : N→ N = [x : N] S x

1.1.2 Contexts

To state the typing rules of the theory, we need a formal notion of context,
which is thought as a list of declarations and definitions; moreover, we aug-
ment it with value bindings of the form x → v, which are used only during
evaluation.29 Note that the evaluation function needs the list of declarations
and definitions to annotate neutral terms with their type.

Definition 1.2 (Context).

1. () is the empty context;

2. Γ, x : A extends the context Γ with a declaration, where the type A is a
term;

3. Γ, x : A = M extends the context Γ with a definition, where both the type
A and the body M are terms;

4. Γ, x→ v extends the context Γ binding the variable x to the value v.

Although being used for the formal recursive definition, we will obviously omit
the () symbol for the empty context.

The utility function lookupType retrieves the (evaluated) type of an iden-
tifier from the given context; we denote evaluation of A in context Γ with
(A)Γ (see section 1.1.4). Keep in mind that evaluation is done only after type-
checking, so that any variable with no declaration is reported as an error before
evaluation takes place. The function lookupType can be specified formally
by recursion on the structure of the context (where the last ‘−’ means ‘every
other possibility’):

lookupType((Γ, x : A), x) = (A)Γ

lookupType((Γ, x : A = B), x) = (A)Γ

lookupType((Γ,−), x) = lookupType(Γ,, x)

29Therefore our notion of context is not the usual one; it may be more appropriately called
‘extended context’ or ‘context plus environment’.
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1.1.3 Typing rules

We use a technique called bidirectional type checking, that is we define and
implement two relations, one for type inference (written Γ ` t⇒ ty) and one
for type checking (written Γ ` t⇐ ty), which allow to type-check programs in
a fairly straightforward manner while maintaining a close correspondence with
the syntax and also producing good error messages.30 Moreover, this approach
requires type annotations only at the ‘top-level’ of the declarations and not in
every sub-term, allowing e.g. to write only inl a instead of inlA,B a, or (a, b)
instead of (a, b)A,B or even λ-abstractions without mentioning the type, as it
has to be already present in the top-level signature (e.g. in f : N→ N = [n] S n,
nmust have type N due to the signature).31 Note that terms are checked against
evaluated types, as they are in β-normal form.

We now present the rules for a bidirectional type-checker for the basic theory;
later, to handle partial and restriction types, we will use not only the context
Γ for type-checking but also a directions environment Θ (see section 1.2.3).

The rule about the universe (i.e. the one asserting U : U) requires some expla-
nation, first of all because it makes the theory inconsistent (Girard’s paradox).
In the usual presentations of Martin-Löf’s type theory (e.g. [ML75], [Hof97]),
one has a separate kind of judgment for types, usually written as Γ ` A Type,
so that it is then possible to formulate the type forming rules, e.g. from
Γ, x : A ` B Type infer Γ ` [x : A] B Type, without mentioning any universe of
types. One can then introduce a universe, containing codes for types (such a
universe is said to be á la Tarski), in which type formers can be ‘reflected’ (see
2.8). With just one universe U0 one does not get farther than before, as it is
not possible to write impredicative definitions, i.e. quantifying over types. To
do so, one must introduce a new universe U1 which contains a code for U0 and
also for every type in U0,32 where it is possible to form types which quantify
over U0; of course one may then want to quantify over types in U1, which means
that a new universe U2 has to be introduced, and so on obtaining a cumulative
chain of universes U0, U1, U2, . . . .

33 The implementation of an infinite chain of
universes, especially if the universe indexing has to be invisible to the user,

30Compare with the Hindley-Milner type-checking algorithm [Mil78], which uses the uni-
fication algorithm. Error reporting there can be difficult to interpret.

31However, to make the syntax more uniform and simple, we require to always include
the type in abstractions.

32The universes are then cumulative.
33This is the approach used in Coq, where there is a cumulative chain of universes

Type0, Type1, Type2, . . . , which is however usually invisible to the user, showing just Type.
Type0 is split into Prop (impredicative and proof irrelevant) and Set (predicative and proof
relevant). See also http://adam.chlipala.net/cpdt/html/Universes.html.

http://adam.chlipala.net/cpdt/html/Universes.html
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requires quite a lot of work, therefore in the prototype implementation we
present in this thesis there is just one universe; stating the inconsistent U : U is
a way to allow impredicative definitions while maintaining the implementation
simple. Of course, one must be careful not to use it improperly to prove false
results. As an example of ‘proper’ use, we can form the empty type, putting
x ≡ X, ty ≡ U and e ≡ X:

Γ ` U⇐ U Γ, X : U ` X ⇐ U

Γ ` [X : U]X ⇐ U
(Pi)

Type inference

Γ ` x⇒ lookupType(Γ, x) (Var)

Γ ` U⇒ U (Universe)

Γ ` f ⇒ closure([x : ty]e,Γ′) Γ ` a⇐ (ty)Γ′

Γ ` f a⇒ app(closure([x : ty]e,Γ′), (a)Γ) (App)

Γ ` p⇒ closure(〈x : ty〉e,Γ′)
Γ ` p.1⇒ (ty)Γ′ (Sigma-1)

Γ ` p⇒ closure(〈x : ty〉e,Γ′)
Γ ` p.2⇒ (e)Γ′,x→(p.1)Γ

(Sigma-2)

Γ ` F ⇐ ty1 + ty2 → U
Γ ` t⇒ ty1 + ty2

Γ ` f1 ⇐ ([x : ty1] F (inl x))Γ

Γ ` f2 ⇐ ([x : ty2] F (inr x))Γ

Γ ` split F f1 f2 t⇒ (F t)Γ
(x = newVar(Γ))

(Split)

Γ ` N⇒ U (Nat)

Γ ` Z⇒ N (Zero)



1.1 The basic type theory 9

Γ ` n⇐ N
Γ ` S n⇒ N (Succ)

Γ ` F ⇐ N→ U
Γ ` n⇐ N

Γ ` c0 ⇐ (F Z)Γ

Γ ` cs ⇐ ([m : N] F m→ F (S m))Γ

Γ ` ind F c0 cs n⇒ (F n)Γ
(m = newVar(Γ))

(Ind)

Type checking

Γ ` ty ⇐ U Γ ` e⇐ (ty)Γ Γ, x : ty = e ` t⇐ A

Γ ` [x : ty = e]t⇐ A (Def)

Γ ` ty ⇐ U Γ, x : ty ` e⇐ U

Γ ` [x : ty]e⇐ U (Pi)

Γ ` ty ⇐ U Γ, x : ty ` e⇐ U

Γ ` 〈x : ty〉e⇐ U (Sigma)

Γ ` ty ⇐ U (ty)Γ ∼τ(Γ) (ty1)Γ1

Γ, x : ty, x→ v ` e⇐ app(closure([x1 : ty1]e1,Γ1)〉, v(ty1)Γ1 )

Γ ` [x : ty]e⇐ closure([x1 : ty1]e1,Γ1)
(v = newVar(Γ1))

(Abstraction)

Γ ` s⇐ (ty)Γ′ Γ ` t⇐ (e)Γ′,x→(s)Γ

Γ ` (s, t)⇐ closure(〈x : ty〉e,Γ′) (Pair)

Γ ` A⇐ U Γ ` B ⇐ U
Γ ` A+B ⇐ U (Coproduct)

Γ ` t1 ⇐ A
Γ ` inl t1 ⇐ A + B (Inl)
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Γ ` t2 ⇐ B
Γ ` inr t2 ⇐ A + B (Inr)

Γ ` e⇒ A A ∼τ(Γ) A′

Γ ` e⇐ A′ (Infer)

In the last rule, A ∼τ(Γ) A′ means that values A and A′ are αη-equivalent;34

τ(Γ) is the list of names declared in the context Γ. We refer to section 1.5 for
the definition of the αη-equivalence (or αη-conversion) predicate, written once
for the full type theory.

1.1.4 Operational semantics and evaluation

Given a context Γ, the function evalΓ gets a term as input and gives the
corresponding value as output. The point of evaluation is getting the canonical
form of a term.35 Instead of writing evalΓ(t), we shall simply write (t)Γ.
The key point of evaluation is that of using closures to defer computation
in the case of abstractions of the form [x : A]M or 〈x : A〉M ; as already
explained in section 1.1, in this way the structure of the body is preserved
until it becomes free of abstractions, and only at that point the substitutions
are actually performed.36

Evaluation is then defined by recursion on the structure of the terms.

(x)Γ = xlookupType(Γ,x)

(U)Γ = U

([x : ty = e]t)Γ = (t)Γ,x:ty=e

([x : ty]e)Γ = closure([x : ty]e,Γ)

(f a)Γ = app((f)Γ, (a)Γ)

(〈x : ty〉e)Γ = closure(〈x : ty〉e,Γ)

(t1, t2)Γ = ((t1)Γ, (t2)Γ)

(t.1)Γ = fst((t)Γ)

34α-equivalence is about identifying values up to renaming of variables; η-equivalence
means that for function (respectively pair) types, f and [x : A] f x (respectively p and
(p.1, p.2)) are identified.

35The canonical form is the β-normal form; keep in mind that values may contain closures,
so to get the β-normal form as a term, one has to convert closures into terms (this process
is called ‘reading-back’, see section 1.1.4).

36This approach was first introduced by P. J. Landin in his seminal paper [Lan64].
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(t.2)Γ = snd((t)Γ)

(A+B)Γ = (A)Γ + (B)Γ

(inl t1)Γ = inl (t1)Γ

(inr t2)Γ = inr (t2)Γ

(split ty f1 f2 t)Γ = split((ty)Γ, (f1)Γ, (f2)Γ, (t)Γ)

(N)Γ = N

(Z)Γ = Z

(S n)Γ = S (n)Γ

(ind F c0 cs n)Γ = ind((F )Γ, (c0)Γ, (cs)Γ, (n)Γ)

Note that the result of the evaluation of a variable is always a neutral term,
which is the variable itself annotated with its type; moreover, each eliminator
is handled individually using an helper function (written in small caps), as we
need to handle carefully the case when the argument is neutral. We specify
them below, but we will need to expand them to handle restriction types in
section 1.4.

• app applied to f and a first checks if f is a closure, and if so it evaluates
it with the given value a, otherwise f a must be a neutral application
which gets annotated with its type.37

app(closure([x : ty]e,Γ), a) = (e)Γ,x→a

app(f closure([x:ty]e,Γ), a) = (f a)(e)Γ,x→a

• fst and snd return respectively the first and the second component of a
pair, if the value is not neutral; otherwise they annotate the whole value
with the corresponding type.

fst((v1,v2)) = v1

fst(vclosure(〈x:ty〉e,Γ)) = (v.1)(ty)Γ

snd((v1,v2)) = v2

snd(vclosure(〈x:ty〉e,Γ)) = (v.2)(e)Γ,x→fst(v)

• split does by-case analysis on the given argument, if it is not neutral,
otherwise the whole term becomes neutral and gets annotated with its
type.

split(F, f1, f2, inl v1) = app(f1,v1)

37Remember that terms are type-checked before they get evaluated, so the types are
assumed to be correct, and in particular in this case the type of f has to be a function type.
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split(F, f1, f2, inr v2) = app(f2,v2)

split(F, f1, f2,v
ty′) = (split F f1 f2 v)app(F,v)

• ind evaluates an induction by pattern-matching on the argument n; if n
is neutral, then the whole induction is neutral and so it gets annotated
with its type.

ind(F, c0, cs, Z) = c0

ind(F, c0, cs, S m) = app(app(cs,m), ind(F, c0, cs,m))

ind(F, c0, cs,n
N) = (ind F c0 cs n)app(F,n)

Reading back

Having discussed evaluation, we now describe the function R which converts
values back into terms, that is by recursively evaluating the closures. In that
way, starting from a term, by first evaluating and then reading back, one gets
the β-normal form of that term.

The read-back function R keeps track of the list of already used names ns,
to avoid name conflicts when reading back closures. For all the values except
closures, R is defined inductively in the obvious manner.38

Rns(x) = x

Rns(U) = U

Rns(k a) = Rns(k) Rns(a)

Rns((v1,v2)) = (Rns(v1),Rns(v2))

Rns(k.1) = Rns(k).1

Rns(k.2) = Rns(k).2

Rns(A + B) = Rns(A) +Rns(B)

Rns(inl v1) = inl Rns(v1)

Rns(inr v2) = inr Rns(v2)

Rns(split ty f1 f2 k) = split Rns(ty) Rns(f1) Rns(f2) Rns(k)

Rns(N) = N

Rns(Z) = Z

Rns(S n) = S (Rns(n))

Rns(ind F c0 cs k) = ind Rns(F ) Rns(c0) Rns(cs) Rns(k)

38In the definition, k represents a neutral term; note that e.g. if a value has the form k a,
then k must be neutral, and the same happens with all the other eliminators.
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Finally for closures we read-back the argument type and the evaluated body
(with a fresh variable x′).

Rns(closure([x : ty]e,Γ)) = [x′ : ty′]e′

Rns(closure(〈x : ty〉e,Γ)) = 〈x′ : ty′〉e′

where 
x′ = newVar(ns)

ty′ = Rns((ty)Γ)

e′ = Rns,x′((e)Γ,x→x′(ty)Γ )

1.1.5 Metatheoretical results

The basic theory discussed so far, with an infinite hierarchy of cumulative uni-
verses instead of a single (inconsistent) universe, is basically the one described
in [ML75], for which a normalization theorem is proved, by extending the now
classical Tait’s reducibility method (see [GTL89]).

Theorem 1 (Strong normalization).
Every term reduces to an unique normal term.

Normalization in our presentation has to be thought as evaluation followed
by reading back (term → value → term), which implements β-reduction and
whose termination is guaranteed by the above theorem. By unique we mean
unique up to αη-conversion (see section 1.5).

Strong normalization implies the following results, albeit they are clear from
the given implementation.

Theorem 2 (Decidability of αη-conversion).
For any two terms of the same type, it is decidable whether they are αη-
equivalent or not.

Theorem 3 (Decidability of type-checking).
Given a context Γ and terms a and A, it is decidable whether Γ ` a⇐ A.

As a last note, in the introduction we have remarked that functions defined in
Martin-Löf’s type theory are computable and validate the canonicity property,
and indeed if ` f ⇐ N→ N, then for ` n⇐ N, ` f m⇐ N reduces to a (closed)
normal term of type N, which must be a numeral; the computation is done by
following the evaluation rules.
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1.1.6 Examples

We report some brief examples which can be written in this basic type theory.

First of all we can define, using the well known recursive definitions, the basic
arithmetic operations.

idN : N→ U = [x : N] N

plus : N→ N→ N = [m : N][n : N] ind idN m ([n′ : N][mPn′ : N] S mPn′) n

mult : N→ N→ N = [m : N][n : N] ind idN Z ([n′ : N][mTn′ : N] plus mTn′ m) n

exp : N→ N→ N = [m : N][n : N] ind idN (S Z) ([n′ : N][mEn′ : N] mult mEn′ m) n

These functions obviously satisfy (judgmentally) the identities between numer-
als, and it is possible to prove (using path types, see section 1.2.1) the usual
properties by induction (commutativity, associativity, etc).

We assume to have a unit type (which we will introduce in section 1.7) with a
single constructor and the induction/elimination principle:

tt : unit

unitInd : [C : unit→ U] C tt→ [x : unit] C x

Using unit and coproducts we can form the bool type and derive its induc-
tion/elimination principle:

bool : U = unit + unit

false : bool = inl tt

true : bool = inr tt

boolInd : [C : bool→ U] C false→ C true→ [x : bool] C x

= [C : bool→ U][cf : C false][ct : C true][x : bool]

split C ([u : unit] unitInd ([u′ : unit] C (inl u′)) cf u)

([u : unit] unitInd ([u′ : unit] C (inr u′)) ct u) x

boolRec : [C : U] C → C → bool→ C

= [C : U][f : C][t : C][x : bool] boolInd (bool→ C) f t x

Then we can define the boolean operations and some relations (e.g. equality,
less-or-equal) between naturals using the recursive characterization.39

If : [C : U] bool→ C → C → C

39We define by induction on m : N a function N → bool, thought as (m = −). When
m ≡ Z, the function returns true on Z and false on successors; when m ≡ S m′, the
function returns false on Z and on successors n ≡ S n′ it computes the previous value (i.e.
m′ = n′, the inductive hypothesis). Similarly for ‘less-or-equal’.
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= [C : U][x : bool][t : C][f : C] boolRec C f t x

not : bool→ bool = [b : bool] If bool b false true

and : bool→ bool→ bool = [b1, b2 : bool] If bool b1 b2 false

or : bool→ bool→ bool = [b1, b2 : bool] If bool b1 true b2

natEq : N→ N→ bool = [m : N] ind (N→ N→ bool)

([n : N] ind (N→ bool) true (N→ bool→ false) n)

([m′ : N][m′Eq : N→ bool][n : N]

ind (N→ bool) false ([n′ : N] bool→ m′Eq n′) n) m

natNeq : N→ N→ bool = [m,n : N] not (natEq m n)

natLeq : N→ N→ bool = [m : N] ind (N→ N→ bool) (N→ true)

([m′ : N][m′Leq : N→ bool][n : N]

ind (N→ bool) false ([n′ : N] bool→ m′Leq n′) n) m

natLe : N→ N→ bool = [m,n : N] and (natLeq m n) (natNeq m n)

Using bool and function types we can define an alternative product type, which
is the type of functions bool→ U mapping false to the first type and true to
the second one. In section 1.7, after introducing path types and transport, we
will prove the propositional η-equality and the inductive/elimination principle
for prod, which will finally allow us to prove that prod A B is equivalent to
A ∗B.

prod : U→ U→ U = [A,B : U][x : bool] boolRec U A B x

couple : [A,B : U] A→ B → prod A B

= [A,B : U][a : A][b : B] boolInd ([x : bool] boolRec U A B x) a b

pi1 : [A,B : U] prod A B → A = [A,B : U][p : prod A B] p false

pi2 : [A,B : U] prod A B → B = [A,B : U][p : prod A B] p true

As a last example, we can prove the so called ‘type-theoretic axiom of choice’
(see [Uni13] 1.6 and 2.15.7) and the induction/elimination principle for Σ-
types,40 but note that these need η-conversion to type-check. From the induc-
tion principle we can deduce the recursion (i.e. non-dependent) principle.

AC : [A : U][B : U][C : A→ B → U]

([x : A]〈y : B〉 C x y)→ 〈f : A→ B〉[x : A] C x (f x)

= [A : U][B : U][C : A→ B → U][h : [x : A]〈y : B〉 C x y]

(([x : A](h x).1), ([x : A](h x).2))

40Recall that we chose to use projections as primitives in our language.
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indSigma : [A : U][B : A→ U][C : (〈x : A〉B x)→ U]

([a : A][b : B a] C (a, b))→ [p : 〈x : A〉 B x] C p

= [A : U][B : A→ U][C : (〈x : A〉 B x)→ U]

[h : [a : A][b : B a] C (a, b)][p : 〈x : A〉 B x] h p.1 p.2

recSigma : [A : U][B : U][C : A ∗B → U]

([a : A][b : B] C (a, b))→ [p : A ∗B] C p

= [A : U][B : U][C : A ∗B → U][h : [a : A][b : B] C (a, b)]

indSigma A (A→ B) C h

1.2 Extension with partial and restriction types

We now extend the basic type theory discussed so far with the constructs
of cubical type theory, that is the interval, formulas, systems, partial and
restriction types. We also add a composition (i.e. Kan) operation, which
however has to be seen only as an experimental feature, as its implementation
is still incomplete.41

The syntax is expanded as follows:

A,B,M ::= . . .

| I | 0 | 1 (Interval)

| [ψ1→M1, . . . , ψn→Mn] (System)

| [ϕ]A (Partial type)

| [ψ1→M1, . . . , ψn→Mn]A (Restriction type)

K ::= . . .

| comp K ϕ M0 Mu Mb Mi (Composition)

However, care must be taken in the case of comp, as it may become neutral
when the first argument (type family) is not neutral but Mb is.42

41As already remarked in the introduction, we have not implemented it for the universe
of types.

42For example for coproducts and naturals.
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We also introduce a syntax for formulas (we use i and j for generic interval
variables).

χ ::= (i = 0) | (i = 1) | (i = j) (Atomic)

ψ ::= χ | χ ∧ ψ (Conjunction)

ϕ ::= ψ | ψ ∨ ϕ (Disjunctive n.f.)

We chose not to allow arbitrary formulas in the syntax, but only conjunctive
formulas in systems and restriction types and formulas in disjunctive normal
form in partial types, because it makes little sense to write programs breaking
that rule and because this constraint simplifies the implementation.

We will often use a standard vector notation for systems and restriction types,
i.e. writing just

[~ψ→ ~M ]

instead of
[ψ1→M1, . . . , ψn→Mn].

When also write for example

[~ψ→ ~f a], [~ψ→ ~p.1]

respectively for

[ψ1→ f1 a, . . . , ψn→ fn a], [ψ1→ (p1).1, . . . , ψn→ (pn).1].

1.2.1 Path types

There is no need for a primitive syntax for path types in the language, as is in
[CCHM15], because we can exploit restriction types to define path types as a
derived notion. Indeed, a path p : PathA(a, b) is nothing else than a p : I→ A
such that p 0 ≡ a and p 1 ≡ b, that is

PathA(a, b) ≡ [i : I][i = 0→ a, i = 1→ b]A.

More generally:

Path ≡ [A : U][a, b : A][i : I][i = 0→ a, i = 1→ b]A.

The trivial path at a : A, which corresponds to a proof of reflexivity, is then
defined as the constant path at a:

refl : [A : U][a : A] PathA(a, a) = [A : U][a : A][i : I] a.

It is trivial to see that every inference rule of [CCHM15] (section 3.1) holds if
path types are defined this way.
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1.2.2 Syntax for composition

We use the following notation for compositions: comp F ϕ i0 u b i, where:

• F : I→ U is a type family;

• ϕ is the formula describing the sides of the composition figure;

• i0 : I is the starting point of the composition;

• u : [x : I][ϕ]F x is the partial term, defined on ϕ, which will be extended
by the composition;

• b : [ϕ→ u i0]F i0 is the base case, defined on the starting point i0; the
term b must agree with u i0 on ϕ, that is on the intersections of the base
with the sides;

• i : I is the end point of the composition.

The composition has type [i = i0 → b, ϕ→ u i]F i, i.e. it extends b on i = i0
and u on ϕ. Note that it cannot be just [ϕ→ u i]F i, as under i = i0 the type
would be [ϕ → u i0]F i0, the same as b, but we still have to assert that the
composition and b are convertible in that case.

The inference rule for composition shall be therefore the following:43

Γ ` ϕ : F
Γ ` F : I→ U

Γ ` u : [x : I][ϕ]F x
Γ ` b : [ϕ→ u i0]F i0

Γ ` i0 : I
Γ ` i : I

Γ ` comp F ϕ i0 u b i : [i = i0→ b | ϕ→ u i]F i

We make an example to make clear how composition works, demonstrating
how to obtain the concatenation of two paths.

Suppose we are given a type A : U and three points a, b, c : A, with paths
p : PathA(a, b) and q : PathA(b, c); we want to obtain a path pq : PathA(a, c).

We draw a square having p as the base, so i0 ≡ 0 is the starting point and p i
is the base case, with the constant path reflA(a) as the left side and the path
q as the right side. With composition (at the end point 1) we finally obtain a
path from a to c. In more detail, keeping in mind that we quantify over i : I
before the composition,

• F is the constant type family I→ A;

• ϕ is i = 0 ∨ i = 1 (left and right sides of the square);

43In section 1.3 we will state it more precisely, conforming to the bidirectional type-
checking mechanism and using the directions environment in addition to the context.
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a c

a b
p i

q j

i

j

Figure 1.1: Concatenation of two paths. The result is the dotted line (lid of the
square), which is a path connecting a to c. The twisted line only represents
the act of composition (along the direction j), obtaining a point on the lid
from the base point p i, for each point i : I which we quantify over.

• i0 is the starting point 0;

• u is the partial term defined only on the sides, given by

[j : I][i = 0→ a, i = 1→ q j]; 44

• b is the base case, given by p i;

• The end point is 1.45

The code for concatenation is therefore:

concat : [A : U][a, b, c : A] Path A a b→ Path A b c→ Path A a c

= [A : U][a, b, c : A][p : Path A a b][q : Path A b c][i : I]
comp (I→ A) (i = 0 ∨ i = 1) 0 ([j : I][i = 0→ a, i = 1→ q j]) (p i) 1

Indeed we can verify, now informally using the evaluation rules which will
be presented in section 1.4, that the concatenation is a path with the right
endpoints:

(concat A a b c p q) 0

≡ comp (I→ A) (0 = 0 ∨ 0 = 1) 0 ([j : I][0 = 0→ a, 0 = 1→ q j]) (p 0) 1

≡ comp (I→ A) True 0 ([j : I][True→ a]) a 1

≡ ([j : I][True→ a]) 0

45We use 1 because we are only interested in the lid, not on the whole square (filler),
which we would get by using i as the end point.

45We could also have written reflA(a) j instead of a in the system.
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≡ a

And similarly:

(concat A a b c p q) 1

≡ comp (I→ A) (1 = 0 ∨ 1 = 1) 0 ([j : I][1 = 0→ a, 1 = 1→ q j]) (p 1) 1

≡ comp (I→ A) True 0 ([j : I][True→ q j]) b 1

≡ ([j : I][True→ q j]) 1

≡ q 1

≡ c

1.2.3 Contexts and directions environments

We give again the definition of the context, now allowing also interval variables
declarations of the kind i : I.46

Definition 1.3 (Context).

1. () is the empty context;

2. Γ, x : A and Γ, i : I extend the context Γ with a declaration;

3. Γ, x : A = M extends the context Γ with a definition;

4. Γ, x→ v extends the context Γ binding the variable x to the value v.

The type-checking rules (section 1.3) require the use of formulas in contexts,
e.g. when type-checking a declaration of the form Γ ` e : [ψ → t]A, one has
to check that Γ, ψ ` t : A, that is, t has to be of type A when subject to the
constraint ψ; the context Γ, ψ has to be thought as a restricted context.

Instead of adding formulas to contexts, we use a different context-like structure
to store information about formulas, called directions environment, because
it makes the implementation and the presentation simpler, as the context
and the directions environment serve different purposes which are handled
distinctly.47 The directions environment is used only during type-checking
and αη-conversion, and not during evaluation.

46However, we do not allow definitions of type I, that is of the form i : I = j. This would
complicate the evaluation of formulas, especially when the directions environment contains
an interval variable which also has a definition, and we don’t think it would be useful at all.

47Note that if Γ and ∆ are contexts without formulas, then a judgment in Γ, ψ1,∆, ψ2 is
equivalent to a judgement in Γ,∆, ψ1 ∧ ψ2. This means that we can always split the ‘full’
context into two contexts Γ; Θ, where Γ does not contain any formula and Θ is the directions
environment.
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Moreover, note that the meaning of a judgement of the form Γ, ψ1∨ . . . ψn ` J
is that Γ, ψ1 ` J , . . . , Γ, ψn ` J , so that the directions environment only need
to store information about a conjunction of atomic formulas.

To manage and simplify conjunctive formulas efficiently, we use a particular
data structure which is formed by:

• A list (zeros) of names which shall be replaced by 0.

• A list (ones) of names which shall be replaced by 1.

• A list of partitions (diagonals), that is, a list of lists of names; each
partition represents the names which shall be identified.

For example, the formula (i = 0) ∧ (j = k) ∧ (w = r) ∧ (w = 1) is stored
as ([i], [w, r], [[j, k]]), meaning that i is mapped to 0, w, r to 1 and j, k are
identified.

Even if it is implemented using the aforementioned lists, we will use a simple
context-like notation for the directions environment, as if it were a list of
bindings.

Definition 1.4 (Directions environment).

1. () is the empty directions environment;

2. Θ, i → 0 (or i → 1) extends the directions environment Θ binding the
name i to 0 (or to 1);

3. Θ, i→ j extends the directions environment Θ binding the name i to the
name j (diagonal).

As a last note, it is important to keep in mind that interval values can appear
both in the directions environment (which is used when checking under a
formula) and in the context during evaluation (e.g. Γ could contain value
bindings of the form i→ 0, i→ 1 or i→ jI), but the two are indeed used for
distinct purposes.

