FUDGETS
A Graphical User Interface in a Lazy Functional Language

Magnus Carlsson, Thomas Hallgren
Chalmers University of Technology
{magnus,hallgren}@cs.chalmers.se

Abstract

This paper describes an implementation of a small window-
based graphical user interface toolkit for X Windows written
in the lazy functional language LML. By using this toolkit,
a Haskell or LML programmer can create a user interface
with menus, buttons and other graphical interface objects,
without conforming to more or less imperative programming
paradigms imposed if she were to use a traditional (impera-
tive) toolkit. Instead, the power of the abstraction methods
provided by Haskell or LML are used.

The main abstraction we use is the fudget. Fudgets are
combined in a hierarchical structure, and they interact by
message passing. The current implementation is based on a
sequential evaluator, but by using non-determinism and ora-
cles, we suggest how the fudgets can evaluate in parallel. We
believe that the toolkit can be extended to a full-feathered
and practically useful high level graphical toolkit.

1 Introduction

Not so long ago, the dominating way for a user to inter-
act with a computer was by typing text on a keyboard and
reading text of a screen. Today, this traditional text oriented
user interface is being replaced by graphical user interfaces,
where the user interacts with the computer by manipulat-
ing graphical objects on a screen with a pointing device,
typically a mouse.

Graphic user interfaces are more flexible and therefore
more complex to program. To deal with this extra complex-
ity more levels of abstractions are used. As in all program-
ming it is important to find the right abstractions. This has
led to the development of Graphical User Interface (GUI)
toolkits to simplify the application programmer’s job.

A major advantage of functional programming languages
over traditional imperative languages is the abstraction
methods they provide: higher order functions, polymor-
phism and algebraic data types. This suggests that func-
tional languages may be better equipped to handle the
complexity of graphical user interfaces than traditional lan-
guages. But functional languages are often criticized for
having poor I/O facilities, making it hard to write interac-
tive programs, in particular programs with fancy graphical

user interfaces.
The major goals with our work are to show:

e that the abstraction methods and I/O facilities pro-
vided by functional languages are adequate for imple-
menting programs with graphical user interfaces, and

e that implementations of lazy functional languages are
efficient enough to deal with the potentially large flow
of data and swift responses required by a graphical
user interface.

So, rather than defining an interface between an existing
GUI toolkit (such as the Macintosh Toolbox or Motif) and
a functional language, we choose to start from a lower level
and implement a GUI toolkit in the functional language it-
self. This approach allows us to use the power of the abstrac-
tion methods provided by the functional language, instead
of relying on abstractions designed for imperative languages.
It also puts a larger part of burden of handling a GUI on
the functional program, thus requiring the implementation
to be more efficient to obtain good performance.

The functional languages we work with are Lazy ML [3]
and Haskell [8] and the window system is X Windows [17].
The interface to X Windows goes through Xlib [11]. Except
for one example in C, all code in the paper is given in Haskell.

The main abstraction we use is the fudget, the functional
correspondence to what is called the widget in some tradi-
tional GUI toolkits. We have developed a library of fudgets
implementing common user interface components, like but-
tons, menus, scroll bars, etc. Complex user interfaces are
built up by combining fudgets in a hierachical structure,
where the fudgets interact by message passing. There is no
global state: state information, when needed, is encapsu-
lated inside the fudgets, hidden from the outside world.

The remainder of this paper is organized as follows: we
start with a brief introduction to the X Windows system
and look at a small example program written in C using the
Motif toolkit (Section 2). We then describe our approach
to GUI program structuring in a lazy functional language
and introduce the fudget type (Section 3) and present the
same example now implemented using fudgets. In Section 4
we present a mechanism for automatic and dynamic layout
of fudgets. Section 5 contains a larger fudget programming
example. We present some details on how fudgets are repre-
sented (Section 6). With the chosen representation, we can
easily add mechanisms for parallelism and nondeterminism,
as is illustrated in Section 7. We take a quick look at the im-
plementation of the interface to Xlib in Section 8. Related

work is presented in Section 9 and conclusions are given in
Section 10.

2 The X Windows system

In the X Windows system [17], you write a client program,
which interacts with the user by communicating with a
server process (the X server) which handles the lowest level
interface with the hardware (display, keyboard, mouse). The
client sends a stream of commands (for creating windows,
drawing lines, writing text etc.) to the server and receives
a stream of events (which tell the client about keystrokes,
mouse button presses, motion of the mouse, etc.) from the
server. Most commands and events are related to a spe-
cific window. Each window has its own coordinate system
used for the drawing commands. All drawing commands are
relative to a window and drawing is usually clipped by the
window boundaries. This way, client programs only have
to bother about their own windows and are usually com-
pletely unaware of the existence of windows controlled by
other clients. Therefore, a user can handle many indepen-
dent activities simultaneously, possibly on different comput-
ers in a network.

The windows have a hierarchical organization with win-
dows in other windows. Each window has a specific position
in a parent window. Most events are sent to the window
under the pointer, which the user controls with the mouse.
For each window, the programmer can decide how sensitive
it should be to various events. For example, to implement a
graphical button, you could create a window that is sensi-
tive only to events telling when the pointer enters or leaves
the window and when a specific mouse button is pressed or
released in it. Most user interface objects (like scroll bars,
pulldown menus and buttons), often called widgets (window
gadgets), are built up by a number of windows in this way.