1.3 Typing rules

We now present the type-checking rules for the full system, extending the ones
of section 1.1.3. The main difference is that now judgments are of the form

Γ; Θ ` J

i.e. we use not only the context Γ, but also the directions environment Θ,
which is used when type-checking under a formula (constraint).
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We also need other kinds of judgments to state the rules, which are:

• Γ ` ϕ : F means that ϕ is a formula whose variables are declared in Γ.

• v1 ∼Θ
τ(Γ) v2 means that values v1 and v2 are αη-equivalent modulo the

constraints in Θ; τ(Γ) is the list of names declared in the context Γ.48

• ψ1 ≤Θ ψ2 means that ψ1 logically implies ψ2 modulo the constraints in
Θ.

• ψ1 ∼Θ ψ2 means that ψ1 and ψ2 are logically equivalent modulo the
constraints in Θ, i.e. that ψ1 ≤Θ ψ2 and ψ2 ≤Θ ψ1.

The implementation of the three judgments regarding the formulas is relatively
straightforward and is discussed in sections 3.2 and 3.6.

We allow only a restricted form of subtyping, as specified by the rules (Weak-
Partial) and (Weak-Restr). This means that subtyping works only at the
‘top-level’, e.g.

x : [i = 0 ∨ i = 1]N

y : [i = 0]N = x

is admitted but

f : [i : I][i = 0 ∨ i = 1]N

g : [i : I][i = 0]N = f

is rejected.49 Note that however we can still define g as follows:

g′ : [i : I][i = 0]N = [i : I] f i

Type inference

Γ; Θ ` x⇒ lookupType(Γ, x) (Var)

Γ; Θ ` U⇒ U (Universe)

48See section 1.5.
49Even y′ : [i = 0]N = [i = 0→ Z, i = 1→ S Z] is rejected, as it makes no sense to write it

that way (compare with y).
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Γ; Θ ` f ⇒ closure([x : ty]e,Γ′) Γ; Θ ` a⇐ (ty)Γ′

Γ; Θ ` f a⇒ app(closure([x : ty]e,Γ′), (a)Γ) (App)

Γ; Θ ` f ⇒ [~ψ→ ~g]closure([x : ty]e,Γ′) Γ; Θ ` a⇐ (ty)Γ′

Γ; Θ ` f a⇒ [~ψ→ app(~g, (a)Γ)]app(closure([x : ty]e,Γ′), (a)Γ) (App-Restr)

Γ; Θ ` f ⇒ [ϕ]closure([x : ty]e,Γ′) Γ; Θ ` a⇐ (ty)Γ′

Γ; Θ ` f a⇒ [ϕ]app(closure([x : ty]e,Γ′), (a)Γ) (App-Partial)

Γ; Θ ` p⇒ closure(〈x : ty〉e,Γ′)
Γ; Θ ` p.1⇒ (ty)Γ′ (Sigma-1)

Γ; Θ ` p⇒ closure(〈x : ty〉e,Γ′)
Γ; Θ ` p.2⇒ (e)Γ′,x→(p.1)Γ

(Sigma-2)

Γ; Θ ` p⇒ [~ψ→ ~q]closure(〈x : ty〉e,Γ′)
Γ; Θ ` p.1⇒ [~ψ→ fst(~q)](ty)Γ′ (Sigma-1-Restr)

Γ; Θ ` p⇒ [~ψ→ ~q]closure(〈x : ty〉e,Γ′)
Γ; Θ ` p.2⇒ [~ψ→ snd(~q)](e)Γ′,x→(p.1)Γ

(Sigma-2-Restr)

Γ; Θ ` p⇒ [ϕ]closure(〈x : ty〉e,Γ′)
Γ; Θ ` p.1⇒ [ϕ](ty)Γ′ (Sigma-1-Partial)

Γ; Θ ` p⇒ [ϕ]closure(〈x : ty〉e,Γ′)
Γ; Θ ` p.2⇒ [ϕ](e)Γ′,x→(p.1)Γ

(Sigma-2-Partial)

Γ; Θ ` F ⇐ ty1 + ty2 → U
Γ; Θ ` t⇒ ty1 + ty2

Γ; Θ ` f1 ⇐ ([x : ty1] F (inl x))Γ

Γ; Θ ` f2 ⇐ ([x : ty2] F (inr x))Γ

Γ; Θ ` split F f1 f2 t⇒ (F t)Γ

(x = newVar(Γ))

(Split)
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Γ; Θ ` F ⇐ ty1 + ty2 → U

Γ; Θ ` t⇒ [~ψ→ ~t ](ty1 + ty2)

Γ; Θ ` f1 ⇐ ([x : ty1] F (inl x))Γ

Γ; Θ ` f2 ⇐ ([x : ty2] F (inr x))Γ

Γ; Θ ` split F f1 f2 t⇒ [~ψ→ split((F )Γ, (f1)Γ, (f2)Γ,~t) ](F t)Γ

(x = newVar(Γ))

(Split-Restr)

Γ; Θ ` F ⇐ ty1 + ty2 → U

Γ; Θ ` t⇒ [ϕ](ty1 + ty2)
Γ; Θ ` f1 ⇐ ([x : ty1] F (inl x))Γ

Γ; Θ ` f2 ⇐ ([x : ty2] F (inr x))Γ

Γ; Θ ` split F f1 f2 t⇒ [ϕ](F t)Γ
(x = newVar(Γ))

(Split-Partial)

Γ ` ϕ : F
Γ; Θ ` F ⇐ I→ U

Γ; Θ ` u⇐ ([x : I][ϕ] F x)Γ

Γ; Θ ` b⇐ ([ϕ→ u i0] F i0)Γ

Γ; Θ ` i0 ⇐ I
Γ; Θ ` i⇐ I

Γ; Θ ` comp F ϕ i0 u b i⇒ ([i = i0→ b | ϕ→ u i] F i)Γ
(x = newVar(Γ))

(Comp)

Γ; Θ ` N⇒ U (Nat)

Γ; Θ ` Z⇒ N (Zero)

Γ; Θ ` n⇐ N

Γ; Θ ` S n⇒ N (Succ)

Γ; Θ ` F ⇐ N→ U
Γ; Θ ` n⇐ N

Γ; Θ ` c0 ⇐ (F Z)Γ

Γ; Θ ` cs ⇐ ([m : N] F m→ F (S m))Γ

Γ; Θ ` ind F c0 cs n⇒ (F n)Γ
(m = newVar(Γ))

(Ind)

Γ; Θ ` F ⇐ N→ U

Γ; Θ ` n⇐ [~ψ→ ~m]N

Γ; Θ ` c0 ⇐ (F Z)Γ

Γ; Θ ` cs ⇐ ([m : N] F m→ F (S m))Γ

Γ; Θ ` ind F c0 cs n⇒ [~ψ→ ind((F )Γ, (c0)Γ, (cs)Γ, ~m)](F n)Γ

(m = newVar(Γ))

(Ind-Restr)
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Γ; Θ ` F ⇐ N→ U

Γ; Θ ` n⇐ [ϕ]N
Γ; Θ ` c0 ⇐ (F Z)Γ

Γ; Θ ` cs ⇐ ([m : N] F m→ F (S m))Γ

Γ; Θ ` ind F c0 cs n⇒ [ϕ](F n)Γ
(m = newVar(Γ))

(Ind-Partial)

Γ; Θ ` 0⇒ I (Interval-0)

Γ; Θ ` 1⇒ I (Interval-1)

Type checking

Γ; Θ ` ty ⇐ U Γ; Θ ` e⇐ (ty)Γ Γ, x : ty = e; Θ ` t⇐ A

Γ; Θ ` [x : ty = e]t⇐ A (Def)

Γ; Θ ` ty ⇐ U Γ, x : ty; Θ ` e⇐ U

Γ; Θ ` [x : ty]e⇐ U (Pi)

Γ, x : I; Θ ` e⇐ U

Γ; Θ ` [x : I]e⇐ U (Pi-I)

Γ; Θ ` ty ⇐ U Γ, x : ty; Θ ` e⇐ U

Γ; Θ ` 〈x : ty〉e⇐ U (Sigma)

Γ; Θ ` ty ⇐ U (ty)Γ ∼Θ
τ(Γ) (ty1)Γ1

Γ, x : ty, x→ v; Θ ` e⇐ app(closure([x1 : ty1]e1,Γ1)〉, v(ty1)Γ1 )

Γ; Θ ` [x : ty]e⇐ closure([x1 : ty1]e1,Γ1)
(v = newVar(Γ1))

(Abstraction)

Γ; Θ ` s⇐ (ty)Γ′ Γ; Θ ` t⇐ (e)Γ′,x→(s)Γ

Γ; Θ ` (s, t)⇐ closure(〈x : ty〉e,Γ′) (Pair)

Γ; Θ ` A⇐ U Γ; Θ ` B ⇐ U

Γ; Θ ` A+B ⇐ U (Sum)
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Γ; Θ ` t1 ⇐ A

Γ; Θ ` inl t1 ⇐ A + B (Inl)

Γ; Θ ` t2 ⇐ B

Γ; Θ ` inr t2 ⇐ A + B (Inr)

Γ ` ψi : F ϕ ∼Θ (ψ1 ∨ · · · ∨ ψn) Γ; Θ ` ti ⇐ [ψi]A (ti)Γ ∼
Θ,ψi∧ψj

τ(Γ) (tj)Γ

Γ ` [ψ1→ t1, . . . , ψn→ tn]⇐ [ϕ]A
(1 ≤ i, j ≤ n)

(System)

Γ ` ψi : F Γ; Θ ` A⇐ U

Γ; Θ ` [ψ1 ∨ · · · ∨ ψn]A⇐ U
(1 ≤ i ≤ n)

(Partial-U)

Γ; Θ, ϕ ` t⇐ A

Γ; Θ ` t⇐ [ϕ]A (Partial)

Γ; Θ ` A⇐ U Γ ` ψi : F Γ; Θ ` ti ⇐ [ψi](A)Γ

Γ; Θ ` [ψ1→ t1, . . . , ψn→ tn]A⇐ U
(1 ≤ i ≤ n)

(Restr-U)

Γ; Θ ` e⇐ A (e)Γ ∼Θ,ψi

τ(Γ) ti

Γ; Θ ` e⇐ [ψ1→ t1, . . . , ψn→ tn]A
(1 ≤ i ≤ n)

(Restr)

Γ ` e⇒ [ψ′]A′ ψ ≤Θ ψ′ A ∼Θ
τ(Γ) A′

Γ ` e⇐ [ψ]A (Weak-Partial)

Γ ` e⇒ [~ψ′→ ~t′]A′ [~ψ→ ~t] ∼Θ,ψ1∨···∨ψn

τ(Γ) [~ψ′→ ~t′] A ∼Θ
τ(Γ) A′

Γ ` e⇐ [~ψ→ ~t]A
(Weak-Restr)

Γ; Θ ` e⇒ A A ∼Θ
τ(Γ) A′

Γ; Θ ` e⇐ A′ (Infer)
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1.4 Evaluation

We now extend evaluation, first presented in section 1.1.4, to handle the new
cubical constructs.

We denote with (ϕ)Γ the substitution in the formula ϕ of the bindings stored
in Γ,50 which is thought as the evaluation of the formula ϕ.

(I)Γ = I
(0)Γ = 0

(1)Γ = 1

([~ψ→ ~M ])Γ =

{
(Mi)Γ if (ψi)Γ is true

[(~ψ)Γ→ ( ~M)Γ] otherwise

([ϕ]A)Γ = foldPartial
(
[(ϕ)Γ](A)Γ

)
([~ψ→ ~M ]A)Γ = foldRestr

(
[(~ψ)Γ→ ( ~M)Γ](A)Γ

)
(comp F ϕ i0 u b i)Γ = comp

(
Γ, F, ϕ, i0, u, b, i

)
Note than when evaluating systems, if at least a formula is true, the type-
checking assures that we can choose any value associated to a true formula,
being them all convertible to each other.

The evaluation function uses some helpers:

• The routine foldRestr collapses all the terms or values the form

[ ~ψ1→ ~M1] . . . [ ~ψn→ ~Mn]A,

where A is not a restriction type, to

[ ~ψ1→ ~M1, . . . , ~ψn→ ~Mn]A.

The routine foldPartial works analogously. This simplifies the type-
checker since we put restriction and partial types in a kind of normal
form, so that we don’t need explicit rules to handle this problem.

• simplify-nv gets as input a neutral value, and if its type is a restric-
tion type with a true formula, then the corresponding value is returned,
otherwise the value is left untouched. Note that simplify-nv does not

50This is used also for interval variables renaming, which is needed since, for example, if
q : Path A b c ≡ [i : I][i = 0→ b, i = 1→ c]A, then q j should be annotated with the type
[j = 0→ b, j = 1→ c]A.
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depend on the directions environment, and indeed simplify-nv is used
solely during evaluation.

simplify-nv(v[ψ1→t1,...,ψn→tn]A) = ti (if ψi is true)

simplify-nv(v) = v (otherwise)

Since we use foldRestr, the function simplify-nv need not be recur-
sive, as ti must be of type [ψ]A.

We now have to revisit the helpers introduced in section 1.1.4, handling the
possibility that the argument is a neutral value with a partial or restriction
type, which requires attention.

• app applied to f and a first checks if f is a closure, in which case it
evaluates it, otherwise f a must be a neutral application which gets
annotated with its type, handling the eventual partial or restriction type.
The need for simplify-nv is easily explained: suppose that p is neutral
with type Path A a b, that is [i : I][i = 0→ a, i = 1→ b]A. Then the
application app(p, 0) shall reduce to the neutral value (p 0) annotated
with the type [True→ a, False→ b]A, which means that (p 0) has to
be simplified to a. When the function is neutral with a restriction type,
e.g. f [ψ→g](A→B), then app(f , a) shall reduce to (f a) annotated with the
type [ψ→ app(g, a)]B; we invoke foldRestr to handle the case where
B is itself a restriction type.

app(closure([x : ty]e,Γ), a) = (e)Γ,x→a

app(f closure([x:ty]e,Γ), a) = simplify-nv
(
(f a)(e)Γ,x→a

)
app(f [~ψ→~g]closure([x:ty]e,Γ), a) = simplify-nv ((f a)v)

(where v = foldRestr([~ψ→ app(~g, a)](e)Γ,x→a))

A drawback of our unified syntax for λ- and Π-abstractions is that the
app function must handle both, which may be a bit confusing. We have
then to add the case where a restricted neutral Π-type is applied to an
argument.

app([~ψ→ ~g]f , a) = foldRestr([~ψ→ app(~g, a)]app(f , a))

Lastly we handle partial types, that is the cases of a system of functions,
and of a neutral function with partial type.

app([~ψ→ ~f ], a) = [~ψ→ app(~f , a)]

app(f [ϕ]closure([x:ty]e,Γ), a) = (f a)foldPartial([ϕ](e)Γ,x→a)
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• fst and snd return respectively the first and the second component of a
pair, if the value is not neutral; otherwise they annotate the whole value
with the corresponding type, handling the eventual partial or restriction
type. Similarly to app, the case of neutral values requires some expla-
nation: suppose that v is neutral with type ([ψ1 → a]A) ∗ ([ψ2 → b]B),
where ψ1 is true. Then fst(v) should be neutral with type ([ψ1→ a]A)
and so the whole value shall reduce to a; this is why we need to invoke
simplify-nv. Analogous is the case of fst(v), when ψ2 is true. When

v has a restriction type, e.g. [~ψ→ ~w](A ∗B) for simplicity, then fst(v)

shall have type [~ψ→ fst(~w)]A; we call foldRestr as A may be a re-
striction type too, and finally we still invoke simplify-nv for the same
reason as the simpler (i.e. non-restricted) case. Analogously for partial
types.

fst((v1,v2)) = v1

fst(vclosure(〈x:ty〉e,Γ)) = simplify-nv
(
(v.1)(ty)Γ

)
fst(v[~ψ→~w]closure(〈x:ty〉e,Γ)) = simplify-nv ((v.1)v)

(where v = foldRestr([~ψ→ fst(~w)](ty)Γ))

fst([~ψ→ ~v]) = [~ψ→ fst(~v)]

fst(v[ϕ]closure(〈x:ty〉e,Γ)) = (v.1)foldPartial([ϕ](ty)Γ))

snd((v1,v2)) = v2

snd(vclosure(〈x:ty〉e,Γ)) = simplify-nv
(
(v.2)(e)Γ,x→fst(v)

)
snd(v[~ψ→~w]closure(〈x:ty〉e,Γ)) = simplify-nv ((v.2)v)

(where v = foldRestr([~ψ→ snd(~w)](e)Γ,x→fst(v))

snd([~ψ→ ~v]) = [~ψ→ snd(~v)]

snd(v[ϕ]closure(〈x:ty〉e,Γ)) = (v.2)foldPartial([ϕ](e)Γ,x→fst(v)))

• split does by-case analysis on the given argument, if not neutral, oth-
erwise the whole term becomes neutral, handling the neutral cases anal-
ogously to the previous helpers.

split(F, f1, f2, inl v1) = app(f1,v1)

split(F, f1, f2, inr v2) = app(f2,v2)

split(F, f1, f2,v
A+B) = simplify-nv

(
(split F f1 f2 v)app(F,v)

)
split(F, f1, f2,v

[~ψ→~w]A+B) = simplify-nv ((split F f1 f2 v)v)
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(where v = foldRestr([~ψ→ split(F, f1, f2, ~w)]app(F,v)))

split(F, f1, f2, [~ψ→ ~v]) = [~ψ→ split(F, f1, f2, ~v)]

split(F, f1, f2,v
[ϕ](A+B)) = (split F f1 f2 v)foldPartial([ϕ]app(F,v))

• ind evaluates an induction by pattern-matching on the argument n; if n is
neutral, then the whole induction is neutral and so it gets annotated with
its type. The partial and restriction type cases are handled analogously.

ind(F, c0, cs, Z) = c0

ind(F, c0, cs, S m) = app(app(cs,m), ind(F, c0, cs,m))

ind(F, c0, cs,n
N) = simplify-nv

(
(ind F c0 cs n)app(F,n)

)
ind(F, c0, cs,n

[~ψ→ ~m]N) = simplify-nv ((ind F c0 cs n)v)

(where v = foldRestr([~ψ→ ind(F, c0, cs, ~m)]app(F,n))

ind(F, c0, cs, [~ψ→ ~n]) = [~ψ→ ind(F, c0, cs, ~n)]

ind(F, c0, cs,n
[ϕ]N) = ind(F, c0, cs,n)foldPartial([ϕ]app(F,n)))

• comp is more complex than the previous helpers:51 the main problem
with evaluating composition is that one must do pattern matching on the
type family F , which is inside an I-abstraction, and that means that one
must first introduce a fresh variable v : I, evaluate F v and then pattern
match; to call comp recursively, one must then read-back to get the new
type family. This naive approach is inefficient because of this problem,
but an efficient implementation has still to be engineered. Reporting
the actual working of comp would complicate a lot the notation, hence
we now give the rules for the various type formers only in an informal
way (i.e. only syntactical). We refer to chapter 3, section 3.4, for the
actual implementation. As already said, the definition is by structural
induction of the type former F inside the I-abstraction, i.e. [v : I]F .52

If the type family is a neutral value, as usual the whole composition
becomes neutral, annotated with its type. We denote with t(x/y) the
simultaneous substitution of all the free occurrences of x in t by y.

– F ≡ [x : A]B (withA /= I). Given b : [ϕ→ u i0][x : A(v/i0)]B(v/i0),
the result of the composition shall be the function

A(v/i)→ [i = i0→ b, ϕ→ u i0]B(x/yi, v/i)

51comp is also conceptually different from the others, as it is not a type eliminator.
52The definitions for Π, Σ and N formers are as in [CCHM15]; the others have been found

by the author while working on the implementation.
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yi→ comp ([v : I]B(x/ỹ)) ϕ i0 u
′ (b ỹ0) i

where

ỹ0 ≡ comp ([v : I]A) (False) i (I→ []) yi i0

ỹ ≡ comp ([v : I]A) (False) i (I→ []) yi v

u′ is obtained by applying the functions to ỹ inside the abstraction.53

Note that what we do is first transporting yi to get ỹ0 (the other
end at i0) and the whole filler ỹ, so that we obtain a value b ỹ0 in
B(v/i0) and we can do transport in B.

– F ≡ [x : I]B. Given b : [ϕ → u i0][x : I]B(v/i0), the result of the
composition shall be the function

I→ [i = i0→ b, ϕ→ u i0]B(v/i)

x→ comp ([v : I]B) ϕ i0 u
′ (b x) i

u′ is obtained by applying the functions to x inside the abstraction.

– F ≡ 〈x : A〉B. Given b : [ϕ → u i0]〈x : A(v/i0)〉B(v/i0), the
result of composition shall be a pair (c1, c2), i.e. composition is
done component-wise. We put:

comp ([v : I]〈x : A〉B) ϕ i0 u b i ≡ (c0, c1)

with

c1 ≡ comp ([v : I]A) ϕ i0 u1 (b.1) i

c̃1 ≡ comp ([v : I]A) ϕ i0 u1 (b.1) v

c2 ≡ comp ([v : I]B(x/c̃1)) ϕ i0 u2 (b.2) i

u1 and u2 are obtained from u by applying the projections inside
the abstraction.

• F ≡ A+B. Given b : [ϕ→ u i0](A(v/i0) +B(v/i0)), the composition is
done ‘inside the injection’ if the value is not neutral, otherwise the whole
composition becomes neutral.

comp ([v : I]A+B) ϕ i0 u (inl b) i ≡ inl
(
comp ([v : I]A) ϕ i0 u

′ b i
)

comp ([v : I]A+B) ϕ i0 u (inr b) i ≡ inr
(
comp ([v : I]B) ϕ i0 u

′′ b i
)

u′ and u′′ are obtained from u by removing respectively the left and right
outermost injection inside the abstraction.54

53In other words, u′ ≡ [x : I] u x ỹ.
54If the base point is of the form inl b, then the body of u shall be a system of the form

[~ψ→ inl ~v], due to type-checking. Similarly for inr.
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• F ≡ N. Given b : [ϕ→ u i0]N, the composition is done by induction if the
value is not neutral, otherwise the whole composition becomes neutral.

comp (I→ N) ϕ i0 u Z i ≡ Z

comp (I→ N) ϕ i0 u (S b) i ≡ S
(
comp (I→ N) ϕ i0 u

′ b i
)

u′ is obtained from u by removing the left-most S inside the abstraction.55

• F ≡ [~ψ]A (with i /∈ vars(~ψ)). The constraint on the formula requires

some explanation: if we allowed i ∈ vars(~ψ), then by considering the
family F ≡ [i = 0]N, we could transport Z from F (i/0) ≡ N to F (i/1) ≡
⊥, which is inconsistent.56

We define the composition as a system, doing a composition under each
conjunction of the formula.

comp ([v : I][~ψ]A) ϕ i0 u b i

≡ [~ψ→ comp ([v : I] A) ϕ i0 u b i]

• F ≡ [~ψ → ~w]A (with i /∈ vars(~ψ)). As the case of partial types, the

constraint on the formula is necessary:57 if we allowed i ∈ vars(~ψ), then
by considering the family F ≡ [i = 1 ∧ j = 0→ true, i = 1 ∧ j = 1→
false]bool, we could transport true from F (i/0) ≡ []bool ≡ bool58

to F (i/1) ≡ [j = 0 → true, j = 1 → false]bool ≡ ⊥,59 which is

55u has to be of that form, for the same reason explained for coproducts.
56With ⊥ or empty we denote the empty type. The transport function transp has type

[F : I → U] F 0 → F 1, defined by [F : I → U][a : F 0] comp F (False) 0 (I → []) a 1, i.e.
composition in a trivial (1-dimensional) hypercube.

57Note that the check on the variable should be done during type-checking, but this
is not at all trivial to do; it is not sufficient to check it just when type-checking a comp

expression: suppose that transp is defined as in the footnote 56; then when type-checking
transp ([i : I][i = 0]N) Z, the program only checks that ([i : I][i = 0]N) has type I → U, as
required by the type of transp, which is true. This problem is not present in the theory
of [CCHM15], as there all types are fibrant, i.e. admit a composition operation. Since
composition is only experimental in this thesis, we have not addressed this problem, which
could be a direction for future work (along with the implementation of composition for the
universe).

58Do not confuse []bool, which is a restriction type with no constraints, with the partial
type with a false formula, which is equivalent to the empty type.

59This is the empty type because of disjointness of constructors. It can be proved for
coproducts (for us, bool is unit + unit) as explained in [Uni13] 2.12, with small changes
(some equalities that are judgmental in HOTT need to be proved as propositional in CTT,
due to the fact that path types do not satisfy the computation rule for path induction
judgmentally). See the appendix C for the proof using our implementation.
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inconsistent. If the constraint is fulfilled, we put:

comp ([v : I][~ψ→ ~w]A) ϕ i0 u b i

≡ comp ([v : I] A) (ϕ ∨ ~ψ) i0 [j : I][ϕ→ u j, ~ψ→ ~w(v/j)] b i

with j a fresh variable.

Using the above computational rules for composition one may easily derive the
rule for path types as given in [CCHM15], i.e.

comp([v : I] Path A w1 w2) ϕ i0 u p0 i

≡ [x : I] comp([v : I] A) (ϕ ∨ x = 0 ∨ x = 1) i0

[j : I][ϕ→ u j x, x = 0→ w1(v/j), x = 1→ w2(v/j)] (p0 x) i

with x and j fresh variables.

Reading back

We now extend straightforwardly the read-back function R introduced in sec-
tion 1.1.4 to handle the new syntactical constructs.

Rns(I) = I
Rns(0) = 0

Rns(1) = 1

Rns([~ψ→ ~M ]) = [~ψ→ Rns( ~M)]

Rns([ϕ]A) = foldPartial
(
[ϕ]Rns(A)

)
Rns([~ψ→ ~M ]A) = foldRestr

(
[~ψ→ Rns( ~M)]Rns(A)

)
Rns(comp F ϕ i0 u b i) = comp Rns(F ) ϕ Rns(i0) Rns(u) Rns(b) Rns(i)

1.5 αη-conversion

The function · ∼Θ
ns · tests α- and η-conversion between two values,60 given

a directions environment Θ; it keeps track of the list of already used names,
to avoid conflicts when reading back closures. The rules assume that the two
values being tested have the same type, which means that conversion may be
tested between two values only after type-checking.

60It is natural to implement conversion for values and not for terms, because values, unlike
terms, are in a canonical (i.e. β-) normal form.
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There is one point which requires special attention: even if values are in
canonical form (that’s the point of evaluation), it may happen that in sys-
tems [ψ1→ v1, . . . , ψn→ vn] and neutral values of the form kA[ψ1→v1,...,ψn→vn],
one of the formulas ψi becomes true under dirs, so that they shall be reduced
to vi.

Non-neutral values

U ∼Θ
ns U

(ty)Γ ∼Θ
ns (ty′)Γ′ (e)Γ,x→v(ty)Γ ∼Θ

ns,v (e′)
Γ′,y→v(ty′)Γ′

closure([x : ty]e,Γ) ∼Θ
ns closure([y : ty′]e′,Γ′)

(v = newVar(ns))

(e)Γ,x→v(ty)Γ ∼Θ
ns,v app(v2, v

(ty)Γ)

closure([x : ty]e,Γ) ∼Θ
ns v2

(v = newVar(ns))

app(v1, v
(ty)Γ) ∼Θ

ns,v (e)Γ,x→v(ty)Γ

v1 ∼Θ
ns closure([x : ty]e,Γ)

(v = newVar(ns))

(ty)Γ ∼Θ
ns (ty′)Γ′ (e)Γ,x→v(ty)Γ ∼Θ

ns,v (e′)
Γ′,y→v(ty′)Γ′

closure(〈x : ty〉e,Γ) ∼Θ
ns closure(〈y : ty′〉e′,Γ′)

(v = newVar(ns))

s ∼Θ
ns t

s.1 ∼Θ
ns t.1

s ∼Θ
ns t

s.2 ∼Θ
ns t.2

s ∼Θ
ns s′ t ∼Θ

ns t′

(s, t) ∼Θ
ns (s′, t′)
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fst(v) ∼Θ
ns s snd(v) ∼Θ

ns t

v ∼Θ
ns (s, t)

s ∼Θ
ns fst(v) t ∼Θ

ns snd(v)

(s, t) ∼Θ
ns v

A ∼Θ
ns A′ B ∼Θ

ns B′

A + B ∼Θ
ns A′ + B′

v ∼Θ
ns v′

inl v ∼Θ
ns inl v′

v ∼Θ
ns v′

inr v ∼Θ
ns inr v′

N ∼Θ
ns N Z ∼Θ

ns Z

n ∼Θ
ns n′

S n ∼Θ
ns S n′

I ∼Θ
ns I 0 ∼Θ

ns 0 1 ∼Θ
ns 1

ψi ∼Θ True ti ∼Θ
ns v

[ψ1→ t1, . . . , ψn→ tn] ∼Θ
ns v

ψi ∼Θ True v ∼Θ
ns ti

v ∼Θ
ns [ψ1→ t1, . . . , ψn→ tn]

(ψ1 ∨ · · · ∨ ψn) ∼Θ (ψ′1 ∨ · · · ∨ ψ′n) ti ∼
Θ,ψi∧ψ′j
ns t′j

[ψ1→ t1, . . . , ψn→ tn] ∼Θ
ns [ψ′1→ t′1, . . . , ψ

′
m→ t′m]

(1 ≤ i ≤ n, 1 ≤ j ≤ m)61

ϕ ∼Θ ϕ′ A ∼Θ
ns A′

[ϕ]A ∼Θ
ns [ϕ′]A′

61With (1 ≤ i ≤ n, 1 ≤ j ≤ m) we mean that the assumptions must hold for any such i
and j.
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[ψ1→ t1, . . . , ψn→ tn] ∼Θ
ns [ψ′1→ t′1, . . . , ψ

′
m→ t′m] A ∼Θ

ns A′

[ψ1→ t1, . . . , ψn→ tn]A ∼Θ
ns [ψ′1→ t′1, . . . , ψ

′
m→ t′m]A′

Neutral values

x ∼Θ
ns x

(x = y) ∼Θ True

xI ∼Θ
ns yI

(x = 0) ∼Θ True

xI ∼Θ
ns 0

(x = 1) ∼Θ True

xI ∼Θ
ns 1

(x = 0) ∼Θ True

0 ∼Θ
ns xI

(x = 1) ∼Θ True

1 ∼Θ
ns xI

f ∼Θ
ns f ′ a ∼Θ

ns a′

f a ∼Θ
ns f ′ a′

F ∼Θ
ns F′ c0 ∼Θ

ns c′0 cs ∼Θ
ns c′s n ∼Θ

ns n′

ind F c0 cs n ∼Θ
ns ind F′ c′0 c′s n′

ty ∼Θ
ns ty′ f1 ∼Θ

ns f ′1 f2 ∼Θ
ns f ′2 x ∼Θ

ns x′

split ty f1 f2 x ∼Θ
ns split ty′ f ′1 f ′2 x′

F ∼Θ
ns F′ ϕ ∼Θ ϕ′ i0 ∼Θ

ns i′0 u ∼Θ
ns u′ b ∼Θ

ns b′ i ∼Θ
ns i′

comp F ϕ i0 u b i ∼Θ
ns comp F′ ϕ′ i′0 u′ b′ i′

ψi ∼Θ True ti ∼Θ
ns v

k[ψ1→t1,...,ψn→tn]A ∼Θ
ns v

ψi ∼Θ True v ∼Θ
ns ti

v ∼Θ
ns k[ψ1→t1,...,ψn→tn]A

ψi /∼Θ True ψ′j /∼Θ True k ∼Θ
ns k′

k[ψ1→t1,...,ψn→tn]A ∼Θ
ns k′[ψ

′
1→t′1,...,ψ

′
m→t′m]A′

(1 ≤ i ≤ n)
(1 ≤ j ≤ m)

proofIrrelevantΘ(A)

kA ∼Θ
ns k′A

′
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Proof irrelevance

When two values have a type that can be simplified (i.e. a restriction type
with a true formula), then both values shall reduce to the same value and
so they are αη-equivalent.62 We generalize this by introducing a predicate
called proofIrrelevant: when we test αη-equivalence between two neutral
values, if their type is proof irrelevant it means that they shall reduce to the
same value, and so they are automatically convertible (from this comes the
name ‘proof irrelevance’, since we don’t have to look inside the value/proof).

ψi ∼Θ True

proofIrrelevant([ψ1→ t1, . . . , ψn→ tn]A)

proofIrrelevant(A)

proofIrrelevant([ψ1→ t1, . . . , ψn→ tn]A)

proofIrrelevant((e)Γ,x→v(ty)Γ )

proofIrrelevant(closure([x : ty]e,Γ))
(v = newVar(Γ))

proofIrrelevant((ty)Γ) proofIrrelevant((e)Γ,x→v(ty)Γ )

proofIrrelevant(closure(〈x : ty〉e,Γ))
(v = newVar(Γ))

1.6 Metatheoretical results

We now extend the results given for the basic type theory in section 1.1.5,
handling the cubical constructs. As in the simpler theory, for the theoretical
study we use an infinite hierarchy of cumulative universes instead of a single
(inconsistent) universe, and we forget about the composition operation, i.e.
we augment the basic type theory only with the interval, formulas, systems,
partial and restriction types. This type theory is very similar the one described
in [GSA+22], except for the lack of explicit partial types, and we think that
the normalization result proved there could be easily adapted to our theory.

Claim 1 (Strong normalization).
Every term reduces to an unique normal term.

62This works because when we test αη-equivalence, the two values being tested are as-
sumed to have the same type.
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Strong normalization implies the following results, albeit they are clear from
the given implementation.

Theorem 4 (Decidability of αη-conversion).
For any two terms of the same type, it is decidable whether they are αη-
equivalent or not.

Theorem 5 (Decidability of type-checking).
Given a context Γ and terms a and A, it is decidable whether Γ ` a⇐ A.

As for the basic type theory, the canonicity property shall hold (i.e. that func-
tions N→ N, when applied to a numeral, reduce to a numeral in a computable
way), which is particularly interesting for the full cubical type theory (i.e. ex-
tended with the composition operation for all types), so that a constructive
justification of the univalence axiom is given. Canonicity for the usual presen-
tation of cubical type theory, that is without explicit partial and restriction
type, is given in [Hub16].

1.7 Examples

We can now show some examples exploiting the full theory developed so far.

1.7.1 Equivalence of two product types

First of all, we show how to model the unit type, as promised in section 1.1.6.
For the unit type we choose [True → Z]N, i.e. the subtype of naturals which
‘contain’ only Z. As we don’t have a constant True in the syntax, we introduce
a dummy variable i which we don’t use anywhere else, so that True can be
replaced by i = i.63 The induction principle is then trivial to prove: if
x : unit, then x is convertible to Z and so C tt is convertible to C x, which
is the type of p. We also prove by induction the propositional uniqueness
principle for unit.

i : I
unit : U = [ i = i→ Z]N

tt : unit = Z

unitInd : [C : unit→ U] C tt→ [x : unit] C x

= [C : unit→ U][p : C tt][x : unit] p

unitEq : [x : unit] Path unit tt x

63We chose not to add the constant True to the language, as it would be useful only in
this case, and it would complicate the implementation.
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= [x : unit] unitInd ([y : unit] Path unit tt y) (refl unit tt) x

As remarked in the introduction, we can prove function extensionality, even in
the dependent case.

funext : [A,B : U][f, g : A→ B]

([x : A] Path B (f x) (g x))→ Path (A→ B) f g

= [A,B : U][f, g : A→ B][p : [x : A] Path B (f x) (g x)]

[i : I][x : A] (p x i)

dfunext : [A : U][B : A→ U][f, g : [x : A] B x]

([x : A] Path (B x) (f x) (g x))→ Path ([x : A] B x) f g

= [A : U][B : A→ U][f, g : [x : A] B x]

[p : [x : A] Path (B x) (f x) (g x)][i : I][x : A] (p x i)

The first use of composition is in proving transport,64 which can be thought
as the case of extension in a 1-cube, i.e. a structure with only two points. We
first derive the function transp, which is very general, and then we use it to
define transport in the usual formulation.

transp : [F : I→ U] F 0→ F 1

= [F : I→ U][a : F 0] comp F () 0 (I→ []) a 1

transport : [B : U][P : B → U][x, y : B] Path B x y → P x→ P y

= [B : U][P : B → U][x, y : B][pB : Path B x y]

[u : P x] transp ([i : I] P (pB i)) u

Using (dependent) function extensionality, we can prove the propositional η-
law and the induction/elimination principle for prod types (introduced in sec-
tion 1.1.6).

prodEta : [A,B : U][p : prod A B] Path (prod A B)

(couple A B (pi1 A B p) (pi2 A B p)) p

= [A,B : U][p : prod A B] dfunext bool ([x : bool] boolRec U A B x)

(couple A B (pi1 A B p) (pi2 A B p)) p

(boolInd ([y : bool] Path (boolRec U A B y)

(couple A B (pi1 A B p) (pi2 A B p) y) (p y))

(refl A (p false)) (refl B (p true)))
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prodInd : [A,B : U][C : prod A B → U]

([a : A][b : B] C (couple A B a b))→ [p : prod A B] C p

= [A,B : U][C : prod A B → U][f : [a : A][b : B] C (couple A B a b)]

= [p : prod A B] transport (prod A B) C

(couple A B (pi1 A B p) (pi2 A B p)) p (prodEta A B p)

(f (pi1 A B p)(pi2 A B p))

We now want to prove that the built-in product type A ∗ B and the derived
one prod A B are equivalent, in the sense of [Uni13] 2.4. First we give the
basic definitions.

id : [A : U] A→ A = [A : U][x : A] x

fcomp : [A,B,C : U][f : B → C][g : A→ B] A→ C

= [A,B,C : U][f : B → C][g : A→ B][a : A] f (g a)

isEquiv : [A,B : U] (A→ B)→ U

= [A,B : U][f : A→ B]

(〈g : B → A〉 Path (B → B) (fcomp B A B f g) (id B))

∗ (〈h : B → A〉 Path (A→ A) (fcomp A B A h f) (id A))

equiv : U→ U→ U = [A,B : U]〈f : A→ B〉 isEquiv A B f

Now we define two functions to and from, and then we prove that they are
one the inverse of the other.

to : [A,B : U] A ∗B → prod A B

= [A,B : U][p : A ∗B] couple A B (p.1) (p.2)

from : [A,B : U] prod A B → A ∗B
= [A,B : U][p : prod A B] (pi1 A B p, pi2 A B p)

First we prove that applying from and then to is (propositionally) pointwise
equal to the identity.

to from′ : [A,B : U][p : prod A B] Path (prod A B) (to A B (from A B p)) p

= [A,B : U] prodInd A B
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([p′ : prod A B] Path (prod A B) (to A B (from A B p′)) p′)

([a : A][b : B] refl (prod A B) (couple A B a b))

And then we use function extensionality to get half of what we need to prove
the aforementioned equivalence.

to from : [A,B : U] Path (prod A B → prod A B)

(fcomp (prod A B) (A ∗B) (prod A B) (to A B) (from A B))

(id (prod A B))

= [A,B : U] funext (prod A B) (prod A B)

(fcomp (prod A B) (A ∗B) (prod A B) (to A B) (from A B))

(id (prod A B)) (to from′ A B)

Vice versa now we show that applying first to and then from is (proposition-
ally) pointwise equal to the identity.

from to′ : [A,B : U][p : A ∗B] Path (A ∗B) (from A B (to A B p)) p

= [A,B : U] recSigma A B

([p′ : A ∗B] Path (A ∗B) (from A B (to A B p′)) p′)

([a : A][b : B] refl (A ∗B) (a, b))

And then we can prove the other half of the equivalence.

from to : [A,B : U] Path (A ∗B → A ∗B)

(fcomp (A ∗B) (prod A B) (A ∗B) (from A B) (to A B))

(id (A ∗B))

= [A,B : U] funext (A ∗B) (A ∗B)

(fcomp (A ∗B) (prod A B) (A ∗B) (from A B) (to A B))

(id (A ∗B)) (from to’ A B)

Finally, using what we proved till now, we get the equivalence between the two
product types.

prodEquiv : [A,B : U] equiv (A ∗B) (prod A B)

= [A,B : U] (to A B,

((from A B, to from A B), (from A B, from to A B)))

64We follow the notation of [Uni13] 2.3.
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1.7.2 Path operations

We have already defined transport and the concatenation operation of two
paths (see section 1.7); we give now some more examples, following [Ben21],
beginning with the path inversion operation, which we derive by composition.

i

k b a

a a

p j

p−1 i

Figure 1.2: Inversion of a path, p→ p−1.

inv : [A : U][a, b : A] Path A a b→ Path A b a

= [A : U][a, b : A][p : Path A a b][i : I]
comp (I→ A) (i = 0 ∧ i = 1) 0 ([j : I][i = 0→ p j, i = 1→ a]) a 1

We shall now prove the right and left unit laws; the former is easier, since it is
already given by the filler of the composition operation (when q ≡ refl A b),
which we basically already derived in section 1.2.2.

i

k
a c

a b
p i

q j

(p � q) i

Figure 1.3: Concatenation of two paths.

concatFill : [A : U][a, b, c : A][p : Path A a b][q : Path A b c]

[i, j : I][j = 0→ p i, i = 0→ a, i = 1→ q j]A
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= [A : U][a, b, c : A][p : Path A a b][q : Path A b c][i, j : I]
comp (I→ A) (i = 0 ∨ i = 1) 0

([j′ : I][i = 0→ a, i = 1→ q j′ ]) (p i) j

Therefore to get rightUnit we only have to swap the dimensions and specialize
q to refl A b.

rightUnit : [A : U][a, b, c : A][p : Path A a b]

Path (Path A a b) p (concat A a b b p (refl A b))

= [A : U][a, b, c : A][p : Path A a b][i, j : I]
concatFill A a b b p (refl A b) j i

The derivation of the left unit law is more intricate; we shall first state a
lemma, i.e. obtain the filler of a composition figure which we will need later.
The idea is to mimic the meet connection of the interval which is built-in in
De Morgan CTT but not in the Cartesian one,65 that is we want a function
p (− ∨−) given by the figure 1.4.

i

j a b

a a

p k

p i

Figure 1.4: Weak meet.

We call it ‘weak meet’ because the computational rules hold only up to homo-
topy and not judgmentally. To derive it, we need a 2-dimensional composition,
so we have to work on a 3-dimensional hypercube; putting the square we want
to obtain on the j = 1 face, we compose from j = 0 to j = 1, defining all
the other faces of the cube as reflexivity apart from the i = 1 and k = 1 faces
which are given by the filler of concat, as one may check by comparing with
the figure 1.3.

weakMeet : [A : U][a, b : A][p : Path A a b][i, k : I]
65The ‘De Morgan’ version of cubical type type [CCHM15], has also operations on the

interval, called connections (∧,∨ : I→ I→ I) and reversal ( : I→ I); the ‘Cartesian’ version
[ABC+21] does not include them, but has the diagonal constraints.
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i

k

j

a a

a b

a a

a a

p k

p i
(reflAa�p) j

Figure 1.5: Composition for weakMeet.

[i = 0→ a, i = 1→ p k, k = 0→ a, k = 1→ p i]A

= [A : U][a, b : A][p : Path A a b][i, k : I]
comp (I→ A) (i = 0 ∨ i = 1 ∨ k = 0 ∨ k = 1) 0

([j : I][i = 0 → a,

i = 1 → concatFill A a a b (refl A a) p j k,

k = 0→ a,

k = 1→ concatFill A a a b (refl A a) p j i])

a 1

Note that the type of weakMeet can be seen as a dependent path between
refl A a and p, as they both start at a, and their endpoint follows p i.

PathD : [A : I→ U] A 0→ A 1→ U

= [A : I→ U][a0 : A 0][a1 : A 1][i : I][i = 0→ a0, i = 1→ a1]A i

weakMeetDP : [A : U][a, b : A][p : Path A a b]

PathD ([i : I] Path A a (p i)) (refl A a) p

Turning back to the left unit law, as before we work in a 3-dimensional hy-
percube, with the j = 1 face (which is the one that we want to obtain with
composition) being a path between p (at k = 0) and refl A a � p (at k = 1).
We complete the cube with the filler of the inverse on the j = 0 face, reflexivity
for the i = 0 face, the filler of concatenation on the k = 1 face, p i on the
k = 0 face and finally a term γ, which we shall derive again by composition,
on the i = 1 face.
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i

k

j

a a

a b

a b

a b
p i

p i

(refl A a � p) i
p j

p−1 k

Figure 1.6: Composition for the left unit law.

leftUnit : [A : U][a, b, c : A][p : Path A a b]

Path (Path A a b) p (concat A a a b (refl A a) p)

= [A : U][a, b, c : A][p : Path A a b][k, i : I]
comp (I→ A) (i = 0 ∨ i = 1 ∨ k = 0 ∨ k = 1) 0

([j : I][i = 0 → a,

i = 1 → gamma A a b p j k,

k = 0→ p i,

k = 1→ concatFill A a a b (refl A a) p i j])

(invFill A a b p k i) 1

We now show how to derive the square γ; as usual we work in a 3-dimensional
hypercube (figure 1.7), defining its sides using the faces we already have at
disposal.

gamma : [A : U][a, b : A][p : Path A a b][k, i : I]
[k = 0→ inv A a b p i, k = 1→ b, i = 0→ b, i = 1→ p k]A

= [A : U][a, b : A][p : Path A a b][k, i : I]
comp (I→ A) (i = 0 ∨ i = 1 ∨ k = 0 ∨ k = 1) 0

([j : I][i = 0 → p j,

i = 1 → weakMeet A a b p j k,

k = 0→ invFill A a b p i j,

k = 1→ p j])

a 1
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i

k

j

a a

b b

a a

b a

p k

p−1 i

p j

p j

p j

Figure 1.7: Composition for γ.

As a last example, we show how to derive the induction rule for path types,
which asserts that for each predicate C : [x : A] Path A a x → U, from
c : C a (refl A a) one may get C x p for each x : A and p : Path A a x.
The idea is simply to transport c along a ‘type line’ C a (refl A a)→ C x p,
that is we have to find a D : I → U such that D 0 ≡ C a (refl A a) and
D 1 ≡ C x p. Using the weak meet operation, we choose

D ≡ [i : I] C (p i) ([j : I] p (i ∧ j)),

so that

D 0 ≡ C (p 0) ([j : I] p (0 ∧ j)) ≡ C a ([j : I] a) ≡ C a (refl A a),

D 1 ≡ C (p 1) ([j : I] p (1 ∧ j)) ≡ C x ([j : I] p j) ≡ C x p

Therefore, we obtain path induction.

pathInd : [A : U][a : A][C : [x : A] Path A a x→ U]

[x : A][p : Path A a x] C a (refl A a)→ C x p

= [A : U][a : A][C : [x : A]Path A a x→ U]

[x : A][p : Path A a x][c : C a (refl A a)]

transp ([i : I] C (weakMeet A a x p i 1)

([j : I] weakMeet A a x p i j)) c

Using similar ideas, it is also possible to derive the propositional computational
rule for path induction, which is shown in [Ben21].



Chapter 2

Semantics

In this chapter we study the semantics of dependent type theory with partial
elements. First we introduce the notion of ‘categories with families’ [Hof97],
which is an abstract semantics based on category theory and is now the de
facto standard in type theory semantics. Most interpretations of dependent
type theory (e.g. groupoid [HS96], simplicial [KL21], cubical [CCHM15]) can
be seen as particular cases of the aforementioned abstract semantics. We
also describe presheaf models, that is categories with families induced by the
category of presheaves over a base category. The category of cubical sets (cf.
section 2.3) is an example of a presheaf category. Lastly, we show how to model
partial and restriction types in cubical sets and we define an interpretation of
the syntax, stating a soundness theorem.

2.1 Categories with families

First of all we define the category of families of sets, which is used to model
dependency.

Definition 2.1 (Fam). The category Fam of families of sets is defined by:

1. Objects of the form (A,B), where A is a set and B = (Ba)a∈A is a family
of sets indexed by A.

2. Morphisms of the form (f, g) : (A,B)→ (A′, B′), where f : A→ A′ is a
function and g = {ga : a ∈ A} is a family of functions ga : Ba → B′f(a)

indexed by A. Composition, for (f 1, g1) : (A,B)→ (A′, B′) and (f 2, g2) :
(A′, B′)→ (A′′, B′′), is defined by (f 2 ◦ f 1, g′), with g′a = g2

f1(a) ◦ g1
a.

47
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Before giving the main definition, let us fix the postfix notation for the com-
position of functions, i.e. writing fg for g ◦ f , which will make the notation
more intuitive as morphisms in CwFs are substitutions.

Definition 2.2 (CwF). A category with families (CwF) is given by:

1. A category C with objects Γ,∆, . . . called contexts, morphisms σ, τ, . . .
called substitutions and a terminal object 1.66 We write Γ s̀ to mean
that Γ is a context of C.67

2. A functor F : Cop → Fam. Given a context Γ, we write the indexed
family F(Γ) as (Type(Γ), (Term(Γ;A))A∈Type(Γ)). If A ∈ Type(Γ), we say
that A is a type in context Γ and write Γ s̀ A; if a ∈ Term(Γ;A), we
say that a is a term of type A in context Γ and write Γ s̀ a : A. For the
morphisms of C, given a substitution σ : ∆ → Γ, contravariance yields
F(σ) : F(Γ) → F(∆), so F acts on types Γ s̀ A as ∆ s̀ Aσ and on
terms Γ s̀ a : A as ∆ s̀ aσ : Aσ. Since F is a functor, we also have:

A1 = A, (Aσ)τ = A(στ), a1 = a, (aσ)τ = a(στ).

3. An operation of context extension: if Γ s̀ A, then there exists a context
Γ.A with a substitution pΓ,A : Γ.A → Γ and a term Γ.A s̀ qΓ,A : ApΓ,A

such that for each context ∆, substitution σ : ∆ → Γ and term ∆ s̀ a :
Aσ, there exists a substitution (σ, a) : ∆→ Γ.A such that:

pΓ,A(σ, a) = σ, qΓ,A(σ, a) = a, (σ, a)τ = (στ, aτ), (pΓ,A, qΓ,A) = 1Γ.A.

Usually we will simply write p and q if Γ and A are clear.

The definitions given above for a CwF can be presented as rules, and this is
the notation we will use from now on. Pay attention not to confuse them with
the formal syntactical rules of type theory; that’s why we use the symbol s̀

(‘s’ is short for ‘semantics’).

• Context formation:

1 s̀

Γ s̀ Γ s̀ A
Γ.A s̀

• Substitution in types and terms:

Γ s̀ A σ : ∆→ Γ
∆ s̀ Aσ

Γ s̀ a : A σ : ∆→ Γ
∆ s̀ aσ : Aσ

66We denote by 1A, or even by 1, the constant substitution A→ A.
67C will always be clear from the context.
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• Context manipulation:

Γ s̀ A
p : Γ.A→ Γ

Γ s̀ A
Γ.A s̀ q : Ap

Γ s̀ A ∆ s̀ a : Aσ σ : ∆→ Γ

(σ, a) : ∆→ Γ.A

Using these rules, we can derive the first ‘operation’, which is substitution with
a term, as shown by the following remark.

Remark 2.3 (Substitution by a term). If we have an element Γ s̀ a : A
and a dependent type over A, i.e. Γ.A s̀ B, then there is a ‘substitution by
a’ operation in the CwF; indeed, given the identity substitution 1 : Γ → Γ,
using the context extension property we can form (1, a) : Γ → Γ.A, usually
denoted by [a] : Γ→ Γ.A, which gives Γ s̀ B[a]. Similarly for terms, i.e. from
Γ.A s̀ b : B we obtain Γ s̀ b[a] : B[a].

The following is a technical remark which we will use in the subsequent argu-
ments; it allows to extend a substitution.

Remark 2.4. If we have a type Γ s̀ A and a substitution σ : ∆→ Γ, then we
can find a composition ∆.Aσ → Γ.A as follows: first we form σp∆,Aσ : ∆.Aσ →
Γ, with ∆.Aσ s̀ q∆,Aσ : Aσp∆,Aσ; then we use the context comprehension
property to get (σp∆,Aσ, q∆,Aσ) : ∆.Aσ → Γ.A.

We now explain how to model type formers in a CwF, by first defining Π-types.

Definition 2.5 (Π-types). A CwF supports Π-types if the following rules are
admissible:68

Γ s̀ A Γ.A s̀ B
Γ s̀ ΠAB

Γ.A s̀ b : B
Γ s̀ λ b : ΠAB

Γ s̀ u : ΠAB Γ s̀ a : A

Γ s̀ app(u, a) : B[a]

and they satisfy the β-rule

app(λ b, a) = b[a]

and the laws for commutation with substitutions

(ΠAB)σ = ΠAσB(σp, q), (λ b)σ = λ b(σp, q), app(u, a)σ = app(uσ, aσ).

Remark 2.6. The above three equations can be justified by the following con-
siderations,69 given σ : ∆→ Γ.

68For example, stating that the first rule is admissible means that for each pair of types
A ∈ Type(Γ) and B ∈ Type(Γ.A), there is a type ΠAB ∈ Type(Γ) in the CwF.

69For brevity we do this only for the Π-type former, as it can done analogously for the
others type formers.
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• Given a derivation
Γ s̀ A Γ.A s̀ B

Γ s̀ ΠAB

then we can form

Γ s̀ A
∆ s̀ Aσ

Γ.A s̀ B

∆.Aσ s̀ B(σp, q)

∆ s̀ ΠAσB(σp, q)

which is exactly how we defined (ΠAB)σ.

• Given a derivation
Γ.A s̀ b : B

Γ s̀ λ b : ΠAB

then we can form

Γ.A s̀ b : B

∆.Aσ s̀ b(σp, q) : B(σp, q)

∆ s̀ λ b(σp, q) : ΠAσB(σp, q)

The last line is the same as ∆ s̀ (λ b)σ : (ΠAB)σ.

• Given a derivation
Γ s̀ u : ΠAB Γ s̀ a : A

Γ s̀ app(u, a) : B[a]

then we can form

Γ s̀ u : ΠAB

∆ s̀ uσ : ΠAσB(σp, q)
Γ s̀ a : A

∆ s̀ aσ : Aσ

∆ s̀ app(uσ, aσ) : B(σp, q)[a]

but B(σp, q)[aσ] = B(σp, q)(1, aσ) = B(σp(1, aσ), q(1, aσ)) = B(σ, aσ),
meaning that the last line in the derivation is the same as ∆ s̀ (app(u, a))σ :
B[a]σ, since B[a]σ = B(1, a)σ = B(1σ, aσ) = B(σ, aσ) too.

Similarly to Π-types, we now introduce Σ-types, whose definition is a bit sim-
pler.

Definition 2.7 (Σ-types). A CwF supports Σ-types if the following rules are
admissible:

Γ s̀ A Γ.A s̀ B
Γ s̀ ΣAB

Γ s̀ a : A Γ s̀ b : B[a]

Γ s̀ 〈a, b〉 : ΣAB
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Γ s̀ u : ΣAB
Γ s̀ π1u : A

Γ s̀ u : ΣAB

Γ s̀ π2u : B[π1u]

and they satisfy the β-rules

π1〈a, b〉 = a, π2〈a, b〉 = b

and the laws for commutation with substitutions

(ΣAB)σ = Σ(Aσ)(B(σp, q)), 〈a, b〉σ = 〈aσ, b(σp, q)〉,
(π1u)σ = π1(uσ), (π2u)σ = π2(uσ).

One can define analogously the rules for the other type formers, as coproducts,
naturals, etc. For brevity, here and in the following sections, we treat only the
case of Π and Σ types.

Lastly, we discuss universes in CwFs. A universe contains codes for types,
with two functions to get codes from actual types (encoding) and vice versa
(decoding).70

Definition 2.8 (Semantic universe). A universe in a CwF (C,F) is another
CwF (C,F0) on the same category C, such that all the context operations are
inherited from (C,F) and for each context Γ, TypeF0

(Γ) ⊆ TypeF(Γ);71 more-
over we require that for each type A ∈ TypeF0

(Γ) (called small type, written
Γ s̀ A Type0), the terms are the same, i.e. TermF0(Γ;A) = TermF(Γ;A). We
require a type s̀ U0 such that the following forming rules hold:72

s̀ U0

Γ s̀ A Type0
Γ s̀ pAq : U0

Γ s̀ T : U0

Γ s̀ ElT Type0

We also require commutation with substitutions

U0σ = U0 pAqσ = pAσq (ElT )σ = El (Tσ)

and the following two structural equations:

El pAq = A pElTq = T.

70This is usually called a universe á la Tarski, opposed to the approach á la Russell, where
the universe contains actual types.

71With the subscript we mean the collection given by the specified functor.
72We also write U0 instead of U0σ for the unique substitution σ : Γ→ 1, for each Γ.
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Type formers in the CwF can be ‘lifted’ to type formers inside U0, for example
given

Γ s̀ a : U0, Γ.El a s̀ b : U0,

then one may introduce Γ s̀ πab : U0 given by

πab = pΠ(El a)(El b)q,

which means that Γ s̀ El (πab), with El (πab) = Π(El a)(El b). The type opera-
tions (in this case λ and app) are then exactly the same.

2.2 Presheaf models

In this section we show how the presheaf category on a fixed category C induces
a CwF; this will be used in section 2.3 to handle the cubical constructs by
suitably choosing the base category C.

Definition 2.9. A presheaf on a category C is a functor Cop → Set. The
category Ĉ of presheaves on C is the functor category [Cop, Set], which has
presheaves on C as objects and natural transformations between them as arrows.

A presheaf Γ will be thought as a context Γ s̀, with sets Γ(I) for each I ∈ C
and functions Γf : Γ(I) → Γ(J) for each f : J → I, usually written ρ → ρf
instead of ρ→ Γf (ρ), satisfying the functor laws

ρ1 = ρ, (ρ)fg = ρ(fg).

We now explain how to define a CwF from Ĉ:

• Contexts are given by presheaves, with the terminal object 1 defined by
the constant presheaf 1 such that 1(I) = {?} for all I ∈ C.73

• A substitution σ : ∆ → Γ is a morphism between functors ∆ and Γ,
i.e. a natural transformation σ = (σI : ∆(I) → Γ(I))I∈C, such that the
naturality condition holds:

Γf ◦ σI = σJ ◦∆f

usually written as
(σρ)f = σ(ρf)

for all ρ ∈ ∆(I).

73The set {?} is ‘the’ singleton set.
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• A type Γ s̀ A is given by sets Aρ for all I ∈ C and ρ ∈ Γ(I) and by
functions Aρ → A(ρf) for each f : J → I, as usual written as a→ af ,
such that the functorial laws hold:

a1 = a, (af)g = a(fg).

Substitutions on types are defined as follows: given Γ s̀ A and σ : ∆→
Γ, ∆ s̀ Aσ is given by sets (Aσ)ρ = A(σρ) and by the induced map
(Aσ)ρ = A(ρσ)→ A((ρσ)f) = A(σ(ρf)) = (Aσ)(ρf).

• A term Γ s̀ a : A is given by an element aρ ∈ Aρ for each I ∈ C and
ρ ∈ Γ(I), such that the following law hold for all f : J → I:

(aρ)f = a(ρf).

Substitutions on terms are defined as follows: given Γ s̀ a : A and
σ : ∆→ Γ, the term ∆ s̀ aσ : Aσ is given by sets (aσ)ρ = a(σρ).

• The extended context Γ.A s̀, given Γ s̀ A, is defined by the sets

(Γ.A)(I) = {(ρ, u) : ρ ∈ Γ(I), u ∈ Aρ}

for each I ∈ C and by the functions (Γ.A)f : (Γ.A)(I)→ (Γ.A)(J) defined
by

(ρ, u)f = (ρf, uf)

for each morphism f : J → I. The projections p : Γ.A → Γ and
Γ.A s̀ q : Ap are defined as to satisfy the required equations, i.e.

p(ρ, u) = ρ q(ρ, u) = u.74

Given σ : ∆→ Γ and ∆ ` a : Aσ, for the substitution (σ, a) : ∆→ Γ.A
we put, for ρ ∈ ∆(I),

(σ, a)ρ = (σρ, aρ).

It is straightforward now to verify that the required equations hold:

– p(σ, a) = σ, since p(σ, a)ρ = p(σρ, aρ) = σρ;

– q(σ, a) = a, since q(σ, a)ρ = q(σρ, aρ) = aρ;

– (σ, a)τ = (στ, aτ), since (σ, a)τρ = (σ, a)(τρ) = (σ(τρ), a(τρ)) =
(στρ, aτρ);

– (p, q) = 1, since (p, q)(ρ, u) = (p(ρ, u), q(ρ, u)) = (ρ, u).

74Remember that to give a term Γ.A s̀ q : Ap we must specify an element q(ρ, u) ∈ Aρ
for each (ρ, u) ∈ Γ.A.
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2.2.1 Π-types

First of all, following [Hub16], we give a motivation for the definition of Π-
types in presheaf categories, by exploiting the intuitive idea that function types
should be modelled by their categorical counterpart which are exponentials.
If Γ and ∆ are presheaves and the exponential ∆Γ exists, then by the Yoneda
lemma (see appendix A) and the fact that exponentiation is right adjoint to
the product, we get

(∆Γ)(I) ∼= HomĈ(yI,∆
Γ) ∼= HomĈ(yI × Γ,∆).

This can then be taken as a definition, so that the elements of the presheaf
∆Γ are natural transformations w : yI × Γ → ∆, i.e. w = (wJ : HomC(J, I)×
Γ(J)→ ∆(J))J∈C satisfying the naturality condition

∆g ◦ wJ = wK ◦ ((yI)g,Γg)

for each g : K → J , which means that for every (f, ρ) ∈ HomC(J, I) × Γ(J),
the following holds:

(wJ(f, ρ))g = wK(fg, ρg).

HomC(J, I)× Γ(J) HomC(K, I)× Γ(K)

∆(J) ∆(K)

wJ wK

(yI)g×Γg

∆g

Figure 2.1: Naturality condition for w.

Now we show how a presheaf category supports Π-types in the induced CwF:

1. (Type formation) Given Γ s̀ A and Γ.A s̀ B, we shall define the type
Γ s̀ ΠAB. Let I ∈ C and ρ ∈ Γ(I); we define the set (ΠAB)ρ as
composed by the families w = (wf )J∈C,f :J→I , such that for each
u ∈ A(ρf),

wfu ∈ B(ρf, u)

and for each g : K → J , the following holds:

(wfu)g = wfg(ug).
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The last equation is well typed since (wfu)g ∈ B(ρf, u)g = B(ρfg, ug).
We also have to specify a function (ΠAB)ρ → (ΠAB)(ρf) for each f :
J → I, mapping w ∈ (ΠAB)ρ→ wf ∈ (ΠAB)(ρf). The latter is defined
by

(wf)gu = wfgu ∈ B(ρfg, u)

for each g : K → J and u ∈ A(ρfg). This definition satisfies the required
functorial equations:

• w1 = w, since (w1)gu = w1gu = wgu.

• (wf)g = w(fg), since ((wf)g)hu = (wf )ghu = wfghu and (w(fg))hu =
wfghu.

2. (Abstraction) Given Γ.A s̀ b : B, we shall define a term Γ s̀ λ b : ΠAB
by giving a set (λ b)ρ ∈ (ΠAB)ρ for each I ∈ C and ρ ∈ Γ(I); if f : J → I
and u ∈ A(ρf), we put

((λ b)ρ)fu = b(ρf, u) ∈ B(ρf, u).75

We have to check that ((λ b)ρ)f = (λ b)(ρf), indeed

(((λ b)ρ)f)gu = ((λ b)ρ)fgu = b(ρfg, u)

which is equal to ((λ b)(ρf))gu = b(ρfg, u) by definition.

3. (Application) Given Γ s̀ u : ΠAB and Γ s̀ v : A, we shall define a term
Γ s̀ app(u, v) : B[v], remembering that B[v] is short for B(1, v). For
each I ∈ C and ρ ∈ Γ(I) we define the element app(u, v)ρ ∈ B(1, v)ρ by

app(u, v)ρ = (uρ)1(vρ) ∈ B(ρ1, vρ) = (B[v])ρ

since uρ ∈ (ΠAB)ρ and vρ ∈ Aρ.

It is now easy to check that the CwF equations for Π-types hold:

• (β-reduction) app(λ b, v) = b[v] since

app(λ b, v)ρ = ((λ b)ρ)1(vρ) = b(ρ, vρ) = b[v]ρ.

• (Substitution 1) (ΠAB)σ = ΠAσB(σp, q) holds since ((ΠAB)σ)ρ = (ΠAB)(σρ)
and any element w of that set is such that for all f : J → I and
u ∈ A(σρf) = A(σ(ρf)), wfu ∈ B(σρf, u) = B(σp, q)(ρf, u), which
means that w is also an element of ΠAσB(σp, q). The other inclusion in
proved analogously.

75Remember that Γ.A s̀ b : B and (ρf, u) ∈ (Γ.A)(J), so that b(ρf, u) ∈ B(ρf, u).
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• (Substitution 2) (λ b)σ = λ b(σp, q) holds since

(((λ b)σ)ρ)fu = ((λ b)(σρ))fu = b(σρf, u)

= b(σp, q)(ρf, u) = ((λ b(σp, q))ρ)fu.

• (Substitution 3) app(u, v)σ = app(uσ, vσ) holds since

(app(u, v)σ)ρ = app(u, v)(σρ) = (u(σρ))1(v(σρ))

= ((uσ)ρ)1((vσ)ρ) = app(uσ, vσ)ρ.

2.2.2 Σ-types

We show how a presheaf category supports Σ-types in the induced CwF:

1. (Type formation) Given Γ s̀ A and Γ.A s̀ B, we shall define the type
Γ s̀ ΣAB. For I ∈ C and ρ ∈ Γ(I), let

(ΣAB)ρ = {(a, b) : a ∈ Aρ, b ∈ B(ρ, a)}

with the mapping (ΣAB)ρ→ (ΣAB)(ρf) given by

(a, b)f → (af, bf).

2. (Pairing) Given Γ s̀ a : A and Γ.A s̀ b : B[a], we shall define the term
Γ s̀ 〈a, b〉 : ΣAB. For I ∈ C and ρ ∈ Γ(I), let

〈a, b〉ρ = (aρ, bρ).

3. (Projections) Given Γ s̀ u : ΣAB, we shall define the two projections
Γ s̀ π1u : A and Γ s̀ π2u : B[π1u] by

(π1u)ρ = a, (π2u)ρ = b,

where uρ = (a, b) ∈ (ΣAB)ρ.

It can be easily shown that β-reduction and the commutation with substitu-
tions hold, analogously to what we have done in section 2.2.1 for Π-types.
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2.2.3 Universes

To model a universe of types we require a Grothendieck universe,76 which we
denote by Set0. For a type Γ s̀ A, we put Γ s̀ A Type0 iff Aρ ∈ Set0 for
all I ∈ C and ρ ∈ Γ(I) (small types). In this way small types form a CwF
supporting all the types formers available in the larger CwF.77

Next we define the type s̀ U0, which is the same as giving a context U0 s̀.
We use the Yoneda embedding y (see appendix A). For objects I ∈ C, we put
U0(I) = {A | yI s̀ A Type0}; for morphisms f : J → I and A ∈ U0(I),
Af ∈ U0(J) is given by yJ s̀ Ayf Type0 (since yf : yI → yJ , A→ Ayf).

Defined it this way, each U0(I) is composed by small types yI s̀ A Type0,
which means that for each f : J → I there is a small set Af with maps
Af → Afg, a→ ag, such that a1 = a and (ag)h = a(gh) for each g : K → J
and h : M → K. With this notation, the map U0(I) → U0(J) is A → Af ,
with (Af)g = Ayfg = Agf .

Finally we define the encoding and decoding functions:

• (Encoding) If Γ s̀ A Type0, we define Γ s̀ pAq : U0 by pAqρ ∈ U0(I)
as the small type yI s̀ pAqρ given by sets (pAqρ)f = A(ρf), with the
induced map (pAqρ)f → (pAqρ)fg given by A(ρf) → A(ρf)g, since
(pAqρ)f = A(ρf) and (pAqρ)fg = A(ρ(fg)) = A(ρf)g. It is easy to
verify that pAqσ = pAσq.

• (Decoding) If Γ s̀ T : U0, we define the small type Γ s̀ ElT Type0 by
(ElT )ρ = (Tρ)1I

, with the induced map (ElT )ρ → (ElT )(ρf) given by
(Tρ)1 → (Tρ)f , since (ElT )ρ = (Tρ)1 and (ElT )(ρf) = (T (ρf))1 =
((Tρ)f)1 = (Tρ)f . It is easy to verify that (ElT )σ = El (Tσ).

The two structural equations hold:

(El pAq)ρ = (pAqρ)1 = A(ρ1) = Aρ,

((pElTq)ρ)f = (ElT )(ρf) = (T (ρf))1 = ((Tρ)f)1 = (Tρ)f .

Note that for a hierarchy of Grothendieck universes Set0 ∈ Set1 ∈ Set2 ∈
· · · ∈ Set, the same construction can be iterated to obtain a hierarchy of uni-

76A Grothendieck universe is a transitive set containing pairs and power sets of all its
elements, along with the union of any family in the universe indexed by an element of the
universe. The existence of a Grothendieck universe in ZFC is equivalent to the existence of
a strongly inaccessible cardinal, which is independent from ZFC.

77This is possible since Set0 is closed under all the ordinary set-theoretic operations; this
is the reason of choosing a Grothendieck universe.
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verses U0,U1,U2, . . . in the type theory, each with its own encoding/decoding
functions.

2.3 Cubical sets

In this section we introduce cubical sets, which is the presheaf category on the
category of cubes C.

Definition 2.10 (Category of cubes). Fix a discrete and countably infinite set
of names, usually denoted by x, y, z, . . . . The category of cubes C has as objects
the finite subsets of names, usually denoted by I, J,K, . . . , and as morphisms
f : I → J set-theoretic functions f̃ : I → J ∪ 2 which are injective on the set
def(f) = {x ∈ I : f̃(x) /∈ 2}. Composition of morphisms is defined as

(fg)(x) =

{
g̃(f̃(x)) if x ∈ def(f)

f̃(x) otherwise

Example 2.11. Using the notation I, x1, . . . , xn for I ∪ {x1, . . . , xn} and I −
x1, . . . , xn for I \ {x1, . . . , xn}, we name a few particular morphisms:

• Face maps (x = 0), (x = 1) : I → I−x which are the identity except that
they map x to 0 or 1. It holds that def(x = 0) = def(x = 1) = I − x.

• Degeneracy map sx : I → I, x for x /∈ I, which is the inclusion map
I ⊆ I, x.

• Renaming map (x = y) : I, x → I, y for x, y /∈ I, which is the identity
except that x gets mapped to y.

Definition 2.12. A cubical set X is a functor X : C → Set, where C is the
category of cubes. In other words, a cubical set is a presheaf on Cop.

As any other presheaf category, Ĉop induces a CwF, as described in section
2.2.78 Note that every cubical set X can be seen as a type Γ s̀ X

′, putting
X ′ρ = X(I) for each I ∈ C and ρ ∈ Γ(I); for simplicity we shall write X for
both.

Now we show how to model the formal interval I as a cubical set.

78A trivial but important point is that cubical sets are covariant functors, so that ·op is
applied twice to form the presheaf category of cubical sets, which means that all the arrows
get reversed, i.e. if Γ is a cubical set and f : I → J is a map in the category of cubes, then
Γf : Γ(I) → Γ(J). The same applies to the Yoneda embedding for Cop, i.e. in the context
of cubical sets, yI = HomCop(−, I) ∼= HomC(I,−).
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Example 2.13. The interval I is defined on objects by I(I) = I ∪ {0, 1} and
on morphisms f : I → J by If : I ∪ {0, 1} → J ∪ {0, 1} obtained extending f
with If (0) = 0 and If (1) = 1. It is important to note that I is a representable
functor, as

y{x} = HomC({x},−) ∼= I

since for example y{x}{y1, . . . , yn} = HomC({x}, {y1, . . . , yn}) which is com-
posed by the morphisms (x = 0), (x = 1) and (x = yi) for each i, and is
isomorphic to I({y1, . . . , yn}). More generally, instead of defining the square,
the cube, etc. ‘manually’, we can use the Yoneda embedding (see appendix A)
to define them using y, so we set

�I = yI,

for any set of names I, called the standard I-cube. By the Yoneda lemma, it
holds that

HomĈop(�I , X) ∼= X(I).

Example 2.14. The set of formulas induces a cubical set F defined by the
sets F(I) = {ϕ | vars(ϕ) ⊆ I} on objects and on morphisms f : I → J by
Ff : F(I)→ F(J), ϕ→ ϕf which substitutes the symbols i ∈ I by f(i) ∈ J .

2.4 Semantics of the full theory

Having introduced all the general concepts we need (CwFs, presheaf categories,
cubical sets), we now start to use them to give a semantics for the type theory.
Actually, for simplicity we consider a slightly less powerful theory, that is:

1. A single universe instead of the (tacitly presupposed) infinite cumulative
hierarchy of universes. This means that impredicative definitions are not
allowed (obviously we do not consider the inconsistent axiom U : U).

2. No coproducts, which means only naturals, function and pair types as
the basic type formers.79

3. No composition operation.

4. No ‘diagonals’ constraints, which means that atomic formulas are only
the ones of the form (i = 0) and (i = 1).

79Adding coproducts and other type formers, such as the empty type which is not definable
any more (the definition empty : U = [X : U]X is impredicative!), poses no difficulty, but we
avoid it for brevity.
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Moreover, we forget the distinction between the context and the directions
environment, so that formulas are now added to the context, e.g. Γ, ϕ.80 We
also write s ∼Γ t instead of s ∼Θ

τ(Γ) t (see section 1.5), where as usual τ(Γ) is
the list of names declared in Γ. Typing rules are now seen as unidirectional,
i.e. Γ ` t⇐ A and Γ ` t⇒ A are read as Γ ` t : A.81

2.4.1 Modelling formulas

We now explain how to model formulas in the semantics, that is for each
Γ ` ϕ : F we define a JΓK s̀ JΓ;ϕK : F.82 To avoid confusion from now on we
shall always use the J·K notation (see section 2.5); for a syntactical context Γ,
we write JΓK to denote the (semantic) context in the CwF induced by cubical
sets, and JΓ; tK for the interpretation of a syntactical term t in context Γ. It
is important to keep in mind the statement of the soundness theorem (2.15),
which says in particular that for types Γ ` A : U, the interpretation is such
that JΓK s̀ JΓ;AK : U0, so that JΓK s̀ El JΓ;AK; for terms Γ ` a : A, the
interpretation is such that JΓK s̀ JΓ; aK : El JΓ;AK. Definitions are given such
that the aforementioned results shall be proved.83

The definition of JΓ;ϕK is by induction on the structure of ϕ and Γ, and is such
that JΓ;ϕKρ ∈ Fρ = F(I) whenever ρ ∈ Γ(I). Note that in the first case, the
empty context case is not needed, since a formula must have all of its variables
declared in the context.

• For (i = 0), let:

JΓ, i : I; i = 0K(ρ, z) =


True if z = 0

False if z = 1

z = 0 if z ∈ I
(ρ ∈ JΓK(I) and z ∈ I(I))

JΓ, j : I; i = 0K(ρ, z) = JΓ; i = 0Kρ (ρ ∈ JΓK(I) and z ∈ I(I))

80The aforementioned distinction is very useful for the implementation, but is unnatural
when defining the semantics, making the notation more complex. Remember that the con-
text Γ, ϕ1, x : A,ϕ2 is ‘equivalent’ to Γ, x : A,ϕ1 ∧ ϕ2, and indeed it can be easily checked
that this holds in the interpretation of contexts as cubical sets.

81Likewise, the distinction was very useful for the implementation, but not at all when
defining the semantics.

82I and F remain the same in the interpretation, so we avoid writing JIK and JFK. Also we
use the same symbol to denote both the cubical set and the type, as it makes no ambiguity.

83The most formal way to present the semantics would be to give the definitions of J·K for
all the cases altogether, but this makes the presentation harder to understand. Therefore, we
give now the definition for interpreting formulas, even if e.g. the interpretation of contexts
is given later in section 2.5.
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JΓ, x : A; i = 0K(ρ, u) = JΓ; i = 0Kρ (ρ ∈ JΓK(I) and u ∈ JAK(I))

JΓ, ϕ; i = 0Kρ = JΓ; i = 0Kρ (ρ ∈ JΓK(I), JΓ;ϕKρ = True)

JΓ, x : A = t; i = 0K = JΓ; i = 0K

• For (i = 1), the definition is totally analogous to the previous one, swap-
ping 0 with 1 and 0 with 1.84

• For ψ1 ∧ ψ2 and ρ ∈ Γ(I), we put

JΓ;ψ1 ∧ ψ2Kρ = (JΓ;ψ1Kρ) ∧ (JΓ;ψ2Kρ).85

• For ϕ1 ∨ ϕ2 and ρ ∈ Γ(I), we put

JΓ;ϕ1 ∨ ϕ2Kρ = (JΓ;ϕ1Kρ) ∨ (JΓ;ϕ2Kρ).

It is routine to check that (JΓ;ϕKρ)f = JΓ;ϕK(ρf) holds.

We also define, for each formula Γ ` ϕ : F, a subsingleton type JΓK s̀ JΓ; [ϕ]K
whose inhabitation corresponds to ϕ being true in Γ. Keeping in mind that
for each I ∈ C and ρ ∈ Γ(I) we have a JΓ;ϕKρ ∈ F(I), we put:86

JΓ; [ϕ]Kρ =

{
{?} if JΓ;ϕKρ = True

∅ otherwise

The restriction JΓ; [ϕ]Kρ→ JΓ; [ϕ]K(ρf) is defined in the obvious manner.

Note what a context extension with a formula looks like:

(JΓK.JΓ; [ϕ]K)(I) = {(ρ, ) | ρ ∈ JΓK(I), ∈ JΓ; [ϕ]Kρ}
= {ρ | ρ ∈ Γ(I), JΓ;ϕKρ = True}

This means that for example:

JΓK.JΓ; [True]K = JΓK,
JΓK.JΓ; [False]K = J()K,

840 and 1 are elements of I(I), 0 and 1 are syntactical objects of the type theory.
85It is understood that the resulting value is False if one of the two is false. Similarly for

the ϕ1 ∨ ϕ2 case below.
86The apparent circularity in the definitions of J·K (e.g JΓ; [ϕ]K depends on JΓ;ϕK, which

depends on JΓ, ϕK, which depends on JΓ; [ϕ]K) can be removed by giving all the definitions
at the same time (although this requires care, see the footnote 91). We preferred to give
them as separate definitions to improve clarity.
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JΓK.JΓ; [ϕ1]K.JΓ, ϕ1; [ϕ2]K = JΓ; JΓ; [ϕ1 ∧ ϕ2]KK.

After defining formally the interpretation of contexts in section 2.5, the last
three equations will be respectively JΓ, TrueK, JΓ, FalseK and JΓ, ϕ1 ∧ ϕ2K.

We need not give an ad-hoc semantics to path types (like in [CCHM15]), since
they are a derived notion in our theory. We will indeed show how to model
them in section 2.4.2, as they are defined using restriction types.

2.4.2 Modelling partial and restriction types

In this section we show how to model partial and restriction types in cubical
sets. First note that by using the subobject classifier Ω (see appendix B), which
is available in any presheaf category, we can define a natural transformation
·̂ : F→ Ω such that for any I ∈ C, each ϕ ∈ F(I) is sent into the sieve ϕ̂ ∈ Ω(I)
of all the f : I → J that make ϕ true, i.e. ϕf = True; indeed, if h : J → K,
then ϕ(fh) = (ϕf)h = Trueh = True, so that fh ∈ ϕ̂.87

Now we define partial types, systems and restriction types.

• Given a type Γ ` A and a formula Γ ` ϕ : F, we define JΓK s̀ JΓ; [ϕ]AK :
U0 to be (the code for) the function type JΓK s̀ JΓ; [ϕ]K→ JΓ;AK, i.e.88

JΓ; [ϕ]AK = pΠEl JΓ;[ϕ]KEl JΓ;AKq

More explicitly, as explained in section 2.2.1, each set (ΠEl JΓ;[ϕ]KEl JΓ;AK)ρ =
(El JΓ; [ϕ]AK)ρ is given by families

u = (uf ∈ El JΓ;AK(ρf) | JΓ;ϕKρf = True, (uf )g = ufg ∀g : K → J)f :J→I

• Systems Γ ` [~ψ→ ~t] : [~ψ]A are interpreted as follows: each JΓ; [~ψ→ ~t]Kρ
is given by the family(

(tiρ)f | JΓ;ψiKρf = True, (tiρ)fg = (tiρ)fg ∀g : K → J
)
f :J→I,i=1...n

where each (tiρ)f is given by the term JΓK s̀ JΓ; tiK : El JΓ; [ψi]AK; we
assume the uniqueness condition JΓ; tiKρ = JΓ; tjKρ for each ρ ∈ Γ(I)
such that JΓ;ψi ∧ ψjKρ = True, which assures that the definition is well-
posed.

87Pay attention to the fact that cubical sets are covariant functors, so that arrows get
reversed in sieves. More generally, arrows get reversed when one uses the presheaf model
notation in the special case of cubical sets.

88Remember that the J·K interpretation of a type shall be a term of U0 and not a type
itself. We need therefore to work with the encoding and decoding functions of U0.
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• Lastly, for restriction types of the form Γ ` [~ψ → ~t]A, we define JΓK s̀

JΓ; [~ψ→ ~t]AK : U0, putting

JΓ; [~ψ→ ~t]AK = pRestr([~ψ→ ~t], A)q,

with Restr([~ψ→ ~t], A)ρ being the subset of the u ∈ El JΓ;AKρ such that
uf = (tiρ)f for each i and f : J → I such that JΓ;ψiKρf = True.

The map Restr([~ψ → ~t], A)ρ → Restr([~ψ → ~t], A)(ρh), for h : J →
I, is the induced map El JΓ;AKρ → El JΓ;AK(ρh), u → uh, because if
(JΓ;ψiKρh)f = True for f : K → J , then (JΓ;ψiKρ)(hf) = True and so
(uh)f = u(hf) = (tiρ)hf = (tiρ)(hf) = (tiρh)f .

Having described the semantics of partial and restriction types, we can now
show how path types (that is, of the form Γ ` [i : I][i = 0→ u, i = 1→ v]A : U)
are modelled.89 Suppose we have this derivation in the type theory:

Γ, i : I ` A : U Γ, i : I ` u : [i = 0]A Γ, i : I ` v : [i = 1]A

Γ, i : I ` [i = 0→ u, i = 1→ v]A : U
(Restr-U)

Γ ` [i : I][i = 0→ u, i = 1→ v]A : U
(Pi-I)

First, given I ∈ C, note what the context extension JΓ.IK looks like:

J(Γ.I)K(I) = (JΓK.I)(I) = {(ρ, z) | ρ ∈ JΓK(I), z ∈ Iρ = I(I) = I ∪ {0, 1}}.

From Γ, i : I ` u : [i = 0]A, for each ρ ∈ JΓK(I) and z ∈ I(I) we get a family
ũ(ρ, z) ≡ JΓ, i : I;uK(ρ, z) composed by

(ũ(ρ, z)f | (i = 0)(ρ, z)f = True, ũ(ρ, z)fg = ũ(ρ, z)fg ∀g : K → J)f :J→I

Note that

(i = 0)(ρ, z)f = True ⇐⇒ zf = 0 ⇐⇒ f(z) = 0

And similarly (i = 1)(ρ, z)f = True ⇐⇒ f(z) = 1.90

Therefore ũ is given by families

ũ(ρ, z) = (ũ(ρ, z)f | f(z) = 0, ũ(ρ, z)fg = ũ(ρ, z)fg ∀g : K → J)f :J→I

89Of course we assume the soundness theorem (2.15). This example should be made after
stating the theorem, but we expound it here for a clearer presentation.

90Pay attention not to confuse the symbols 0/1 (syntactical components of formulas) and
0/1 (elements of the semantic unit interval I(I)). Likewise, i = 0 is a syntactical formula,
(i = 0) is a morphism in the category of cubes.
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Analogously for Γ, i : I ` v : [i = 0]A, from which be obtain ṽ.
This means that El JΓ, i : I; [i = 0→ u, i = 1→ v]AK is given by the elements
s ∈ El JΓ, i : I;AK(ρ, z) such that

sf =

{
ũ(ρ, z)f ∀f : J → I such that f(z) = 0

ṽ(ρ, z)f ∀f : J → I such that f(z) = 1

To get JΓ; [i : I][i = 0→ u, i = 1→ v]AK from JΓ, i : I; [i = 0→ u, i = 1→ v]AK
one simply has to follow the construction of λ (·) given in 2.2.1.

2.5 Interpretation of the syntax

Lastly we give the definition of the semantic interpretation of the syntax into
the CwF of cubical sets, extending what we have done for formulas. We follow
closely [CCHM15].91 We assume two Grothendieck universes Set0 ∈ Set1 which
give rise to two semantic universes U0 and U1 (called respectively small and
large); the latter is used to define the interpretation of U, since s̀ U0 : U1.

It is important to remark that what is being defined is an a priori partial in-
terpretation of raw contexts and terms (also called pre-contexts/terms),92 and
only afterwards, in the soundness theorem, it is shown that the interpretation
is defined and correct for every well-typed context or term.

First we define the interpretation of (syntactical) contexts, that is we associate
to each context Γ a cubical set JΓK. The recursive definitions given below have
to be understood such that the interpretation of the left-hand size is defined
whenever all the interpretations in the right-hand side are defined and make
sense.

J()K = 1

JΓ, i : IK = JΓK.I
JΓ, x : AK = JΓK.El JΓ;AK

JΓ, ϕK = JΓK.JΓ; [ϕ]K

91See also [Str91] for a broader and deeper treatment of type theory semantics. In partic-
ular, in chapter 3 it is explained how to properly and formally give the recursive definition of
J·K, by first defining a ‘depth’ function on terms and contexts; by doing so, the given interpre-
tation of a context/term of height d+1 depends only on the interpretation of contexts/terms
of height ≤ d.

92Here by ‘term’ we mean a syntactical object which is not a context, e.g. a term in the
narrower sense, a type, the universe or a formula. Recall that in dependent type theory the
set of well formed terms and types cannot be defined independently from the context and
the rules (and indeed that’s why here we use the word ‘term’ in a broader sense).
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JΓ, x : A = tK = JΓK

Then we define the interpretation of terms, associating to each (syntactical)
term t in context Γ a family of sets JΓ; tKρ for each I ∈ C and ρ ∈ Γ(I).
What we want to obtain is that if Γ ` A : U in the type theory, then JΓ;AK ∈
Term(JΓK;U0), so that El JΓ;AK ∈ Type(JΓK), and similarly if Γ ` a : A in the
type theory, then JΓ; tK ∈ Type(JΓK; El JΓ;AK).

First we define the interpretation of the universe.

JΓ; UK = pU0q ∈ Term(JΓK;U1)

For variables, we define it by recursion on the structure of the context.

JΓ, x : A;xKρ = q(ρ) JΓ, ϕ;xK = JΓ;xK
JΓ, y : A;xKρ = JΓ;xK(p(ρ)) JΓ, x : A = t;xK = JΓ; tK
JΓ, i : I;xKρ = JΓ;xK(p(ρ)) JΓ, y : A = t;xKρ = JΓ;xKρ

Π-types (of which path types are a particular case).

JΓ; [x : A]BK = pΠEl JΓ;AK(El JΓ, x : A;BK)q
JΓ; [i : I]BK = pΠI(El JΓ, i : I;BK)q
JΓ; [x : A]tK = λ JΓ, x : A; tK

JΓ; t uK = app (JΓ; tK, JΓ;uK)

Σ-types.

JΓ; 〈x : A〉BK = pΣEl JΓ;AK(El JΓ, x : A;BK)q
JΓ; (t, u)Kρ = (JΓ; tKρ, JΓ;uKρ)

JΓ; t.1Kρ = π1(JΓ; tKρ)

JΓ; t.2Kρ = π2(JΓ; tKρ)

Naturals; we assume that in the CwF we have a type Nat with constructors zero
and succ, along with an induction principle ind, which we omit for brevity.93

JΓ; NK = pNatq

JΓ; ZK = zero

JΓ; S tKρ = succ (JΓ; tKρ)

93It requires some sophistication to write the induction principle in the CwF rules syntax.
See [Hof97] for a formalization of naturals in CwFs.
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Interval and the endpoints.94

JΓ; IK = I JΓ; 0Kρ = 0 ∈ I(I) JΓ; 1Kρ = 1 ∈ I(I)

Formulas, systems, partial and restriction types are interpreted as explained
in section 2.4.2, which means that the definition of

JΓ;ϕK JΓ; [~ψ→ ~t]K JΓ; [ϕ]AK JΓ; [~ψ→ ~t]AK

is given, completing the definition of JΓ; tK for any t.

We can now state the soundness theorem, which should be proved by induction
on the constructions/derivations, using some suitable lemmas (i.e. weakening
and substitution lemmas), as stated in [CCHM15] and proved in [Str91].

Theorem 2.15 (Soundness theorem). The following hold:

1. If Γ is a context, then JΓK is a cubical set;

2. If Γ ` A : U, then JΓK s̀ JΓ;AK : U0;

3. If Γ ` a : A, then JΓK s̀ JΓ; aK : El JΓ;AK;

4. If Γ ` i : I, then JΓK s̀ JΓ; iK : I;

5. If Γ ` ϕ : F, then JΓK s̀ JΓ;ϕK : F;

6. If s ∼Γ t, then JΓ; sK = JΓ; tK.

94We have already remarked that we use I both as a formal symbol and as the cubical set
which interprets it.



Chapter 3

Implementation

In this chapter we discuss the actual software implementation of the type
theory described in chapter 1, using the Haskell programming language.
The full code, along with a folder of example source files, can be found at
https://github.com/mattia-furlan/MasterThesisCTT.

We used the tools Alex and Happy to handle the lexical analyzer and the
parser.95 Instead of writing them from scratch, we initially wrote a simple
grammar using the BNFC tool, which then automatically produces the files
(one .x and one .y) which are given in input to Alex and Happy.96

The files which do all the main work are the following:97

• In Interval.hs we define formulas and the directions environment struc-
ture, along with all the utility functions needed to handle them (e.g.
updating the directions environment, substitution in a formula).

• In CoreCTT.hs we define the abstract syntax of terms and values, the
context and the functions which check term shadowing.

• In Eval.hs we implement the evaluation function for terms and formu-
las, with an handler for each type eliminator (e.g. function application,
projections). Moreover, there we also implement the printing functions

95Alex and Happy are the Haskell version of the celebrated Lex and Yacc for C.
96BNFC is useful especially for the lexer, as it does under the hood all the hard-work

of treating special characters and Unicode. Moreover, from the basic parser produced by
BNFC one obtains a sketch which will then be refined manually, handling for example the
shift/reduce conflicts.

97Listed in order of dependencies (e.g. TypeChecker.hs needs Interval.hs, CoreCTT.hs,
Eval.hs and Conv.hs).
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and the read-back procedure.

• In Conv.hs we implement the the convertibility (i.e. αη-conversion)
predicate.

• In TypeChecker.hs we implement the bidirectional type-checker, with
one function for type-inference and one for type-checking. We also handle
type-checking under a formula.

• In MainCTT.hs we implement the main REPL loop which reads declara-
tions from the input (or from some files) and processes them.

3.1 Lexical analysis and parsing

As explained in the introduction of the chapter, we use a lexer automatically
generated by BNFC, which we don’t report here due to the excess of technical
details.98 Instead we give here the code for the parser, initially generated by
BNFC and then refined manually. The syntax that the parser recognizes is the
one shown in chapter 1, allowing also multiple identifiers in abstractions (e.g.
one can write [a, b, c : A]B instead of [a : A][b : A][c : A]B).

The abstract syntax is defined in CoreCTT.hs for terms and top-levels, and in
Interval.hs for formulas.

All the files use a wrapper data structure for strings, called Ident, defined in
the homonym file.

Source file Ident.hs.

{-# LANGUAGE GeneralizedNewtypeDeriving #-}

module Ident where

import Data.String

newtype Ident = Ident String

deriving (Eq, Ord, IsString)

instance Show Ident where

show (Ident s) = s

98The file is LexCTT.x.
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Source file ParCTT.y.

{

module ParCTT ( happyError, myLexer, pProgram,pToplevel, pTerm )

where

import Prelude

import qualified Data.Map as Map

import Ident

import qualified CoreCTT

import Interval

import LexCTT

}

%name pProgram Program

%name pToplevel Toplevel

%name pTerm Term

%monad { Err } { (>>=) } { return }

%tokentype {Token}

%token

'(' { PT _ (TS _ 1) }

')' { PT _ (TS _ 2) }

'*' { PT _ (TS _ 3) }

'+' { PT _ (TS _ 4) }

',' { PT _ (TS _ 5) }

'->' { PT _ (TS _ 6) }

'.1' { PT _ (TS _ 7) }

'.2' { PT _ (TS _ 8) }

'/\\' { PT _ (TS _ 9) }

'0' { PT _ (TS _ 10) }

'1' { PT _ (TS _ 11) }

':' { PT _ (TS _ 12) }

';' { PT _ (TS _ 13) }

'<' { PT _ (TS _ 14) }

'=' { PT _ (TS _ 15) }

'>' { PT _ (TS _ 16) }

'I' { PT _ (TS _ 17) }

'N' { PT _ (TS _ 18) }

'S' { PT _ (TS _ 19) }

'U' { PT _ (TS _ 20) }

'Z' { PT _ (TS _ 21) }

'[' { PT _ (TS _ 22) }

'\\/' { PT _ (TS _ 23) }

']' { PT _ (TS _ 24) }

'comp' { PT _ (TS _ 25) }

'ind' { PT _ (TS _ 26) }

'inl' { PT _ (TS _ 27) }

'inr' { PT _ (TS _ 28) }
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'split' { PT _ (TS _ 29) }

'|' { PT _ (TS _ 30) }

L_Ident { PT _ (TV $$) }

%%

Ident :: { Ident }

Ident : L_Ident { Ident $1 }

ListIdent :: { [Ident] }

ListIdent : Ident { [$1] }

| Ident ',' ListIdent { (:) $1 $3 }

Program :: { CoreCTT.Program }

Program : ListToplevel { CoreCTT.Program $1 }

Term :: { CoreCTT.Term }

Term : Term1 '->' Term { CoreCTT.Abst (Ident "") $1 $3 }

| '[' Ident ':' Term '=' Term ']' Term { CoreCTT.TDef ($2,$4,$6) $8 }

| '[' Ident ':' Term ']' Term { CoreCTT.Abst $2 $4 $6 }

| '[' ListIdent ':' Term ']' Term

{ foldr (\i e -> CoreCTT.Abst i $4 e) $6 $2 }

| Term1 { $1 }

Term1 :: { CoreCTT.Term }

Term1 : Term2 '+' Term1 { CoreCTT.Sum $1 $3 }

| Term2 '*' Term1 { CoreCTT.Sigma (Ident "") $1 $3 }

| '<' ListIdent ':' Term '>' Term

{ foldr (\i e -> CoreCTT.Sigma i $4 e) $6 $2 }

| '[' DisjFormula ']' Term1 { CoreCTT.Partial $2 $4 }

| System Term1 { CoreCTT.Restr $1 $2 }

| Term2 ',' Term2 { CoreCTT.Pair $1 $3 }

| Term2 { $1 }

Term2 :: { CoreCTT.Term }

Term2 : Term2 Term3 { CoreCTT.App $1 $2 }

| 'ind' Term3 Term3 Term3 Term3 { CoreCTT.Ind $2 $3 $4 $5 }

| 'comp' Term3 '(' DisjFormula ')' Term3 Term3 Term3 Term3

{ CoreCTT.Comp $2 $4 $6 $7 $8 $9 }

| 'comp' Term3 '(' ')' Term3 Term3 Term3 Term3

{ CoreCTT.Comp $2 fFalse $5 $6 $7 $8 }

| 'S' Term3 { CoreCTT.Succ $2 }

| 'inl' Term3 { CoreCTT.InL $2 }

| 'inr' Term3 { CoreCTT.InR $2 }

| 'split' Term3 Term3 Term3 Term3 { CoreCTT.Split $2 $3 $4 $5 }

| Term3 { $1 }

Term3 :: { CoreCTT.Term }

Term3 : Ident { CoreCTT.Var $1 }
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| 'U' { CoreCTT.Universe }

| 'N' { CoreCTT.Nat }

| 'Z' { CoreCTT.Zero }

| 'I' { CoreCTT.I }

| Term3 '.1' { CoreCTT.Fst $1 }

| Term3 '.2' { CoreCTT.Snd $1 }

| System { CoreCTT.Sys $1 }

| '0' { CoreCTT.I0 }

| '1' { CoreCTT.I1 }

| '(' Term ')' { $2 }

Toplevel :: { CoreCTT.Toplevel }

Toplevel : Ident ':' Term '=' Term { CoreCTT.Definition $1 $3 $5 }

| Ident ':' Term { CoreCTT.Declaration $1 $3 }

| Term { CoreCTT.Example $1 }

ListToplevel :: { [CoreCTT.Toplevel] }

ListToplevel : {- empty -} { [] }

| Toplevel ';' ListToplevel { (:) $1 $3 }

AtomicFormula :: { AtomicFormula }

AtomicFormula : Ident '=' '0' { Eq0 $1 }

| Ident '=' '1' { Eq1 $1 }

| Ident '=' Ident { Diag $1 $3 }

ConjFormula1 :: { [AtomicFormula] }

ConjFormula1 : AtomicFormula { [$1] }

| AtomicFormula '/\\' ConjFormula1 { $1 : $3 }

ConjFormula :: { ConjFormula }

ConjFormula : ConjFormula1 { Conj $1 }

| '(' ConjFormula ')' { $2 }

DisjFormula1 :: { [ConjFormula] }

DisjFormula1 : ConjFormula { [$1] }

| ConjFormula '\\/' DisjFormula1 { $1 : $3 }

DisjFormula :: { DisjFormula }

DisjFormula : DisjFormula1 { Disj $1 }

System :: { CoreCTT.System }

System : '[' ListSysElem ']' { $2 }

SysElem :: { (ConjFormula,CoreCTT.Term) }

SysElem : ConjFormula '->' Term { ($1,$3) }

ListSysElem :: { [(ConjFormula,CoreCTT.Term)] }
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ListSysElem : {- empty -} { [] }

| SysElem { [$1] }

| SysElem '|' ListSysElem { $1 : $3 }

{

type Err = Either String

happyError :: [Token] -> Err a

happyError ts = Left $

"syntax error at " ++ tokenPos ts ++

case ts of

[] -> []

[Err _] -> " due to lexer error"

t:_ -> " before `" ++ (prToken t) ++ "'"

myLexer :: String -> [Token]

myLexer = tokens

}

3.2 Interval and formulas

In this file first we define three types of formulas: atomic ones (of the kind
i = 0, i = 1 or i = j), conjunctive ones (that is, lists of atomic formulas)
and disjunctive ones (that is, lists of conjunctive formulas).99 Next we define
the directions environment structure, called DirEnv, made of three fields: one
storing the variables set to zero, one storing the variables set to one, and
the last one storing the equivalence classes of ‘diagonals’ (see section 1.2.3).
We then implement some utility functions needed to work with directions
environments, as adding a conjunction, checking if such a structure makes a
formula true, etc.

Source file Interval.hs.

{-# LANGUAGE FlexibleInstances #-}

module Interval where

import Data.List (intercalate,delete)

import Ident

-- Atomic formulas are of the kind `i = 0`, `i = 1` or `i = j`

data AtomicFormula

= Eq0 Ident

| Eq1 Ident

99More precisely, the last type are the formulas in disjunctive normal form.
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| Diag Ident Ident

deriving (Ord)

-- Equality between atomic formulas

instance Eq AtomicFormula where

af1 == af2 = case (af1,af2) of

(Eq0 s1,Eq0 s2) -> s1 == s2

(Eq1 s1,Eq1 s2) -> s1 == s2

(Diag s1 s2,Diag s3 s4) -> (s1 == s3 && s2 == s4)

|| (s1 == s4 && s2 == s3)

otherwise -> False

-- A conjunctive formula is a list of atomic formulas

newtype ConjFormula = Conj [AtomicFormula]

deriving (Eq,Ord)

-- A disjunctive formula is a list of conjunctive formulas

newtype DisjFormula = Disj [ConjFormula]

deriving (Eq,Ord)

{- Pretty printing of atomic/conjunctive/disjunctive formulas -}

instance Show AtomicFormula where

show af = case af of

Eq0 s -> show s ++ " = 0"

Eq1 s -> show s ++ " = 1"

Diag s1 s2 -> show s1 ++ " = " ++ show s2

instance Show ConjFormula where

show (Conj cf)

| null cf = "True"

| otherwise = intercalate " /\\ " (map show cf)

instance Show DisjFormula where

show disj@(Disj df)

| disj == fFalse = "False"

| disj == fTrue = "True"

| otherwise = intercalate " \\/ " $

map (\cf -> "(" ++ show cf ++ ")") df

{- Helpers -}

-- True (disjunctive) formula: just one empty conjunction

fTrue :: DisjFormula

fTrue = Disj [Conj []]

-- False formula: empty disjunction

fFalse :: DisjFormula

fFalse = Disj []
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isTrue :: DisjFormula -> Bool

isTrue = (== fTrue)

isFalse :: DisjFormula -> Bool

isFalse = (== fFalse)

isTrueConj :: ConjFormula -> Bool

isTrueConj (Conj cf) = null cf

{- Implication and equivalence -}

{- A disjunctive formula implies another one if each of its conjunctions

makes the second formula true. The case where the second formula is false

must be handled separately. The first two checks are unnecessary, used only

for efficiency -}

impDisj :: DirEnv -> DisjFormula -> DisjFormula -> Bool

impDisj dirs (Disj df1) disj2 = isFalse (Disj df1) || isTrue disj2 ||

if isFalse disj2 then

all (inconsistent . addConj dirs) df1 -- First formula must be false

else

all (\cf1 -> addConj dirs cf1 `makesTrueDisj` disj2) df1

-- Two formulas are equal is each one imply the other

eqFormulas :: DirEnv -> DisjFormula -> DisjFormula -> Bool

eqFormulas dirs disj1 disj2 = impDisj dirs disj1 disj2 && impDisj dirs disj2 disj1

{- Directions environment -}

-- A `DirEnv` stores the list of zeros, ones and the diagonals partitions

type DirEnv = ([Ident],[Ident],[[Ident]])

emptyDirEnv :: DirEnv

emptyDirEnv = ([],[],[])

-- A `DirEnv` is inconsistent if there is an identifier

-- which is set both to zero and one

inconsistent :: DirEnv -> Bool

inconsistent (zeros,ones,diags) =

any (`elem` ones) zeros || any (`elem` zeros) ones

-- Find the partition which contains `s`, if it exists.

-- Otherwise return the fake partition [s]

findPartition :: [[Ident]] -> Ident -> [Ident]

findPartition diags s = case filter (s `elem`) diags of

[] -> [s]

l -> head l

-- Set an identifier to zero. Any eventual identifier which is in the same
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-- partition must then be set to zero, and that partition is removed

addZero :: DirEnv -> Ident -> DirEnv

addZero (zeros,ones,diags) s =

let toadd = findPartition diags s

in (toadd ++ zeros,ones,delete toadd diags)

-- Set an identifier to one. Any eventual identifier which is in the same

-- partition must then be set to one, and that partition is removed

addOne :: DirEnv -> Ident -> DirEnv

addOne (zeros,ones,diags) s =

let toadd = findPartition diags s

in (zeros,toadd ++ ones,delete toadd diags)

-- Add a new diagonal `s1 = s2`

addDiag :: DirEnv -> Ident -> Ident -> DirEnv

addDiag dirs@(zeros,ones,diags) s1 s2

| s1 == s2 = dirs -- Trivial, nothing to do

| s1 `elem` zeros = addZero dirs s2 -- `s1` already zero -> set `s2` to zero

| s2 `elem` zeros = addZero dirs s1 -- `s2` already zero -> set `s1` to zero

| s1 `elem` ones = addOne dirs s2 -- `s1` already one -> set `s2` to one

| s2 `elem` ones = addOne dirs s1 -- `s2` already one -> set `s1` to zero

| otherwise = let

-- Add `s1` and `s2` to the existing partitions if it's the case:

-- it means that e.g if partition `set` contains `s1`, then `s2`

-- shall be added to `set` too

diags' = [if s1 `elem` set then s2 : set else if s2 `elem` set then s1 : set

else set | set <- diags]

-- Add a new partition if `s1` and `s2` are new (= not found in the partitions)

diags'' = diags' ++

[[s1,s2] | not (s1 `elem` concat diags' || s2 `elem` concat diags')]

par1 = findPartition diags'' s1

par2 = findPartition diags'' s2

-- Eventually join the two partitions

-- (e.g. [i,k] [j,k,l] gets joined into [i,j,k,l])

diags''' = if par1 /= par2 then

delete par2 (delete par1 diags'') ++ [par1 ++ par2]

else

diags''

in (zeros,ones,diags''')

-- Add a conjunction to a `DirEnv`

addConj :: DirEnv -> ConjFormula -> DirEnv

addConj dirs (Conj conj) = foldl addAtomic dirs conj

where

addAtomic :: DirEnv -> AtomicFormula -> DirEnv

addAtomic dirs' ff = case ff of

Eq0 s -> addZero dirs' s

Eq1 s -> addOne dirs' s

Diag s s' -> addDiag dirs' s s'
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-- Conversion from a conjunction to a `DirEnv`

conjToDirEnv :: ConjFormula -> DirEnv

conjToDirEnv = addConj emptyDirEnv

-- Test if a `DirEnv` makes an atomic formula true.

-- A diagonal is true iff both are zero, or both are true, or if

-- they are in the same partition

makesTrueAtomic :: DirEnv -> AtomicFormula -> Bool

(zeros,ones,diags) `makesTrueAtomic` af = case af of

Eq0 s -> s `elem` zeros

Eq1 s -> s `elem` ones

Diag s1 s2 -> s1 == s2 || bothIn zeros || bothIn ones || any bothIn diags

where bothIn set = s1 `elem` set && s2 `elem` set

-- A conjunction is true iff all of its atomic formulas are true

makesTrueConj :: DirEnv -> ConjFormula -> Bool

makesTrueConj dirs (Conj cf) = all (dirs `makesTrueAtomic`) cf

-- A disjunction is true iff one of its conjunctive formulas is true

makesTrueDisj :: DirEnv -> DisjFormula -> Bool

makesTrueDisj dirs (Disj df) = any (dirs `makesTrueConj`) df

-- Substitute `s'` for `s` in an atomic formula

substAtomic :: (Ident,Ident) -> AtomicFormula -> AtomicFormula

substAtomic (s,s') af = case af of

Eq0 x | s == x -> Eq0 s'

Eq1 x | s == x -> Eq1 s'

Diag x y -> Diag (if x == s then s' else x) (if y == s then s' else y)

otherwise -> af

-- Substitute into each atomic formula of the conjunction

substConj :: (Ident,Ident) -> ConjFormula -> ConjFormula

substConj (s,s') (Conj cf) = Conj $ map (substAtomic (s,s')) cf

-- Concatenation (logical AND) between two conjunctive formulas

meet :: ConjFormula -> ConjFormula -> ConjFormula

(Conj cf1) `meet` (Conj cf2) = Conj $ cf1 ++ cf2

3.3 Core language

In this file we first define the abstract syntax for terms/values and for top-levels
(i.e. declarations, definitions and examples). We then define some functions
to handle these syntactical aspects, e.g. getting free variables and checking
eventual term shadowing. Next we define contexts as lists of pairs of the
form (s,Decl ty), (s,Def ty def) or (s,Val v), along with some utility
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functions.

Source file CoreCTT.hs.

{-# LANGUAGE FlexibleInstances #-}

{-# LANGUAGE LambdaCase #-}

module CoreCTT where

import Data.Maybe (fromJust)

import Ident

import Interval

{- Syntax (terms/values) -}

data Term

= Var Ident

| Universe

{- Let-definition `[x:ty = e]t` -}

| TDef (Ident,Term,Term) Term

{- Π types -}

| Abst Ident Term Term

| App Term Term

{- Σ types -}

| Sigma Ident Term Term

| Pair Term Term

| Fst Term

| Snd Term

{- Coproducts -}

| Sum Term Term

| InL Term

| InR Term

-- fam f_0 f_1 x

| Split Term Term Term Term

{- Naturals -}

| Nat

| Zero

| Succ Term

-- fam c_0 c_s n

| Ind Term Term Term Term

{- Cubical -}

| I | I0 | I1

| Sys System

| Partial DisjFormula Term

| Restr System Term

-- fam phi i0 u base i

| Comp Term DisjFormula Term Term Term Term

{- For values only: -}
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| Closure Term Ctx

-- val type

| Neutral Value Value

-- Just for composition (wrap a value inside a term)

| TermV Value

deriving (Eq, Ord)

type Value = Term

newtype Program = Program [Toplevel]

data Toplevel = Definition Ident Term Term

| Declaration Ident Term

| Example Term

deriving (Eq, Ord)

-- Generate a fresh name starting from 'x'

newVar :: [Ident] -> Ident -> Ident

newVar used x

| x `elem` used = newVar used (Ident $ show x ++ "'")

| otherwise = x

-- For printing purposes: e.g. collectApps ((App (App f x_1) x_2) x_3) []

-- returns (f,[x_1,x_2,x_3])

collectApps :: Term -> [Term] -> (Term,[Term])

collectApps t apps = case t of

App t1 t2' -> collectApps t1 (t2' : apps)

otherwise -> (t,apps)

-- Generic class for objects (terms,values,top-levels,formulas,etc.)

-- which contain variables

class SyntacticObject a where

containsVar :: Ident -> a -> Bool

containsVar s x = s `elem` freeVars x

vars :: a -> [Ident]

freeVars :: a -> [Ident]

instance SyntacticObject Ident where

vars s = [s]

freeVars s = [s]

instance SyntacticObject System where

vars sys = concatMap vars (keys sys) ++ concatMap vars (elems sys)

freeVars = vars

-- For terms only and not for values (which means we don't

-- define `vars` and `freeVars` for closures and neutral values)

instance SyntacticObject Term where

vars = \case
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Var s -> [s]

Universe -> []

TDef (s,t,e) t' -> s : vars t ++ vars e ++ vars t'

Abst s t e -> s : vars t ++ vars e

App fun arg -> vars fun ++ vars arg

Sigma s t e -> s : vars t ++ vars e

Pair t1 t2 -> vars t1 ++ vars t2

Fst t -> vars t

Snd t -> vars t

Sum ty1 ty2 -> vars ty1 ++ vars ty2

InL t1 -> vars t1

InR t2 -> vars t2

Split ty f1 f2 x -> vars ty ++ vars f1 ++ vars f2 ++ vars x

Nat -> []

Zero -> []

Succ t -> vars t

Ind ty b s n -> vars ty ++ vars b ++ vars s ++ vars n

I -> []

I0 -> []

I1 -> []

Sys sys -> vars sys

Partial phi t -> vars phi ++ vars t

Restr sys t -> vars sys ++ vars t

Comp fam phi i0 u b i -> vars fam ++ vars phi ++ vars i0 ++ vars u

++ vars b ++ vars i

TermV v -> [] -- Dummy value (not necessary)

freeVars = \case

Var s -> [s]

Universe -> []

TDef (s,t,e) t' -> freeVars t ++ filter (/= s)

(freeVars e ++ freeVars t')

Abst s t e -> freeVars t ++ filter (/= s) (freeVars e)

App fun arg -> freeVars fun ++ freeVars arg

Sigma s t e -> freeVars t ++ filter (/= s) (freeVars e)

Pair t1 t2 -> freeVars t1 ++ freeVars t2

Fst t -> freeVars t

Snd t -> freeVars t

Sum ty1 ty2 -> freeVars ty1 ++ freeVars ty2

InL t1 -> freeVars t1

InR t2 -> freeVars t2

Split ty f1 f2 x -> freeVars ty ++ freeVars f1 ++ freeVars f2

++ freeVars x

Nat -> []

Zero -> []

Succ t -> freeVars t

Ind ty b s n -> freeVars ty ++ freeVars b ++ freeVars s

++ freeVars n

I -> []
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I0 -> []

I1 -> []

Sys sys -> freeVars sys

Partial phi t -> freeVars phi ++ freeVars t

Restr sys t -> freeVars sys ++ freeVars t

Comp fam phi i0 u b i -> freeVars fam ++ freeVars phi ++ freeVars i0

++ freeVars u ++ freeVars b ++ freeVars i

TermV v -> [] -- Dummy value (not necessary)

instance SyntacticObject AtomicFormula where

vars af = case af of

Eq0 s -> [s]

Eq1 s -> [s]

Diag s1 s2 -> [s1,s2]

freeVars = vars

instance SyntacticObject ConjFormula where

vars (Conj cf) = concatMap vars cf

freeVars = vars

instance SyntacticObject DisjFormula where

vars (Disj df) = concatMap vars df

freeVars = vars

checkTermShadowing :: [Ident] -> Term -> Bool

checkTermShadowing used term = case term of

Var _ -> True

Universe -> True

TDef (s,t,e) t' ->

s `notElem` used && checkTermShadowing used t &&

checkTermShadowing (if s == Ident "" then used else s : used) e &&

checkTermShadowing (if s == Ident "" then used else s : used) t'

Abst s t e -> s `notElem` used && checkTermShadowing used t &&

checkTermShadowing (if s == Ident "" then used else s : used) e

App fun arg -> checkTermShadowing used fun &&

checkTermShadowing used arg

Sigma s t e -> s `notElem` used && checkTermShadowing used t &&

checkTermShadowing (if s == Ident "" then used else s : used) e

Pair t1 t2 -> checkTermShadowing used t1 &&

checkTermShadowing used t2

Fst t -> checkTermShadowing used t

Snd t -> checkTermShadowing used t

Sum ty1 ty2 -> checkTermShadowing used ty1 &&

checkTermShadowing used ty2

InL t1 -> checkTermShadowing used t1

InR t2 -> checkTermShadowing used t2

Split ty f1 f2 x ->

checkTermShadowing used ty && checkTermShadowing used f1 &&

checkTermShadowing used f2 && checkTermShadowing used x
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Nat -> True

Zero -> True

Succ n -> checkTermShadowing used n

Ind ty b s n ->

checkTermShadowing used ty && checkTermShadowing used b &&

checkTermShadowing used s && checkTermShadowing used n

I -> True

I0 -> True

I1 -> True

Sys sys -> all (checkTermShadowing used) (elems sys)

Partial _ t -> checkTermShadowing used t

Restr sys t -> all (checkTermShadowing used) (elems sys) &&

checkTermShadowing used t

Comp fam _ i0 u b i ->

checkTermShadowing used fam && checkTermShadowing used i0 &&

checkTermShadowing used u && checkTermShadowing used b &&

checkTermShadowing used i

otherwise -> error "[checkTermShadowing] got non-term"

{- Printing functions are in 'Eval.hs' -}

type ErrorString = String

{- Generic association lists utilities -}

extend :: Ctx -> Ident -> CtxEntry -> Ctx

extend ctx s e = if s == Ident "" then ctx else (s,e) : ctx

keys :: [(k,a)] -> [k]

keys = map fst

elems :: [(k,a)] -> [a]

elems = map snd

at :: (Eq k) => [(k,a)] -> k -> a

al `at` s = fromJust $ lookup s al

{- Contexts -}

type Ctx = [(Ident,CtxEntry)]

data CtxEntry = Decl Term -- Type

| Def Term Term -- Type and definition

| Val Value -- Value binding for `eval`

deriving (Eq, Ord)

emptyCtx :: Ctx

emptyCtx = []
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-- Extract the value bindings from a context

getBindings :: Ctx -> [(Ident,Value)]

getBindings = concatMap $

\(s,entry) -> case entry of Val v -> [(s,v)]; _ -> []

-- Add interval value bindings of a conjunction to a context

-- It is used solely in evaluating composition for partial types

addConjBindings :: Ctx -> ConjFormula -> Ctx

addConjBindings ctx (Conj cf) = map getAtomicBinding cf ++ ctx

where getAtomicBinding :: AtomicFormula -> (Ident,CtxEntry)

getAtomicBinding = \case

Eq0 s -> (s,Val I0)

Eq1 s -> (s,Val I1)

Diag s1 s2 -> (s2,Val (Neutral (Var s2) I))

-- Shall not be called with values in the context

-- (it is used only in `removeFromCtx`)

instance SyntacticObject CtxEntry where

vars entry = case entry of

Decl t -> vars t

Def ty def -> vars ty ++ vars def

freeVars entry = case entry of

Decl t -> freeVars t

Def ty def -> freeVars ty ++ freeVars def

-- Remove an identifier from the context and also all the others

-- (recursively) which depend on it

removeFromCtx :: Ctx -> Ident -> Ctx

removeFromCtx ctx s = if s `elem` keys ctx then

let dep = map fst $ filter (\(_,entry) -> s `elem` freeVars entry) ctx

ctx' = filter (\(s',_) -> s /= s') ctx

in foldl removeFromCtx ctx' dep

else

ctx

{- Systems -}

type System = [(ConjFormula,Term)]

-- Get the disjunction of the (conjunctive) formulas of the system

getSystemFormula :: System -> DisjFormula

getSystemFormula = Disj . map fst

-- Utility `map` function for systems: it applies a function

-- to the values inside the system

mapSys :: (Value -> Value) -> System -> System

mapSys f = map (\(psi,v) -> (psi,f v))

-- Split a type into the form [phi]A, with `phi` eventually trivial
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-- It is used in the function `compTypes` of `TypeChecker.hs`

split :: Value -> (DisjFormula,Value)

split v = case v of

Partial phi ty -> (phi,ty)

Restr _ ty -> (fTrue,ty)

otherwise -> (fTrue,v)

3.4 Evaluation

In this file we first define the evaluation function, by recursion on the structure
of the terms; we also handle evaluation of formulas. Next we implement a
function to handle evaluation for each type eliminator (e.g. doApp for function
application, doSplit for the coproduct types eliminator), which have to handle
neutral values with eventually a partial or restriction type (see 1.4). Lastly we
implement the read-back function and the printing utilities.

Note that in this file the directions environment is not used, as it is needed
only during type-checking and conversion, when checking under a formula on
already evaluated terms.

Source file Eval.hs.

{-# LANGUAGE FlexibleInstances #-}

{-# LANGUAGE LambdaCase #-}

{-# LANGUAGE BlockArguments #-}

module Eval where

import Data.List (intercalate,nub,find)

import Data.Foldable (foldrM)

import Data.Maybe (mapMaybe,fromJust)

import Ident

import Interval

import CoreCTT

import Debug.Trace

-- For debug purposes only

debug :: Bool

debug = False

myTrace :: String -> a -> a

myTrace s x = if debug then trace s x else x

-- Retrieve the evaluated type of a variable from the context

lookupType :: Ident -> Ctx -> Value
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lookupType s [] = error $ "[lookupType] got unknown identifier " ++ show s

lookupType s ((s',entry):ctx) = if s == s' then

case entry of

Decl ty -> eval ctx ty

Def ty _ -> eval ctx ty

Val _ -> lookupType s ctx

else

lookupType s ctx

-- Evaluate a term in the given context

eval :: Ctx -> Term -> Value

eval ctx term = case term of

Var s -> case lookup s ctx of

Nothing -> error $ "[eval] not found var `" ++ show s ++ "` in ctx"

Just (Val v) -> v

Just (Decl ty) -> simplNeutralValue $ Neutral (Var s) (eval ctx ty)

Just (Def _ e) -> eval ctx e

Universe -> Universe

TDef (s,t,e) t' -> eval (extend ctx s (Def t e)) t'

Abst{} -> Closure term ctx

App e1 e2 -> doApply (eval ctx e1) (eval ctx e2)

Sigma{} -> Closure term ctx

Pair t1 t2 -> Pair (eval ctx t1) (eval ctx t2)

Fst t -> doFst (eval ctx t)

Snd t -> doSnd (eval ctx t)

Sum ty1 ty2 -> Sum (eval ctx ty1) (eval ctx ty2)

InL t1 -> InL (eval ctx t1)

InR t2 -> InR (eval ctx t2)

Split ty f1 f2 x ->

doSplit (eval ctx ty) (eval ctx f1) (eval ctx f2) (eval ctx x)

Nat -> Nat

Zero -> Zero

Succ t -> Succ (eval ctx t)

Ind ty base step n -> doInd (eval ctx ty) (eval ctx base)

(eval ctx step) (eval ctx n)

I -> I

I0 -> I0

I1 -> I1

Sys sys -> evalSystem ctx sys

Partial phi t -> foldPartial (evalDisjFormula ctx phi) (eval ctx t)

Restr sys t -> foldRestr (evalRestrSystem ctx sys) (eval ctx t)

Comp fam phi i0 u b i -> doComp ctx fam phi i0 u b i

-- Already evaluated term (used solely for `doComp`)

TermV v -> v

otherwise -> error $ "[eval] got " ++ show term

-- Evaluate a conjunctive formula

evalConjFormula :: Ctx -> ConjFormula -> Maybe ConjFormula

evalConjFormula ctx conj = conj'
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where

-- Get the bindings which concern the formula's variables

entries' = filter (\(s,_) -> s `elem` vars conj) (getBindings ctx)

-- Get only the last one of each binding

entries = map (\s -> fromJust $ find (\(s',_) -> s' == s) entries')

(nub $ keys entries')

-- Get the renamings from the entries (i.e. the ones of the form i -> j)

renamings = concatMap (\case { (s,Neutral (Var s') I) -> [(s,s')] ;

_ -> []}) entries

-- Apply renamings to the conjuction

renamedConj = foldr substConj conj renamings

-- Apply value substitutions to the renamed conjuction

vals = filter (\(_,v) -> v == I0 || v == I1) entries

conj' = foldrM evalConj renamedConj vals

-- Evaluate a single conjuction by replacing `s` with 0

-- Returns `Nothing` if the resulting formula is false

evalConj :: (Ident,Value) -> ConjFormula -> Maybe ConjFormula

evalConj (s,I0) conj@(Conj cf) =

if conjToDirEnv conj `makesTrueAtomic` Eq1 s -- Inconsistent cases

|| inconsistent (conjToDirEnv conj') then

Nothing

else

Just conj' -- Substitute into each atomic formula

where

conj' = Conj . nub $ concatMap (\case

Eq0 s' | s == s' -> [];

Diag s1 s2 -> if s == s1 && s1 == s2 then []

else [if s == s1 then Eq0 s2

else if s == s2 then Eq0 s1 else Diag s1 s2];

af -> [af]) cf

-- Same as before, now replacing `s` with 1

evalConj (s,I1) conj@(Conj cf) =

if conjToDirEnv conj `makesTrueAtomic` Eq0 s -- Inconsistent cases

|| inconsistent (conjToDirEnv conj') then

Nothing

else

Just conj' -- Substitute into each atomic formula

where

conj' = Conj . nub $ concatMap (\case

Eq1 s' | s == s' -> [];

Diag s1 s2 -> if s == s1 && s1 == s2 then []

else [if s == s1 then Eq1 s2

else if s == s2 then Eq1 s1 else Diag s1 s2];

af -> [af]) cf

-- Evaluate a disjunctive formula, by first checking if it contains

-- a true conjunction
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evalDisjFormula :: Ctx -> DisjFormula -> DisjFormula

evalDisjFormula ctx (Disj df) = if Conj [] `elem` df then

fTrue

else -- Otherwise evaluate each conjunction, disregarding the false ones

Disj $ mapMaybe (evalConjFormula ctx) df

-- Simplify cascading restriction types into one restriction type

-- E.g. [psi_1 -> t_1]([psi_2 -> t_2]([psi_3 -> t_3]A)) becomes

-- [psi_1 -> t_1 | psi_2 -> t_2 | psi_3 -> t_3]A

foldRestr :: System -> Value -> Value

foldRestr sys0 v0 = -- If the system if empty, return just the type

if null sys then v else Restr (nub sys) v

where

(sys,v) = foldRestr' sys0 v0

foldRestr' :: System -> Value -> (System,Value)

foldRestr' sys v = case v of

Restr sys' v' -> foldRestr' (sys ++ sys') v'

otherwise -> (sys,v)

-- Simplify cascading partial types into one partial type

-- E.g. [phi_1]([phi_2]([phi_3]A)) becomes

-- [phi /\ psi_2 /\ psi_3]A

foldPartial :: DisjFormula -> Value -> Value

foldPartial (Disj df0) v0 = -- If the formula is true, return just the type

if makesTrueDisj emptyDirEnv (Disj df) then

v

else -- `nub` removes duplicate formulas

Partial (Disj $ nub df) v

where

(df,v) = foldPartial' df0 v0

foldPartial' :: [ConjFormula] -> Value -> ([ConjFormula],Value)

foldPartial' df v = case v of

Partial (Disj df') v' -> foldPartial' (dnf df' df) v'

otherwise -> (df,v)

-- Get the conjuction of the two disjunctive formulas,

-- in disjunctive normal form

dnf :: [ConjFormula] -> [ConjFormula] -> [ConjFormula]

dnf df1 df2 = [cf1 `meet` cf2 | cf1 <- df1, cf2 <- df2]

-- Evaluate the system of a restriction type,

-- by dropping false formulas

evalRestrSystem :: Ctx -> System -> System

evalRestrSystem ctx sys =

concatMap (\(phi,t) -> evalConjFormula' phi (eval ctx t)) sys

where

-- Need to handle the case of false formulas

evalConjFormula' phi v = case evalConjFormula ctx phi of

Nothing -> []

Just cf -> [(cf,v)]
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-- Evaluate a system and eventually simplify it (recursively)

-- if there is a true formula

evalSystem :: Ctx -> System -> Value

evalSystem ctx sys =

case foldrM evalConjFormula' [] sys of

Left val -> val -- System has been simplified

Right sys' -> Sys sys' -- There were no true formulas

where

-- The following function gets the new pair (formula,term) and the

-- part of the system already evaluated. If the new formula is true,

-- it returns the given value using `Left`; otherwise, the new evaluated

-- system is returned inside `Right`

evalConjFormula' :: (ConjFormula,Term) -> System -> Either Value System

evalConjFormula' (psi,t) sys' = case evalConjFormula ctx psi of

Nothing -> Right sys -- False formula: nothing to add

Just (Conj []) -> Left $ eval ctx t -- True formula, return the value

Just cf -> Right $ (cf,eval ctx t) : sys' -- Otherwise, append

-- Simplify a neutral value if the type is a restriction type with a true

-- formula, otherwise do nothing.

-- `simplNeutralValue` is used only in evaluation.

simplNeutralValue :: Value -> Value

simplNeutralValue neu@(Neutral _ ty) = case ty of

Restr sys _ | any (isTrueConj . fst) sys ->

snd . fromJust $ find (isTrueConj . fst) sys

otherwise -> neu

-- Split the Abst/Sigma constructor and the arguments from a value

-- inside a closure

extract :: Value -> (Ident -> Term -> Term -> Value,Ident,Term,Term)

extract (Abst s t e) = (Abst ,s,t,e)

extract (Sigma s t e) = (Sigma,s,t,e)

extract v = error $ "[extract] got " ++ show v

-- Evaluate a closure, extending the context by assigning the variable to

-- the given value. In case of non-dependent abstractions, i.e. empty

-- variable, we don't need to extend the context

evalClosure :: Value -> Value -> Value

evalClosure (Closure (Abst s _ e) ctx) arg =

eval (if s == Ident "" then ctx else extend ctx s (Val arg)) e

evalClosure (Closure (Sigma s _ e) ctx) arg =

eval (if s == Ident "" then ctx else extend ctx s (Val arg)) e

evalClosure v arg = error $ "[evalClosure] got non-closure " ++ show v

++ " applied to " ++ show arg

-- Handler of `App` (function application, i.e. Π-type eliminator)

doApply :: Value -> Value -> Value

-- Standard case: do β-reduction
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doApply fun@(Closure Abst{} _) arg = evalClosure fun arg

-- Restricted abstraction case, which requires to apply the function

-- inside the restriction too

doApply (Restr sys fun@Closure{}) arg = foldRestr sys' (doApply fun arg)

where sys' = mapSys (`doApply` arg) sys

-- Standard neutral case

doApply fun@(Neutral _ fty@Closure{}) arg =

simplNeutralValue $ Neutral (App fun arg) (doApply fty arg)

-- Restricted neutral case

doApply fun@(Neutral _ (Restr sys cl@Closure{})) arg =

simplNeutralValue $ Neutral (App fun arg) (foldRestr sys' (doApply cl arg))

where sys' = mapSys (`doApply` arg) sys

-- System case

doApply (Sys sys) arg = Sys $ mapSys (`doApply` arg) sys

-- Partial type case

doApply fun@(Neutral _ (Partial phi cl@Closure{})) arg =

Neutral (App fun arg) (foldPartial phi (doApply cl arg))

doApply v arg = error $ "[doApply] got " ++ show v ++ ", " ++ show arg

-- Handler of `Fst` (i.e. Σ-type first projection)

doFst :: Value -> Value

doFst v = case v of

-- Standard case: do β-redution
Pair v1 _ -> v1

-- Stardard neutral case; need to compute the type

Neutral _ (Closure (Sigma _ t _) ctx) -> simplNeutralValue $ Neutral (Fst v)

(eval ctx t)

-- Restricted neutral case

Neutral x (Restr sys cl@(Closure (Sigma _ t _) ctx)) ->

simplNeutralValue $ Neutral (Fst (Neutral x cl)) (foldRestr sys' (eval ctx t))

where sys' = mapSys doFst sys

-- System case

Sys sys -> Sys $ mapSys doFst sys

-- Partial type case

Neutral x (Partial phi cl@(Closure (Sigma _ t _) ctx)) ->

Neutral (Fst (Neutral x cl)) (foldPartial phi (eval ctx t))

otherwise -> error $ "[doFst] got " ++ show v

-- Handler of `Snd` (i.e. Σ-type second projection)

doSnd :: Value -> Value

doSnd v = case v of

-- Standard case: do β-redution
Pair _ v2 -> v2

-- Stardard neutral case; need to compute the type

Neutral _ ty@(Closure Sigma{} _) -> simplNeutralValue $ Neutral (Snd v)

(evalClosure ty (doFst v))

-- Restricted neutral case

Neutral x (Restr sys cl@(Closure Sigma{} _)) ->

simplNeutralValue $ Neutral (Snd (Neutral x cl))
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(foldRestr sys' (evalClosure cl (doFst (Neutral x cl))))

where sys' = mapSys doSnd sys

-- System case

Sys sys -> Sys $ mapSys doSnd sys

-- Partial type case

Neutral x (Partial phi cl@(Closure Sigma{} _)) ->

Neutral (Snd (Neutral x cl))

(foldPartial phi (evalClosure cl (doFst (Neutral x cl))))

otherwise -> error $ "[doSnd] got " ++ show v

-- Handler of `Split` (i.e. (+)-type eliminator)

doSplit :: Value -> Value -> Value -> Value -> Value

doSplit fam f1 f2 x = case x of

-- Standard cases (left/right injection): do β-redution
InL x1 -> doApply f1 x1

InR x2 -> doApply f2 x2

-- Stardard neutral case; need to compute the type

Neutral _ (Sum _ _) -> simplNeutralValue $

Neutral (Split fam f1 f2 x) (doApply fam x)

-- Restricted neutral case

Neutral _ (Restr sys (Sum ty1 ty2)) -> simplNeutralValue $

Neutral (Split fam f1 f2 (Neutral x (Sum ty1 ty2)))

(foldRestr sys' (doApply fam x))

where sys' = mapSys (doSplit fam f1 f2) sys

-- System case

Sys sys -> Sys $ mapSys (doSplit fam f1 f2) sys

-- Partial type case

Neutral _ (Partial phi (Sum ty1 ty2)) ->

Neutral (Split fam f1 f2 (Neutral x (Sum ty1 ty2)))

(foldPartial phi (doApply fam x))

otherwise -> error $ "[doSplit] got " ++ show x

-- Handler of `Ind` (i.e. Nat eliminator)

doInd :: Value -> Value -> Value -> Value -> Value

doInd fam base step m = case m of

-- Standard base and inductive cases: do β-redution
Zero -> base

Succ n' -> doApply fun prev

where

fun = doApply step n'

prev = doInd fam base step n'

-- Stardard neutral case; need to compute the type

Neutral n Nat -> simplNeutralValue $ Neutral (Ind fam base step n)

(doApply fam (Neutral n Nat))

-- Restricted neutral case

Neutral n (Restr sys Nat) ->

simplNeutralValue $ Neutral (Ind fam base step n)

(foldRestr sys' (doApply fam (Neutral n Nat)))

where sys' = mapSys (doInd fam base step) sys
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-- System case

Sys sys -> Sys $ mapSys (doInd fam base step) sys

-- Partial type case

Neutral n (Partial phi Nat) ->

Neutral (Ind fam base step n) (foldPartial phi (doApply fam (Neutral n Nat)))

otherwise -> error $ "[doInd] got " ++ show m

-- Utility function to handle eventually empty strings

ifEmpty :: Ident -> String -> Ident

ifEmpty (Ident "") s = Ident s

ifEmpty i _ = i

{- Handler of composition (which is not an eliminator!).

The problem with composition is that we need to pattern-match inside

a closure (`famV`); when calling `doComp` recursively, we must

read-back terms, but we cannot do so for the type family (otherwise

it would then be evaluated under the general context and not in its own).

Therefore, we introduce a wrapper `TermV` which makes it possible to

include values (closures) inside terms, so that when the whole term is

evaluated, the closure is evaluated with the right context. The wrapper

`TermV` is used solely in the evaluation of composition.

-}

doComp :: Ctx -> Term -> DisjFormula -> Term -> Term -> Term -> Term -> Value

doComp ctx fam phi i0 u b i =

if isTrue phiV then -- 1° trivial case: `phi` is True

doApply uV iV

else if i0V == iV then -- 2° trivial case: i = i_0 (no need for `conv`)

bV

else

-- Fresh variables: `var` to pattern-match the type family

-- `var2` to handle the partially defined `u`

let var = newVar (keys ctx) (Ident "_i")

var2 = case uV of

Closure (Abst v _ _) _ -> newVar (keys ctx) (ifEmpty v "j")

emptySys = Abst (Ident "") I (Sys [])

ctxOf v = case v of Closure _ gctx -> gctx

-- Evaluate the type-family, pattern-matching inside the closure

in case doApply famV (Neutral (Var var) I) of

-- Π-type `[x:ty]e`, with `ty` a type

cl@(Closure (Abst x ty e) ctx') | eval ctx' ty /= I ->

Closure (Abst yi tyc comp) ctx

where

-- Variable of the target type `tyc`, i.e. `ty(i)`

yi = newVar (var : var2 : keys ctx) (ifEmpty x "u")

-- Transport of that variable at `i0` and `var'

yt0 = Comp (TermV fam1) fFalse i emptySys (Var yi) i0

yt = Comp (TermV fam1) fFalse i emptySys (Var yi) (Var var)

-- Resulting composition

comp = Comp (TermV fam2) phi i0 u' (App b yt0) i
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-- Type families

fam1 = Closure (Abst var I ty) ctx'

fam2 = Closure (Abst var I (App (Abst x ty e) yt)) ctx'

-- Target type: `ty(i)`

tyc = readBack (keys ctx) $ case doApply famV iV of

Closure (Abst _ ty' _) ctx'' -> eval ctx'' ty'

-- Apply functions to `yt` inside `u`

u' = case isFalse phiV of

True -> u

False -> Abst var2 I (App (App u (Var var2)) yt)

-- Π-type `[x:I]e`

cl@(Closure (Abst x ty e) ctx') | eval ctx' ty == I ->

Closure (Abst x' I comp) ctx

where

-- Fresh nterval variable

x' = newVar (var : var2 : keys ctx) (ifEmpty x "i")

-- Resulting composition

comp = Comp (TermV fam') phi i0 u' (App b (Var x')) i

fam' = Closure (Abst var I e) ctx'

-- Apply functions to `x'` inside `u`

u' = case isFalse phiV of

True -> u

False -> Abst var2 I (App (App u (Var var2)) (Var x'))

-- Σ-type `<x:ty>e`

cl@(Closure (Sigma _ ty _) ctx') -> Pair c1 c2

where

-- Composition on each pair

c1 = doComp ctx (TermV fam1) phi i0 u0 (Fst b) i

c2 = doComp ctx (TermV fam2) phi i0 u1 (Snd b) i

-- The type family of `c2` needs the comp. on the first component

fam1 = Closure (Abst var I ty) ctx'

fam2 = Closure (Abst var I ty2) ctx'

ty2 = readBack (keys ctx) $ evalClosure cl c1'

c1' = doComp ctx (TermV fam1) phi i0 u0 (Fst b) (Var var)

-- Apply projections inside `u`

(u0,u1) = case isFalse phiV of

True -> (u,u)

False -> (Abst var2 I (Fst (App u (Var var2))),

Abst var2 I (Snd (App u (Var var2))))

-- Coproduct `ty1 + ty2`

Sum ty1 ty2 ->

-- If `b` is neutral, the result is neutral

case bV of

Neutral{} -> doNeutralComp

otherwise -> inj comp

where (inj,bV',ty) = case bV of
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-- Extract the injection, the inner value and the type

InL b1 -> (InL,b1,ty1)

InR b2 -> (InR,b2,ty2)

-- Resulting composition

comp = doComp ctx (TermV fam') phi i0 u' b' i

b' = readBack (keys ctx) bV'

fam' = Closure (Abst var I ty') (ctxOf famV)

ty' = readBack (keys (ctxOf famV)) ty

-- Remove the outer injections from `u`

u' = case isFalse phiV of

True -> u

False -> Abst var2 I (readBack (keys ctx) sys')

where app = App u (Var var2)

sys' = case eval (extend ctx var2 (Decl I)) app of

Sys sysV -> Sys $ map (\case {(psi,InL q) -> (psi,q);

(psi,InR q) -> (psi,q)}) sysV

InL q -> q

InR q -> q

-- Naturals

Nat -> case bV of

Zero -> Zero

Succ b' -> Succ $ doComp ctx fam phi i0 u' b' i

-- Remove the outer `S` from `u`

where u' = case isFalse phiV of

True -> u

False -> Abst var2 I (readBack (keys ctx) sys')

where app = App u (Var var2)

sys' = case eval (extend ctx var2 (Decl I)) app of

Sys sysV -> Sys $

map (\case (psi,Succ m) -> (psi,m)) sysV

Succ m -> m

Neutral{} -> doNeutralComp

-- Partial type `[phi]ty`

Partial (Disj df) tyV ->

if var `elem` vars (Disj df) then

error $ "Type family '" ++ show (readBack (keys ctx) famV)

++ "' is not fibrant"

else

sysComp

where

-- Type family (without the formula)

fam' = Closure (Abst var I ty') (ctxOf famV)

ty' = readBack (keys (ctxOf famV)) tyV

-- Obtain a system will a composition for each conjunction

-- If the system has just one value, return it

sysCompVals = map helperComp df

sysComp = if length df == 1 then
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head sysCompVals

else

Sys $ zip df sysCompVals

-- Do composition on each conjunction

helperComp :: ConjFormula -> Value

helperComp conj = doComp (addConjBindings ctx conj)

(TermV fam') phi i0 u (b' conj) i

-- Eventually simplify `b` (as it may have already been evaluated)

b' :: ConjFormula -> Value

b' conj = readBack (keys ctx) $ case bV of

-- A formula is true

Sys sysU | any ((conjToDirEnv conj `makesTrueConj`) . fst) sysU

-> snd . fromJust $

find ((conjToDirEnv conj `makesTrueConj`) . fst) sysU

_ -> bV

-- Restriction type `[phi]ty`

Restr sysR tyV ->

if var `elem` concatMap vars (keys sys) then

error $ "Type family '" ++ show (readBack (keys ctx) famV)

++ "' is not fibrant"

else

doComp ctx (TermV fam') formula i0 u' b i

where

-- Get the new formula (without the restriction)

formula = Disj $ phi' ++ psis

phi' = case phi of Disj ff -> ff

psis = keys sysR

-- Type family

fam' = Closure (Abst var I ty') (ctxOf famV)

ty' = readBack (keys (ctxOf famV)) tyV

--ty' = readBack (keys ctx) tyV

u' = Abst var2 I (Sys sys')

-- Concatenate the two systems

sys' = map (\conj -> (conj,App u (Var var2))) phi'

++ case doApply famV (Neutral (Var var2) I) of

Restr sys'' _ ->

mapSys (TermV . readBack (keys ctx)) sys''

-- Neutral type family; the result of the composition is neutral too

otherwise -> doNeutralComp

where

-- Values computed for each argument (remember that Haskell is lazy!)

famV = eval ctx fam

phiV = evalDisjFormula ctx phi

i0V = eval ctx i0

uV = eval ctx u

bV = eval ctx b

iV = eval ctx i
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-- Compute the type of the composition, and prepare the neutral value

doNeutralComp = simplNeutralValue $

Neutral (Comp famV phiV i0V uV bV iV) (eval ctx compTy)

sys = getCompSys phi i0 u b i

compTy = Restr sys (App fam i)

-- Get the system of the restriction type of a composition

getCompSys :: DisjFormula -> Term -> Term -> Term -> Term -> System

getCompSys (Disj df) i0 u b i = eq ++ map (\conj -> (conj,App u i)) df

where

-- Extract the variables from eventual values

i' = case i of { Neutral (Var x) _ -> Var x ; _ -> i }

i0' = case i0 of { Neutral (Var x) _ -> Var x ; _ -> i0 }

-- Translate `i = i0` into a real formula

eq = case (i0',i') of

(I0,I0) -> [(Conj [],b)]

(I0,I1) -> []

(I0,Var s) -> [(Conj [Eq0 s],b)]

(Var s,I0) -> [(Conj [Eq0 s],b)]

(Var s,I1) -> [(Conj [Eq1 s],b)]

(Var s,Var s') -> [(Conj [Diag s s'],b)]

(I1,I0) -> []

(I1,I1) -> [(Conj [],b)]

(I1,Var s) -> [(Conj [Eq1 s],b)]

_ -> error $ "[getCompSys] got " ++ show (i,i0)

-- Read-back function which converts values back into terms

-- The first argument is the list of already used names

-- The only non-trivial case is that of closures

readBack :: [Ident] -> Value -> Term

readBack used val = case val of

App fun arg -> App (readBack used fun) (readBack used arg)

Succ v -> Succ (readBack used v)

Fst v -> Fst (readBack used v)

Snd v -> Snd (readBack used v)

Pair v1 v2 -> Pair (readBack used v1) (readBack used v2)

Sum v1 v2 -> Sum (readBack used v1) (readBack used v2)

InL v -> InL (readBack used v)

InR v -> InR (readBack used v)

Split ty f1 f2 x -> Split (readBack used ty) (readBack used f1)

(readBack used f2) (readBack used x)

Sys sys -> Sys $ mapSys (readBack used) sys

Partial phi ty -> foldPartial phi (readBack used ty)

Restr sys ty -> foldRestr (mapSys (readBack used) sys) (readBack used ty)

Ind ty b e n -> Ind (readBack used ty) (readBack used b) (readBack used e)

(readBack used n)

Comp fam phi i0 u b i -> Comp (readBack used fam) phi (readBack used i0)

(readBack used u) (readBack used b) (readBack used i)

-- Closure case: first evaluate the body with a fresh name, then read-back
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cl@(Closure f ctx) -> let

-- `constr` is `Abst` or `Sigma`

(constr,s,t,e) = extract f

s' = newVar used s

eVal = evalClosure cl (Neutral (Var s') (eval ctx t))

e' = readBack (s' : used) eVal

t' = readBack used (eval ctx t)

in constr s' t' e'

-- For neutrals, read-back the value, ignoring the type

Neutral v _ -> readBack used v

otherwise -> val

-- Normalization means first evaluating and then reading-back

normalize :: Ctx -> Term -> Term

normalize ctx e = readBack (keys ctx) (eval ctx e)

{- Printing utilities (should be in AbsCTT but these need 'readBack') -}

-- Print function for a term or value (which is read-back into

-- a term, except when debugging)

instance Show Term where

show t = printTerm' 0 (if debug then t else readBack [] t)

-- Helper function; the first argument `i` measures the depth

-- of the term (but is reset in some cases), which is used to

-- avoid unnecessary parentheses

printTerm' :: Int -> Term -> String

printTerm' i = \case

Var s -> show s

Universe -> "U"

TDef (s,t,e) t' ->

"[" ++ show s ++ ":" ++ printTerm' 0 t ++ " = "

++ printTerm' 0 e ++ "]" ++ printTerm' 0 t'

Abst s t e -> par1 ++ abstS ++ par2

where abstS = if s == Ident "" || not (containsVar s e)

then -- A -> B (no dependency)

printTerm' (i+1) t ++ " -> " ++ printTerm' 0 e

else

"[" ++ show s ++ ":" ++ printTerm' 0 t ++ "]" ++ printTerm' 0 e

Sigma s t e -> par1 ++ abstS ++ par2

where abstS = if s == Ident "" || not (containsVar s e)

then -- A * B (no dependency)

printTerm' (i+1) t ++ " * " ++ printTerm' 0 e

else

"<" ++ show s ++ ":" ++ printTerm' 0 t ++ ">"

++ printTerm' 0 e

Pair t1 t2 -> par1 ++ printTerm' i t1 ++ "," ++ printTerm' i t2 ++ par2

Fst t -> par1 ++ printTerm' (i + 1) t ++ ".1" ++ par2

Snd t -> par1 ++ printTerm' (i + 1) t ++ ".2" ++ par2
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Sum ty1 ty2 -> par1 ++ printTerm' (i + 1) ty1 ++ " + "

++ printTerm' (i + 1) ty2 ++ par2

InL t1 -> par1 ++ "inl " ++ printTerm' (i + 1) t1 ++ par2

InR t2 -> par1 ++ "inr " ++ printTerm' (i + 1) t2 ++ par2

Split ty f1 f2 x -> par1 ++ "split " ++ printTerm' (i+1) ty ++ " "

++ printTerm' (i+1) f1 ++ " " ++ printTerm' (i+1) f2 ++ " "

++ printTerm' (i+1) x ++ par2

App fun arg -> par1 ++ printTerm' (i+1) inner

++ " " ++ unwords printedArgs ++ par2

where (inner,args) = collectApps (App fun arg) []

printedArgs = map (printTerm' (i+1)) args

Nat -> "N"

Zero -> "Z"

Succ t -> par1 ++ "S " ++ printTerm' (i+1) t ++ par2

Ind ty b s n -> par1 ++ "ind " ++ printTerm' (i+1) ty ++ " "

++ printTerm' (i+1) b ++ " " ++ printTerm' (i+1) s ++ " "

++ printTerm' (i+1) n ++ par2

I -> "I"

I0 -> "0"

I1 -> "1"

Sys sys -> showSystem sys

Partial phi t -> "[" ++ show phi ++ "]" ++ printTerm' (i+1) t

-- If the restriction is empty, don't print it, otherwise it

-- could be mistaken for a partial type with false formula

Restr sys t -> (if null sys then "" else showSystem sys)

++ printTerm' (i+1) t

Comp fam phi i0 u b i' -> par1 ++ "comp " ++ printTerm' (i+1) fam

++ " (" ++ show phi ++ ") " ++ printTerm' (i+1) i0 ++ " "

++ printTerm' (i+1) u ++ " " ++ printTerm' (i+1) b

++ " " ++ printTerm' (i+1) i' ++ par2

-------- Used only when debugging, to print proper values

Closure cl _ -> "Cl(" ++ show cl ++ ")"

Neutral v t -> "N{" ++ printTerm' i v ++ "}:" ++ printTerm' (i+1) t

TermV v -> show v

-- Parentheses are not needed if `i` is zero

where (par1,par2) = if i == 0 then ("","") else ("(",")")

-- Print a context (in one line)

showCtx :: Ctx -> String

showCtx ctx = "[" ++ intercalate ", " (map showEntry (reverse ctx)) ++ "]"

-- Print a single context entry

showEntry :: (Ident,CtxEntry) -> String

showEntry (s,Decl ty) = show s ++ " : " ++ show ty

showEntry (s,Def ty val) = show s ++ " : " ++ show ty ++ " = " ++ show val

showEntry (s,Val val) = show s ++ " => " ++ show val

-- Print a system

showSystem :: System -> String
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showSystem sys = "[" ++ sysS ++ "]"

where sysS = intercalate " | " $

map (\(ff,t) -> show ff ++ " -> " ++ show t) sys

3.5 Conversion

In this file we implement the αη-conversion predicate between two values,
which are assumed to have the same type. This predicate is used only during
type-checking, and not in evaluation.

The convertibility predicate uses the directions environment dirs given by the
type-checker; we must then handle the case of systems [ψ1→ v1, . . . , ψn→ vn]
and neutral values of the form kA[ψ1→v1,...,ψn→vn], where one of the formulas
ψi becomes true under dirs, reducing them to vi. For this purpose, we have
implemented a function called simpl.

Source file Conv.hs.

{-# LANGUAGE FlexibleInstances #-}

module Conv where

import Data.List (find)

import Data.Maybe (fromJust)

import Ident

import Interval

import CoreCTT

import Eval

-- Generic class for objects that allow a notion of α-conversion
class Convertible a where

conv :: [Ident] -> DirEnv -> a -> a -> Bool

-- Check convertibility under a conjunctive formula

-- If the formula is false, the values are trivally convertible

convPartialConj :: [Ident] -> ConjFormula -> DirEnv -> Value -> Value -> Bool

convPartialConj used conj dirs v1 v2 =

let dirs' = addConj dirs conj

in inconsistent dirs' || conv used dirs' v1 v2

-- Two values are convertible under a disjunctive formula iff

-- they are so under each conjunction

convPartialDisj :: [Ident] -> DisjFormula -> DirEnv -> Value -> Value -> Bool

convPartialDisj used (Disj df) dirs v1 v2 =

all (\conj -> convPartialConj used conj dirs v1 v2) df

-- Check if two Π/Σ-abstractions are of the same kind
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sameKind :: Term -> Term -> Bool

sameKind Abst{} Abst{} = True

sameKind Sigma{} Sigma{} = True

sameKind _ _ = False

{- The following functions are used to simplify neutral values

that may become non-neutral under the added constraints in `dirs`.

They are used only during `conv`, and NOT during `eval`. -}

-- Check if a restriction type contains a true formula

-- under the directions environment `dirs`

isSimplRestr :: DirEnv -> Value -> Bool

isSimplRestr dirs ty = case ty of

Restr sys _ -> isSimplSys dirs sys

otherwise -> False

-- Simplify a restriction type if it contains a true formula

-- under the directions environment `dirs`

simplRestr :: DirEnv -> Value -> Value

simplRestr dirs (Restr sys _) = simplSys dirs sys

-- Check if a system contains a true formula

-- under the directions environment `dirs`

isSimplSys :: DirEnv -> System -> Bool

isSimplSys dirs = any ((dirs `makesTrueConj`) . fst)

-- Simplify a system if it contains a true formula

-- under the directions environment `dirs`

simplSys :: DirEnv -> System -> Value

simplSys dirs sys = snd . fromJust $

find ((dirs `makesTrueConj`) . fst) sys

-- Simplify a system or neutral value if possibile, otherwise do nothing

simpl :: DirEnv -> Value -> Value

simpl dirs (Sys sys) | isSimplSys dirs sys = simplSys dirs sys

simpl dirs (Neutral _ ty) | isSimplRestr dirs ty = simplRestr dirs ty

simpl _ v = v

-- Check if the type can be simplified; in that case two values

-- of that type are automatically convertible, because they

-- shall reduce to the same value. That is, we don't need

-- to look inside the terms, i.e. we can ignore the proof

proofIrrelevant :: DirEnv -> Value -> Bool

proofIrrelevant dirs ty = case ty of

Restr sys ty' -> isSimplRestr dirs ty

|| proofIrrelevant dirs ty'

Closure cl ctx -> let

-- Fresh variable to evaluate closures

varV :: Ident -> Value -> CtxEntry
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varV s t = Val $ Neutral (Var $ newVar (keys ctx) s) (eval ctx t)

in case cl of

-- Π-types: codomain proof irrelevant

Abst s t e -> proofIrrelevant dirs

(eval (extend ctx s (varV s t)) e)

-- Σ-types: both components proof irrelevant

Sigma s t e -> proofIrrelevant dirs (eval ctx t) &&

proofIrrelevant dirs (eval (extend ctx s (varV s t)) e)

otherwise -> False

-- αη convertibility for values, which are supposed to have the

-- same type. For efficiency, we first test exact syntactical equality

instance Convertible Value where

conv used dirs v1 v2 =

v1 == v2 || let cnv = conv used dirs in case (v1,v2) of

(Universe,Universe) -> True

-- Π/Σ closures

(Closure cl1 ctx1,Closure cl2 ctx2) | sameKind cl1 cl2 -> let

(_,s1,t1,_) = extract cl1

(_,_ ,t2,_) = extract cl2

var = newVar used s1

t1V = eval ctx1 t1

t2V = eval ctx2 t2

e1' = evalClosure v1 (Neutral (Var var) t1V)

e2' = evalClosure v2 (Neutral (Var var) t2V)

in cnv t1V t2V && conv (var : used) dirs e1' e2'

-- η-rule for Π (first case)

(Closure (Abst s1 t1 _) ctx1,Neutral _ (Closure Abst{} _)) -> let

var = newVar used s1

t1V = eval ctx1 t1

e1' = evalClosure v1 (Neutral (Var var) t1V)

e2' = doApply v2 (Neutral (Var var) t1V)

in conv (var : used) dirs e1' e2'

-- η-rule for Π (second case)

(Neutral _ (Closure Abst{} _),Closure (Abst s2 t2 _) ctx2) -> let

var = newVar used s2

t2V = eval ctx2 t2

e1' = doApply v1 (Neutral (Var var) t2V)

e2' = evalClosure v2 (Neutral (Var var) t2V)

in conv (var : used) dirs e1' e2'

{- Sigma types -}

(Fst v,Fst v') -> cnv v v'

(Snd v,Snd v') -> cnv v v'

(Pair vp1 vp1',Pair vp2 vp2') -> cnv vp1 vp2 &&

cnv vp1' vp2'

-- η-rule for Σ (first case)

(vp,Pair v v') -> cnv (doFst vp) v &&

cnv (doSnd p) v'

-- η-rule for Σ (second case)
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(Pair v v',vp) -> cnv v (doFst vp) &&

cnv v' (doSnd vp)

{- Coproduct types -}

(Sum ty1 ty2,Sum ty1' ty2') -> cnv ty1 ty1' && cnv ty2 ty2'

(InL v,InL v') -> cnv v v'

(InR v,InR v') -> cnv v v'

{- Naturals -}

(Nat,Nat) -> True

(Zero,Zero) -> True

(Succ n1,Succ n2) -> cnv n1 n2

{- Cubical -}

(I,I) -> True

(I0,I0) -> True

(I1,I1) -> True

-- Systems. We have to check is the system is simplifiable

-- to avoid an infinite loop

(Sys sys,_) | isSimplSys dirs sys ->

cnv (simpl dirs v1) v2

(_,Sys sys) | isSimplSys dirs sys ->

cnv v1 (simpl dirs v2)

(Sys sys,Sys sys') -> conv used dirs sys sys'

(Partial phi v,Partial phi' v') -> eqFormulas dirs phi phi' &&

cnv v v'

(Restr sys t,Restr sys' t') -> conv used dirs sys sys' && cnv t t'

{- Values inside the `Neutral` wrapper -}

(Var s1,Var s2) -> s1 == s2

(App f1 a1,App f2 a2) -> cnv f1 f2 && cnv a1 a2

(Ind ty1 b1 s1 n1,Ind ty2 b2 s2 n2) ->

cnv ty1 ty2 && cnv b1 b2 &&

cnv s1 s2 && cnv n1 n2

(Split ty1 f1 g1 x1,Split ty2 f2 g2 x2) -> cnv ty1 ty2

&& cnv f1 f2 && cnv g1 g2 && cnv x1 x2

(Comp fam1 phi1 i01 u1 b1 i1,Comp fam2 phi2 i02 u2 b2 i2) ->

cnv fam1 fam2 && eqFormulas dirs phi1 phi2 &&

cnv i01 i02 && cnv u1 u2 && cnv b1 b2 && cnv i1 i2

-- Interval names

(Neutral (Var x1) I,Neutral (Var x2) I) ->

dirs `makesTrueAtomic` Diag x1 x2

(Neutral (Var x1) I,I0) ->

dirs `makesTrueAtomic` Eq0 x1

(Neutral (Var x1) I,I1) ->

dirs `makesTrueAtomic` Eq1 x1

(I0,Neutral (Var x2) I) ->

dirs `makesTrueAtomic` Eq0 x2

(I1,Neutral (Var x2) I) ->

dirs `makesTrueAtomic` Eq1 x2

{- Neutrals -}

-- Simplest case: both neutral, with proof irrelevant type

(Neutral v ty,Neutral v' _) | proofIrrelevant dirs ty -> True
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-- One value neutral with simplifiable restriction type,

-- the other value not neutral

(Neutral _ ty1,_) | isSimplRestr dirs ty1 ->

cnv (simpl dirs v1) v2

(_,Neutral _ ty2) | isSimplRestr dirs ty2 ->

cnv v1 (simpl dirs v2)

-- Type is not a simplifiable restriction type,

-- we must look inside the term (or proof)

(Neutral v _,Neutral v' _) -> cnv v v'

-- No other cases

otherwise -> False

-- Convertibility between two systems

instance Convertible System where

conv used dirs sys1 sys2 =

eqFormulas dirs (getSystemFormula sys1) (getSystemFormula sys2)

&& all (\(conj,t1,t2) -> convPartialConj used conj dirs t1 t2) meets

where meets = [(conj1 `meet` conj2, sys1 `at` conj1, sys2 `at` conj2) |

conj1 <- keys sys1, conj2 <- keys sys2]

3.6 Type-checking

In this file we implement the bidirectional type checker, made up of the two
functions inferType and checkType; the former gets a term as input and
returns the evaluated type as output, whereas the latter gets as input a term
and the evaluated type, and returns a boolean. To be more precise, the two
functions use the Either monad to handle errors, using Left err to report an
error and quit, and Right v to successfully return a value of the specified type.

Source file TypeChecker.hs.

module TypeChecker where

import Control.Monad

import Ident

import Interval

import CoreCTT

import Eval

import Conv

-- Infer the type of a term, in the given context and directions environment

inferType :: Ctx -> DirEnv -> Term -> Either ErrorString Value

inferType ctx dirs term = case term of

-- Variables: look up the type in the context

Var s -> Right $ lookupType s ctx

-- Universe
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Universe -> Right Universe

-- Function application: the type of the function is inferred

App fun arg -> do

funTy <- inferType ctx dirs fun

-- Handle restriction and partial types: `box` is used

-- to put the resulting type in the eventual restriction

-- or partial type

let (funTy',box) = case funTy of

Restr sys v -> (v,makeRestr sys)

Partial phi v -> (v,makePartial phi)

otherwise -> (funTy,curry snd)

makeRestr :: System -> Value -> Value -> Value

makeRestr sys val = foldRestr $ mapSys (`doApply` val) sys

makePartial :: DisjFormula -> Value -> Value -> Value

makePartial phi _ = foldPartial phi

-- The type must be a Π-type

case funTy' of

c@(Closure (Abst _ t _) ctx1) -> do

checkType ctx dirs arg (eval ctx1 t)

let argVal = eval ctx arg

return $ box argVal (doApply c argVal)

otherwise -> Left $

"term '" ++ show fun ++ "' has type '" ++ show funTy

++"' , which is not a product"

-- First projection: the type of the argument is inferred

Fst p -> do

ty <- inferType ctx dirs p

-- Handle restriction and partial types

let (ty',box) = case ty of

Restr sys t -> (t,makeRestr sys)

Partial phi v -> (v,foldPartial phi)

otherwise -> (ty,id)

makeRestr :: System -> Value -> Value

makeRestr = foldRestr . mapSys doFst

-- The type must be a Σ-type
case ty' of

Closure (Sigma _ t _) ctx1 -> do

return $ box (eval ctx1 t)

otherwise -> Left $

"term '" ++ show term ++ "' has type '" ++ show ty

++ "' , which is not a sum"

-- Second projection: the type of the argument is inferred

Snd p -> do

ty <- inferType ctx dirs p

--Handle restriction and partial types

let (ty',box) = case ty of

Restr sys t -> (t,makeRestr sys)
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Partial phi v -> (v,foldPartial phi)

otherwise -> (ty,id)

makeRestr :: System -> Value -> Value

makeRestr = foldRestr . mapSys doSnd

-- The type must be a Σ-type
case ty' of

c@(Closure Sigma{} ctx1) -> do

return . box $ evalClosure c (doFst $ eval ctx p)

otherwise -> Left $

"term '" ++ show term ++ "' has type '" ++ show ty

++ "' , which is not a sum"

-- Coproduct eliminator: the type of the argument is inferred

Split fam f1 f2 x -> do

ty <- inferType ctx dirs x

--Handle restriction and partial types

let (ty',box) = case ty of

Restr sys t -> (t,makeRestr sys)

Partial phi v -> (v,foldPartial phi)

otherwise -> (ty,id)

famV = eval ctx fam

makeRestr :: System -> Value -> Value

makeRestr = foldRestr . mapSys

(doSplit famV (eval ctx f1) (eval ctx f2))

-- The type must be a coproduct

case ty' of

Sum{} -> do

let sty@(Sum sty1 sty2) = readBack (keys ctx) ty'

var = newVar (keys ctx) (Ident "a")

checkType ctx dirs fam

(Closure (Abst (Ident "_") sty Universe) ctx)

checkType ctx dirs f1

(eval ctx $ Abst var sty1 (App fam (InL (Var var))))

checkType ctx dirs f2

(eval ctx $ Abst var sty2 (App fam (InR (Var var))))

return . box $ eval ctx (App fam x)

otherwise -> Left $ "expected a sum type, got term '" ++ show x

++ "' of type '" ++ show ty ++ "' instead"

-- Naturals

Nat -> Right Universe

Zero -> Right Nat

Succ n -> do

checkType ctx dirs n Nat

Right Nat

-- Induction for naturals

Ind fam base step n -> do

-- Check that `n` is a natural (eventually partial/restricted)
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nTyVal <- inferType ctx dirs n

isNat n nTyVal

-- Check that `fam` has type N -> U

checkType ctx dirs fam (makeFunTypeVal Nat Universe)

-- Handle restriction and partial types

let box = case nTyVal of

Restr sys Nat -> makeRestr sys

Partial phi _ -> foldPartial phi

Nat -> id

famV = eval ctx fam

makeRestr :: System -> Value -> Value

makeRestr = foldRestr . mapSys

(doInd famV (eval ctx base) (eval ctx step))

-- Evaluate the type-family `fam`, checking that `base` has

-- type `fam Z`

let tyVal = eval ctx fam

tyVal0 = doApply tyVal Zero

checkType ctx dirs base tyVal0

-- Checking that the "inductive step" `step` has type

-- [n : nat] fam n -> fam (suc n)

let varname = newVar (keys ctx) (Ident "n")

var = Var varname

ctx' = extend ctx varname (Decl Nat)

checkType ctx dirs step (eval ctx'

(Abst varname Nat

(Abst (Ident "") (App fam var)

(App fam (Succ var)))

)) -- [n : nat] fam n -> fam (suc n)

return . box $ doApply tyVal (eval ctx n)

-- Interval endpoints

I0 -> Right I

I1 -> Right I

-- Composition

Comp fam phi@(Disj df) i0 u b i -> do

-- Checking the type-family `fam`, point `i_0` and formula `phi`

checkType ctx dirs fam (makeFunTypeVal I Universe) -- I -> U

checkType ctx dirs i0 I

checkDisjFormula ctx phi

-- Checking that `u` has the correct type

let var = newVar (keys ctx) (Ident "_i")

checkType ctx dirs u (eval (extend ctx var (Decl I))

(Abst var I (Partial phi (App fam (Var var)))))

-- Checking that `b` has type `[phi -> u i0](fam i0)`
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checkType ctx dirs b $

eval ctx (Restr (map (\psi -> (psi,App u i0)) df) (App fam i0))

-- Return the evaluated type, without the restriction if it's empty

let sys = getCompSys phi i0 u b i

return $ eval ctx $ (if null sys then id else Restr sys) (App fam i)

-- Failed type inference

_ -> Left $ "don't know how to infer type of '" ++ show term ++ "'"

-- Check if a term has Nat type

isNat :: Term -> Value -> Either ErrorString ()

isNat _ Nat = Right ()

isNat _ (Restr _ Nat) = Right ()

isNat _ (Partial _ Nat) = Right ()

isNat t v = Left $ "expected type nat, got term '" ++ show t ++

"' of type '" ++ show v ++ "' instead"

-- Utility function to get type values of the form A -> B

makeFunTypeVal :: Term -> Term -> Value

makeFunTypeVal ty e = eval emptyCtx (Abst (Ident "") ty e)

-- Check the type of a term under a conjunction

-- If the conjunction is false, type-check is trivially true

checkTypePartialConj :: ConjFormula -> Ctx -> DirEnv -> Term

-> Value -> Either ErrorString ()

checkTypePartialConj conj ctx dirs e v = do

let dirs' = addConj dirs conj

unless (inconsistent dirs') $

checkType ctx dirs' e v

-- Check the type of a term under a disjunction, that is

-- under each conjunction

checkTypePartialDisj :: DisjFormula -> Ctx -> DirEnv -> Term

-> Value -> Either ErrorString ()

checkTypePartialDisj (Disj df) ctx dirs e v =

mapM_ (\conj -> checkTypePartialConj conj ctx dirs e v) df

-- Check the type of a term against a given type

-- The type must be a value (i.e. in β-normal form)

checkType :: Ctx -> DirEnv -> Term -> Value -> Either ErrorString ()

checkType ctx dirs term v = case (term,v) of

-- Let-definition

(TDef (s,t,e) t',_) -> do

checkType ctx dirs t Universe

checkType (extend ctx s (Decl t)) dirs e (eval ctx t)

checkType (extend ctx s (Def t e)) dirs t' v

-- Π-type former

(Abst s t e,Universe) -> do
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-- Handle also path types

unless (t == I) $ checkType ctx dirs t Universe

checkType (extend ctx s (Decl t)) dirs e Universe

-- Σ-type former

(Sigma s t e,Universe) -> do

checkType ctx dirs t Universe

checkType (extend ctx s (Decl t)) dirs e Universe

-- λ- or Π- abstraction

(Abst s t e,Closure (Abst _ t1 _) ctx1) -> do

-- Handle also I-abstractions

unless (t == I) $ checkType ctx dirs t Universe

let tVal = eval ctx t

t1Val = eval ctx1 t1

unless (conv (keys ctx) dirs tVal t1Val) $

Left $ "type '" ++ show tVal ++ "' is not convertible to type '"

++ show t1Val ++ "' (while checking term '" ++ show (Abst s t e)

++ "' against type '" ++ show v ++ "')"

-- Introduce a fresh variable and check the body

let var = newVar (keys ctx1) s

e1Val = doApply v (Neutral (Var var) t1Val)

ctx' = if s == var then

extend ctx s (Decl t)

else

extend (extend ctx s (Decl t)) s (Val (Neutral (Var var) tVal))

checkType ctx' dirs e e1Val

-- Σ-type constructor (pair)

(Pair p1 p2,Closure (Sigma _ t1 _) ctx1) -> do

let t1Val = eval ctx1 t1

e1Val = evalClosure v (eval ctx p1)

-- Check each component

checkType ctx dirs p1 t1Val

checkType ctx dirs p2 e1Val

-- Coproduct type former

(Sum ty1 ty2,Universe) -> do

checkType ctx dirs ty1 Universe

checkType ctx dirs ty2 Universe

-- Σ-type left injection

(InL t1,Sum ty1 _) -> do

checkType ctx dirs t1 ty1

-- Σ-type right injection

(InR t2,Sum _ ty2) -> do

checkType ctx dirs t2 ty2
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-- Restriction type

(e,Restr sys ty) -> do

let eVal = eval ctx e

phi = getSystemFormula sys

checkType ctx dirs e ty

-- Check for conversion under the formulas

unless (convPartialDisj (keys ctx) phi dirs eVal (Sys sys)) $

Left $ "term '" ++ show e ++ "' does not agree with '" ++

show (Sys sys) ++ "' on " ++ show phi

-- System

(Sys sys,Partial phi ty) -> do

-- Check that the formulas match

let psis = keys sys

mapM_ (checkConjFormula ctx) psis

unless (eqFormulas dirs phi (Disj psis)) $

Left $ show phi ++ " is not logically equivalent to "

++ show (Disj psis)

-- Check conversion the partial elements in the system

mapM_ (\(psi,t) -> checkTypePartialConj psi ctx dirs t ty) sys

-- Check conversion at the intersections

let eq_check = all (\((psi1,t1),(psi2,t2)) ->

convPartialConj (keys ctx) (psi1 `meet` psi2) dirs

(eval ctx t1) (eval ctx t2)

) [(x1,x2) | x1 <- sys, x2 <- sys, x1 /= x2]

unless eq_check $

Left "values are not adjacent"

-- Partial type former

(Partial phi ty,Universe) -> do

checkDisjFormula ctx phi

checkType ctx dirs ty Universe

-- Restriction type former

(Restr sys ty,Universe) -> do

checkType ctx dirs ty Universe

let tyVal = eval ctx ty

phi = getSystemFormula sys

checkDisjFormula ctx phi

-- Check the elements in the system

mapM_ (\(conj,t) -> checkTypePartialConj conj ctx dirs t tyVal) sys

-- If no other rule match, try inferring the type and

-- check if it's compatible

otherwise -> do

ty <- inferType ctx dirs term

-- Check for sub-typing: `v` more general than `ty`

unless (compTypes (keys ctx) dirs ty v) $

Left $ "type '" ++ show v ++ "' expected, got term '" ++ show term
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++ "' of type '" ++ show ty ++ "' instead"

-- Check compatibility (subtyping) between two partial or restriction types,

-- as specified by the typing rules: `v1` more general than `v2`

compTypes :: [Ident] -> DirEnv -> Value -> Value -> Bool

compTypes used dirs v1 v2 =

-- Split the type and get eventual partial type formulas

-- (by default `True` in the other cases)

let (iphi,ity) = split v1

(vphi,vty) = split v2

syscheck = case (v1,v2) of

(Restr isys _,Restr vsys _) -> convPartialDisj used

(getSystemFormula vsys) dirs (Sys isys) (Sys vsys)

otherwise -> True

-- Check sub-typing compatibility for restrictions, for the base

-- types and for formulas in the case of partial types

in syscheck && conv used dirs ity vty && impDisj dirs vphi iphi

-- Check that the variables of the conjunctive formula are in the context

checkConjFormula :: Ctx -> ConjFormula -> Either ErrorString ()

checkConjFormula ctx cf = do

let dom = keys ctx

support = vars cf

unless (all (`elem` dom) support) $

Left $ "formula '" ++ show cf ++ "' contains undeclared names"

-- Check that the variables of the disjunctive formula are in the context

checkDisjFormula :: Ctx -> DisjFormula -> Either ErrorString ()

checkDisjFormula ctx (Disj df) = mapM_ (checkConjFormula ctx) df

3.7 Main program

This last file is the one that handles input-output, using all the previous files to
produce a full working interpreter of the type theory. We use the State monad
to store some information across the iterations of the REPL loop, that is the
current context, the last checked term and the list of locked names.100 For each
declaration or definition given in input (typed from the user or from a file), first
the parser is called to produce the abstract syntax, then checkSingleToplevel

checks name shadowing and lastly checkSingleToplevel’ calls the type-
checker to ascertain that the input is correct, finally adding the declaration or
definition to the context. When an example is given, that is simply a term,
after the syntactical checks the type-checker is called to infer its type.
The program supports some commands, starting with ‘:’, such as .

100If a name is locked, then its definition in the context is temporarily erased, keeping only
the type declaration. By unlocking the name, the definition is added again.
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• :help (print help)

• :q (quit the program)

• :ans (print the last term checked)

• :ctx (print the current context)

• :clear id1 . . . idn (remove the given identifiers from the context, recur-
sively)

• :lock id1 . . . idn (lock the given names)

• :unlock id1 . . . idn (unlock the given names)

• :unlockall (unlock every currently locked name)

• :printlock (show all locked names)

Source file MainCTT.hs.

module Main where

import System.IO ( hFlush, stdout )

import System.Environment ( getArgs )

import System.Exit ( exitSuccess )

import Control.Monad.State

import Data.List ( intercalate )

import Data.Maybe ( isJust )

import ParCTT ( pTerm, pToplevel, pProgram, myLexer )

import Ident

import Interval

import CoreCTT

import Eval

import TypeChecker

type Err = Either String

-- Current context, last term checked, list of locked names

type ReplState = (Ctx,Term,[Ident])

-- Initial state

initReplState :: ReplState

initReplState = ([],Zero,[])

-- Read from a file and call `run`

runFile :: FilePath -> StateT ReplState IO Bool

runFile f = do

printLnIO $ "Reading file " ++ f
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contents <- liftIO . readFile $ f

res <- run contents

liftIO . when res . putStrLn $ "\nFile " ++ f ++ " loaded successfully"

return res

-- Parse and call `checkProgram`

run :: String -> StateT ReplState IO Bool

run s = case pProgram ts of

Left err -> do

liftIO $ putStrLn "\nParse failed!"

liftIO $ showErr err

return False

Right program -> do

checkProgram program

where

ts = myLexer s

-- Check a whole program, by type-checking every top-level

-- declaration

checkProgram :: Program -> StateT ReplState IO Bool

checkProgram (Program []) = return True

checkProgram (Program (toplevel : decls)) = do

res <- checkSingleToplevel toplevel

if res then

checkProgram (Program decls)

else

return False

-- Check if a term contains undeclared variables (True = OK)

checkVars :: Ctx -> Term -> Bool

checkVars ctx term = case term of

Var s -> isJust $ lookup s ctx

Universe -> True

Abst s t e -> checkVars ctx t &&

checkVars (extend ctx s (Decl {-dummy-} Universe)) e

TDef (s,t,e) t' -> checkVars ctx t &&

checkVars (extend ctx s (Decl {-dummy-} Universe)) e &&

checkVars (extend ctx s (Def t e)) t'

App fun arg -> checkVars ctx fun && checkVars ctx arg

Sigma s t e -> checkVars ctx t &&

checkVars (extend ctx s (Decl {-dummy-} Universe)) e

Pair t1 t2 -> checkVars ctx t1 && checkVars ctx t2

Fst t -> checkVars ctx t

Snd t -> checkVars ctx t

Sum ty1 ty2 -> checkVars ctx ty1 && checkVars ctx ty2

InL t1 -> checkVars ctx t1

InR t2 -> checkVars ctx t2

Split ty f1 f2 x -> checkVars ctx ty && checkVars ctx f1 &&

checkVars ctx f2 && checkVars ctx x
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Nat -> True

Zero -> True

Succ t -> checkVars ctx t

Ind ty b s n -> checkVars ctx ty && checkVars ctx b &&

checkVars ctx s && checkVars ctx n

I -> True

I0 -> True

I1 -> True

Sys sys -> all (\phi -> all (`elem` keys ctx) (vars phi))

(keys sys) && all (checkVars ctx) (elems sys)

Partial phi t -> all (`elem` keys ctx) (vars phi) &&

checkVars ctx t

Restr sys t -> checkVars ctx (Sys sys) && checkVars ctx t

Comp fam phi i0 u b i -> checkVars ctx fam &&

all (`elem` keys ctx) (vars phi) && checkVars ctx i0 &&

checkVars ctx u && checkVars ctx b && checkVars ctx i

-- Check a single top-level declaration, calling `checkSingleToplevel'`

-- Here we mostly check variables

checkSingleToplevel :: Toplevel -> StateT ReplState IO Bool

-- Example: infer its type

checkSingleToplevel (Example t) = do

(ctx,_,_) <- get

if not (checkTermShadowing (keys ctx) t) then do

liftIO . showErr $ "term '" ++ show t ++ "' contains shadowed variables"

return False

else if not (checkVars ctx t) then do

liftIO . showErr $ "term '" ++ show t ++ "' contains undeclared variables"

return False

else

checkSingleToplevel' (Example t)

-- Add a declaration to the context

checkSingleToplevel decl@(Declaration s t) = do

(ctx,_,_) <- get

if not (checkTermShadowing (keys ctx) t) then do

liftIO . showErr $ "term '" ++ show t ++ "' contains shadowed variables"

return False

else if not (checkVars ctx t) then do

liftIO . showErr $ "term '" ++ show t ++ "' contains undeclared variables"

return False

else case lookup s ctx of

Nothing -> checkSingleToplevel' decl

Just _ -> do

liftIO . showErr $ "context already contains name '" ++ show s ++ "'"

return False

-- Add a definition to the context

checkSingleToplevel def@(Definition s t e) = do

(ctx,_,_) <- get

if not (checkTermShadowing (s : keys ctx) t &&
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checkTermShadowing (s : keys ctx) e) then do

liftIO . showErr $ "definition of '" ++ show s

++ "' contains shadowed variables"

return False

else if not (checkVars ctx t && checkVars ctx e) then do

liftIO . showErr $ "definition of '" ++ show s

++ "' contains undeclared variables"

return False

else case lookup s ctx of

Nothing -> checkSingleToplevel' def

Just _ -> do

liftIO . showErr $ "context already contains name '"

++ show s ++ "'"

return False

checkSingleToplevel' :: Toplevel -> StateT ReplState IO Bool

checkSingleToplevel' (Example t) = do

-- Get the context with the locked names (i.e. erasing definitions

-- of locked names)

(unlockedCtx,_,lockedNames) <- get

let ctx = getLockedCtx lockedNames unlockedCtx

ty = inferType ctx emptyDirEnv t

case ty of

Left err -> do

liftIO $ showErr err

return False

Right tyVal -> do

printLnIO $ "\n'" ++ show t ++ "' has (inferred) type '"

++ show (readBack (keys ctx) tyVal) ++ "'"

-- Since `t` typechecks, `t` must have a normal form

let norm = normalize ctx t

printLnIO $ "'" ++ show t ++ "' reduces to '" ++ show norm ++ "'"

-- Update `ans`

put (ctx,t,lockedNames)

return True

checkSingleToplevel' (Declaration s t) = do

-- Get the context with the locked names (i.e. erasing definitions

-- of locked names)

(unlockedCtx,_,lockedNames) <- get

let ctx = getLockedCtx lockedNames unlockedCtx

printLnIO $ "\nType-checking term '" ++ show s ++ "' of type '"

++ show t ++ "'"

case addDecl ctx (s,t) of

Left err -> do

liftIO . showErr $ err

return False

Right ctx' -> do

printLnIO "Declaration check OK!"
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-- Update `ans`

put (ctx',t,lockedNames)

return True

checkSingleToplevel' (Definition s t e) = do

-- Get the context with the locked names (i.e. erasing definitions

-- of locked names)

(unlockedCtx,_,lockedNames) <- get

let ctx = getLockedCtx lockedNames unlockedCtx

printLnIO $ "\nType-checking term '" ++ show s ++ "' of type '"

++ show t ++ "' and body '" ++ show e ++ "'"

case addDef ctx (s,t,e) of

Left err -> do

liftIO . showErr $ err

return False

Right ctx' -> do

printLnIO "Type check OK!"

-- Update `ans`

put (ctx',e,lockedNames)

return True

-- Main REPL (infinite) loop

doRepl :: StateT ReplState IO ()

doRepl = do

(ctx,ans,lockedNames) <- get

printIO "\n> "

s <- liftIO getLine

let w = words s

case w of

-- Quit

[":q"] -> do

liftIO exitSuccess

-- Print last type-checked term

[":ans"] -> do

printLnIO $ show ans

-- Show context (with locked names)

[":ctx"] -> do

liftIO . printCtxLn $ getLockedCtx lockedNames ctx

-- Delete from context the given names (and also the ones

-- that depend on them)

":clear" : idents -> do

let ctx' = foldl removeFromCtx ctx (map Ident idents)

put (ctx',ans,lockedNames)

-- Lock a list of identiers

":lock" : idents -> do

let idents' = map Ident idents

isInCtx = (`elem` (keys ctx))

identsToAdd = filter isInCtx idents'

identsWrong = filter (not . isInCtx) idents'
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when (length identsWrong > 0) $

printLnIO $ "identifier(s) " ++ intercalate ", " (map show identsWrong)

++ " not found in the current context"

let lockedNames' = identsToAdd ++ lockedNames

put (ctx,ans,lockedNames')

-- Unlock a list of identiers

":unlock" : idents -> do

let lockedNames' = filter (`notElem` map Ident idents) lockedNames

put (ctx,ans,lockedNames')

-- Clear the list of locked identiers

[":unlockall"] ->

put (ctx,ans,[])

-- Show the locked identifiers

[":printlock"] ->

printLnIO $ "Locked names are: " ++ intercalate ", " (map show lockedNames)

-- Show help menu

[":help"] -> do

liftIO printUsage

-- Unknown command

(':' : _ ) : _ ->

printLnIO "Command not found. Type :help"

-- Otherwise, check a new declaration

otherwise -> do

let ts = myLexer s

case pToplevel ts of

Left err -> do

printLnIO "\nParse failed!"

liftIO . showErr $ err

Right toplevel -> do

_ <- checkSingleToplevel toplevel

return ()

doRepl -- Repeat

-- Add a definition to the current context

addDef :: Ctx -> (Ident,Term,Term) -> Either ErrorString Ctx

addDef ctx (s,t,e) = do

checkType ctx emptyDirEnv t Universe -- Check that `t` is a type

let tVal = eval ctx t

checkType ctx emptyDirEnv e tVal -- Check that `e` has type `t`

Right $ extend ctx s (Def t e)

-- Add a definition to the current context

addDecl :: Ctx -> (Ident,Term) -> Either ErrorString Ctx

addDecl ctx (s,t) = do

-- Check that `t` is a type or the interval

unless (t == I) $ checkType ctx emptyDirEnv t Universe

Right $ extend ctx s (Decl t)

-- Lock each given identifier in the context,
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-- i.e. erase its eventual definition from the context

getLockedCtx :: [Ident] -> Ctx -> Ctx

getLockedCtx idents ctx0 = foldr getLockedCtx' ctx0 idents

where

getLockedCtx' :: Ident -> Ctx -> Ctx

getLockedCtx' s ((s',Def ty def) : ctx) =

if s == s' then (s,Decl ty) : ctx

else (s',Def ty def) : getLockedCtx' s ctx

getLockedCtx' s ((s',Decl ty) : ctx) =

(s',Decl ty) : getLockedCtx' s ctx

getLockedCtx' _ ctx = ctx

-- Print the context, line by line

printCtxLn :: Ctx -> IO ()

printCtxLn ctx = mapM_ (putStrLn . showEntry) (reverse ctx)

-- Print an error

showErr :: String -> IO ()

showErr err = putStrLn $ "\nError: " ++ err

main :: IO ()

main = do

printUsage

args <- getArgs

case args of

-- No files given: start the REPL loop

[] -> do

evalStateT doRepl initReplState

exitSuccess

-- Some files given: parse each file, then start the REPL loop

fs -> evalStateT (

do

-- `b` is the result of the type-check of each file

res <- foldM (\b fp -> (b &&) <$> runFile fp) True fs

liftIO $ unless res exitSuccess

(ctx,_,_) <- get

printLnIO "\nCurrent context is:"

liftIO . printCtxLn $ ctx

doRepl

) initReplState

-- Print help menu

printUsage :: IO ()

printUsage = do

putStr $ unlines

[ " -------------------------------------------------------------------------- "

, "| Usage: ./CTT <file> .. <file> load and type-check files |"

, "| then start a REPL |"

, "| Commands: |"
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, "| x : <term> add declaration of 'x' to the context |"

, "| x : <term> = <term> add definition of 'x' to the context |"

, "| <term> infer type of t and normalize it |"

, "| :help print help |"

, "| :q quit |"

, "| :ans print the last term used |"

, "| :ctx print current context |"

, "| :clear <id> .. <id> remove <id>'s from context (recursively) |"

, "| :lock <id> .. <id> lock <id>'s definition |"

, "| :unlock <id> .. <id> unlock <id>'s definition |"

, "| :unlockall unlock every currently locked definition |"

, "| :printlock print locked definitions |"

, " -------------------------------------------------------------------------- "

]

hFlush stdout

-- Auxiliary printing functions

printIO :: String -> StateT ReplState IO ()

printIO s = liftIO $ do

putStr s

hFlush stdout

printLnIO :: String -> StateT ReplState IO ()

printLnIO s = printIO $ s ++ "\n"
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Yoneda lemma

In this section we briefly state and prove a basic version of the (contravariant)
Yoneda lemma, which is used in chapter 2. With Ĉ we denote the presheaf
category on C, i.e. the functor category [Cop, Set], which has presheaves on C
as objects and natural transformations between them as arrows.

Definition A.1 (Yoneda embedding). Let C be a locally small category, i.e.
such that HomC(I, J) is a set for all I, J ∈ C. The Yoneda embedding is the
functor y : C → Ĉ given by

• (yI)(J) = HomC(J, I) for each object J ∈ C;

• (yI)f : HomC(K, I) → HomC(J, I) which is defined by h → fh,101 for
each morphism f : J → K of C.

Theorem A.2 (Yoneda lemma). Let C be a locally small category and Γ a
presheaf on C, i.e. a functor Γ : Cop → Set. Then for each I ∈ C there is
bijection

Γ(I) ∼= HomĈ(yI,Γ).

Proof. If α : yI → Γ is a natural transformation, with components αJ :
HomC(J, I) → Γ(J) for each J ∈ C, then the naturality condition holds for
each f : J → K, i.e.

αJ ◦ (yI)f = Γf ◦ αK (∗)
which means that for each h : K → I,

αJ(fh) = Γf (αKh).

Exploiting this, we now show how every element of Γ(I) determines a natural

101Remember that we use the applicative order, i.e. fh = h ◦ f .
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HomC(K, I) HomC(J, I)

Γ(K) Γ(J)

αK αJ

(yI)f

Γf

Figure A.1: Naturality diagram.

transformation between yI and Γ, and vice versa; furthermore, we show that
these correspondences are each the inverse of the other.

• Given α : yI → Γ, we get α̂ = αI(1I) ∈ Γ(I) since αI : HomC(I, I) →
Γ(I).

• Given x ∈ Γ(I) and f : J → I, we get Γf : Γ(I)→ Γ(J) so that Γf (x) ∈
Γ(J). Therefore we set x̃J(f) = Γf (x). We now prove that x̃ = (x̃J)J∈C
is a natural transformation yI → Γ. Indeed, given g : K → J , we shall
prove that Γg ◦ x̃J = x̃K ◦ (yI)g, which means that for all h : J → I,

Γg(x̃J(h)) = x̃K((yI)gh)

must be proved; the left side is Γg(x̃J(h)) = Γg(Γh(x)) = Γgh(x); the
right side is x̃K((yI)gh) = x̃K(gh) = Γgh(x).

• (Second applied to first) If x ∈ Γ(I), then

ˆ̃x = x̃I(1I) = Γ1I
(x) = 1Γ(I)(x) = x.

• (First applied to second) If α : yI → Γ and f : J → I, then

(˜̂α)J(f) = Γf (α̂) = Γf (αI1I) = αJ(f1I) = αJ(f).

where the second-last equality is witnessed by (∗) (with K = I).

Remark A.3. Actually we could say more about the Yoneda embedding y, as
it can be shown that:

1. Γ(I) ∼= HomĈ(yI,Γ) is a natural isomorphism both in I ∈ C and Γ ∈ Ĉ.

2. y is a fully faithful functor.

We refer to [Lei14] for further details, since these additional properties are not
used in this thesis.



Appendix B

The subobject classifier

Here we introduce a categorical construction, called subobject classifier, that
generalizes the set of truth values {0, 1} in the category of sets to arbitrary
categories, allowing to describe ‘subobjects’ of any object X as morphisms
from X to the subobject classifier, in the same manner as subsets of a set X
can be described by their characteristic function, i.e. functions X → {0, 1}.
Although the subobject classifier is not necessary for the development of partial
and restriction types (section 2.4.2), it provides some useful insights. We follow
the description given in [MLM92].

Definition B.1 (Subobject). If X is an object in a category C, a subobject
of C is an equivalence class of monomorphisms m : U � X.102 The set of
subobjects of X is denoted with SubC(X).

Definition B.2 (Subobject classifier). Let C be a category with a terminal
object 1. An object Ω ∈ C is said to be a subobject classifier for C if there
exists a morphism true : 1→ Ω such that for each monomorphism j : U � X
there exists an unique φ : X → Ω such that the commutative diagram

U 1

X Ω

!

true

φ

j

is a pullback.103

102With a common abuse of language, we also say that m is a subobject when we really
mean the equivalence class of m.
103We denote with ‘!’ the unique morphism from an object to the terminal object 1.
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The subobject classifier, if it exists, is unique up to isomorphism (see [Gol79])
and it holds that

SubC(X) ∼= HomC(X,Ω).

Example B.3. In the category of sets, the subobject classifier is the set of
truth values, i.e. Ω = {0, 1}. The function true ‘chooses’ the true value, that
is true(?) = 1. If j : U � X, then j(U) ⊆ X and we can identify j(U)
with U ; the morphism X → Ω is obviously the characteristic function of U ,
which makes the inner diagram commute. it is easy to see that the diagram is
a pullback.

U {?}

X {0, 1}

!

true

χ
U

j

We now start to investigate the existence of the subobject classifier in presheaf
categories; first we introduce a useful concept which is the particular case of
subobjects in functor categories.

Definition B.4 (Subfunctor). Let C be a small category, with presheaves
Q,P ∈ Ĉ. Then Q is said to be a subfunctor of P if:

1. For each I ∈ C, Q(I) ⊆ P (I);

2. For each f : J → I, Qf = Pf �Q(I).

Remark B.5. If Q is a subfunctor of P , then it is clear that the inclusion
i : Q ↪→ P is a monomorphism. Vice versa, if θ : Q� P is a natural trans-
formation which is a monomorphism, then θ(I) : Q(I) → P (I) is injective.
Let Q′ be the functor defined by Q′(I) = Im θ(I) on objects and by the induced
maps on morphisms; Q′ is equivalent as a subobject to Q and is a subfunctor
of P .

Suppose that there exists a subobject classifier Ω in the presheaf category Ĉ;
then it must hold that

SubĈ(HomC(−, I)) ∼= HomĈ(HomC(−, I),Ω) ∼= Ω(I)

where the last step is justified by the Yoneda lemma (see appendix A).
Therefore,

Ω(I) ∼= {Q | Q is a subfunctor of HomC(−, I)}.



121

To best understand this definition, let us introduce an alternative presentation
of subfunctors, called sieves.

Definition B.6 (Sieve). A sieve on I ∈ C is a set of morphisms with codomain
I such that for all h : K → J , f ∈ S =⇒ hf ∈ S.

K J Ih f

We now show that every sieve on I corresponds to a subfunctor of HomC(−, I),
and vice versa.

• If Q is a subfunctor of HomC(−, I), then S = {f | ∃J ∈ C f : J → I, f ∈
Q(J)} is a sieve; to see this, let f ∈ S, with f : J → I, f ∈ Q(J); if
h : K → J , then Qh : Q(J) → Q(K), so that Qh(f) = hf ∈ Q(K) and
hf ∈ S.

• If S is a sieve on I, let Q be the functor defined by Q(J) = {f ∈ S | f :
J → I} ⊆ HomC(J, I) on objects and by the induced composition map
on morphisms. Then Q is obviously a subfunctor of HomC(−, I).

Therefore it makes sense to assert that

Ω(I) ∼= {Q | Q is a subfunctor of HomC(−, I)}
∼= {S | S is a sieve on I}.

Remark B.7. If g : J → I, then a subobject of HomC(−, I) induces a subobject
of HomC(−, J), or in other words, a sieve S on I induces a sieve on J defined
by

S · g = {h | hg ∈ S}.

Having already established Ω(I) ∼= {S | S is a sieve on I}, using this last
remark we finally define the subobject classifier Ω on the presheaf category Ĉ.

Definition B.8 (Subobject classifier on Ĉ).
Let Ω ∈ Ĉ be defined by

Ω(I) = {S | S is a sieve on I}

on objects I ∈ C and by

Ωg : Ω(I)→ Ω(J), S → S · g

on morphisms g : J → I.
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The object Ω comes along with the natural transformation true : 1→ Ω defined
by

trueI : {?} → Ω(I), ?→ HomC(−, I),

which associates to each object its maximal sieve. It is easy to see that true is
a natural transformation, since

1 Ω(I) I

1 Ω(J) J

1 Ωg

trueI

trueJ

g

Ωg(trueI(?)) = trueI(?) · g = trueJ(?) holds.

We now prove that Ω really is the subobject classifier of Ĉ.

Theorem B.9. The object Ω just defined is a subobject classifier of Ĉ.

Proof. Let j : Q� P be a monomorphism, so that Q is a subfunctor of P . If
f : J → I, then Pf : P (I)→ P (J) is a function, so we put

φI(x) = {f : J → I | Pf (x) ∈ Q(J)}.

Q 1

P Ω

!

true

φ

j

It is easily seen that:

• φI(x) is a sieve: let f ∈ φI(x), with f : J → I and Pf (x) ∈ Q(J). Let
h : K → J so that Phf : P (I)→ P (K); then

Phf (x) = Ph(Pf (x)︸ ︷︷ ︸
∈Q(J)

) ∈ Q(I)

since Qh is the restriction of Ph to Q(J). It follows that hf ∈ φI(x).
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• φ is a natural transformation, as

P (I) Ω(I) I

P (J) Ω(J) J

Pg Ωg

φI

φJ

g

Ωg(φI(x)) = φI(x) · g = {h : K → J | hg ∈ φI(x)}
= {h : K → J | Phg ∈ Q(K)},

φJ(Pg(x)) = {h : K → J | Ph(Pg(x)) ∈ Q(K)}
= {h : K → J | Phg ∈ Q(K)}.

• The diagram is a pullback: if i : R� P is a monomorphism, then R is
a subfunctor of Q and so for any x ∈ R(I) ⊆ P (I), we have (since the
outer diagram commutes)

trueI(?) = φI(x),

that is Pf (x) ∈ Q(J) for all J ∈ C and f : J → I. Then x ∈ Q(I), as
P1I

(x) = x ∈ Q(I), so that R is a subfunctor of Q and m : R � Q is
the inclusion map. Indeed for the maps it holds that

Qf �R(I)= (Pf �Q(I)) �R(I)= Pf �(Q(I)∩R(I))= Pf �R(I)= Rf .

R

Q 1

P Ω

!

true

φ

j

!

i

m

• φ is the unique natural transformation θ : P → Ω making the diagram
a pullback: if x ∈ P (I) and f : J → I, then commutativity means that
Pf (x) ∈ Q(I) iff θJ(Pf (x)) = trueJ(?), i.e. θI(x) · f = trueJ(?) by the
naturality of θ, which is equivalent to f ∈ θI(x). Therefore,

θI(x) = {f : J → I | Pf (x) ∈ Q(J)} = φI(x)

and θ = φ.



Appendix C

Disjointness of coproduct
injections

Here we prove, using the type theory of chapter 1, that false is not (propo-
sitionally) equal to true; actually, we prove a more general result stating that
the injections of coproduct types are disjoint. We follow exactly the argument
given in [Uni13] 2.12, to which we refer to further explanations. We have also
proved the whole equivalence stated in [Uni13] 2.12.5, mimicking the given
proof; this requires proving some auxiliary lemmas and the code can be found
of the GitHub page of the thesis.104

First we define path types and transport.

Path : [A : U] A→ A→ U

= [A : U][a, b : A][i : I][i = 0→ a, i = 1→ b]A

refl : [A : U][a : A] Path A a a = [A : U][a : A][i : I] a

transp : [F : I→ U] F 0→ F 1

= [F : I→ U][a : F 0] comp F () 0 (I→ []) a 1

transport : [B : U][P : B → U][x, y : B] Path B x y → P x→ P y

104There are some differences, since path types of CTT are not the same as path types of
HOTT (since the computational rule for the induction principle holds only propositionally
in CTT); for example, the transport along a reflexivity path is judgmentally equal to the
identity function in HOTT, whereas in CTT it has to be proven as a proposition.
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= [B : U][P : B → U][x, y : B][pB : Path B x y]

transp ([i : I] P (pB i))

Then we define the empty type,

empty : U = [X : U] X

the unit type,

i : I
unit : U = [ i = i→ Z]N

tt : unit = Z

and the booleans.

bool : U = unit + unit

false : bool = inl tt

true : bool = inr tt

Fixing an a0 : A, we define the function

{
codeA,B;a0(inl a) ≡ PathA(a0, a)

codeA,B;a0(inr b) ≡ empty
.

code : [A,B : U][a0 : A] A+B → U

= [A,B : U][a0 : A][x : A+B]

split (A+B → U) ([a : A] Path A a0 a) (B → empty) x

Then we give the encoding function.

encode : [A,B : U][a0 : A][x : A+B][p : Path (A+B) (inl a0) x]

code A B a0 x

= [A,B : U][a0 : A][x : A+B][p : Path (A+B) (inl a0) x]

transport (A+B) ([x′ : A+B] code A B a0 x
′)

(inl a0) x p (refl A a0)

Finally, by specializing the encoding function, we get the injectivity and the
disjointness of the constructors.

injectivity : [A,B : U][a0, a1 : A]

Path (A+B) (inl a0) (inl a1)→ Path A a0 a1

= [A,B : U][a0, a1 : A] encode A B a0 (inl a1)
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disjointness : [A,B : U][a0 : A][b : B]

Path (A+B) (inl a0) (inr b)→ empty

= [A,B : U][a0 : A][b : B] encode A B a0 (inr b)

true neq false : Path bool false true→ empty

= disjointness unit unit tt tt
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