The root of this window tree is a window that simply
covers the whole screen, and is usually filled with some back-
ground color or pattern. The children of the root window
are usually so called shell windows. They have a title bar
and it is usually possible to move them around and resize
them by using the mouse. So the shell windows are the most
“window like” windows, from the user’s point of view.

In addition to the window tree, sibling windows are orga-
nized in a stacking order, telling which window should hide
which when they overlap. When a hidden part of a win-
dow becomes visible (e.g. because the user rearranged the
windows), the X server sends an Ezpose event to the client,
telling it that the newly exposed part of the window needs
to be redrawn.!

2.1 Imperative toolkit programming

Before introducing our functional toolkit solution, let us
warm up by looking at a simple imperative program that
uses a conventional toolkit. We will discover that program
control is somewhat different from what we find in programs
with simple text interfaces.

In traditional imperative X Window based toolkits, you
create a tree of widgets and connect callback routines to
them. They are called callback routines because there are

1 Unless you are using backing store, where bitmaps for the hidden
parts of a window are stored off screen. This method is patented by
AT&T, but allegedly, Richard Stallman implemented it way back but
didn’t bother to write about it.

usually no direct calls to them in your code, but the toolkit
will call them in response to various events. We will name
the code you write the application.

After creating the widget tree and specifying the callback
routines, you enter the main event loop, where events are
dispatched to the widgets, which in turn respond by calling
the callback routines. In short, we could say that the toolkit
converts low level events, such as “Mouse button is pressed
at (z,y)”, into high level events, such as calling the OK but-
ton callback routine. See Figure 1. The callback routines, in
turn, can react with high level commands, such as “Pop up
the Save dialog box”), by calling routines in the toolkit. The
toolkit then emits a number of low level commands to carry
out the high level command. Typically, there is also a num-
ber of low level events that the toolkit could handle more
or less autonomously, such as expose events and requests
for resizing windows. The toolkit somewhat resembles lower
systems in the brain, controlling various functions of the
body without bothering the cerebral cortex (the application
code).

So the picture is that the toolkit is in control, handling
the low level events and maintaining the visual state of the
interface. Sometimes, application specific computation is
necessary, and then the toolkit calls application code.

Client
Low level High level
commands commands
Toolkit Application
Low level High level
events events

Figure 1: The structure of the client. The purpose of the
toolkit is to take care of handling all low level commands
and events. The toolkit can also emit high level events as
a response on low level events. The high level events are
handled by the application code, which in turn can emit
high level commands.

2.2 The Motif counter example

Let us look at a small example with a window containing
a button and a number display. Whenever the button is
pressed, the number is increased by one. The example is
written in C using the popular toolkit Motif [25]:2

static int count = O;
static Widget display;

static void SetDisplay(Widget display, int i)
{

char s[10];

Arg wargs[1];

sprintf(s, "%d", i);

2The example has been somewhat stripped; the callback arguments
and arguments for determining various widget attributes are omitted,
and so is the conversion between C-strings and Motif strings.

XtSetArg(wargs[0], XmNlabelString, s);
XtSetValues(display, wargs, 1);

¥
static void increment()
{
count++;
SetDisplay(display, count);
¥

void main()
{
Widget top, row, button;

XtInitialize();
XtCreateManagedWidget ("row",
xmRowColumnWidgetClass, top);

display = XtCreateManagedWidget("'display",
xmLabelWidgetClass, row);

button = XtCreateManagedWidget ("button",
xmPushButtonWidgetClass, row);

SetDisplay(display, count);

XtAddCallback(button, (XtCallbackProc)increment,

(XtPointer)display) ;

top
row

XtRealizeWidget (top);
XtMainLoop();

The program starts with creating a shell widget
called top, which will be the root of the widget tree.
The rest of the tree i1s created with repeated calls of
XtCreateManagedWidget, where the arguments specify what
kind of widget to create, and where to put it in the tree. The
widgets are:

e row, a layout widget which put all its children in a row
or in a column.

e display, which shows a string which will be the count.

e button, a button that the user can press. Whenever
this happens, an associated callback routine is called.

When the widget tree is created, the display is reset to
show zero, and the C-function increment is registered as
a callback routine for the button widget. increment incre-
ments the counter and updates the display widget.

3 Our approach

If we want to apply the callback style directly in a pure lazy
functional toolkit, we must find out what it means to “call a
routine”. A straightforward solution would be to stick to the
imperative style by using variations of the state monad [24].
This suggests a simple way of using an existing imperative
toolkit in a functional program. It is likely though, that
this will imply a imperative style throughout the program,
so why then use a functional language at all?

Instead, we chose to use a stream processing style, with
functions operating on streams of events and commands.
As suggested by Figure 1, we can distinguish four types of
streams, high level command and event streams, and low
level ditos. Owur toolkit consists of stream functions con-
suming high and low level events, and producing high and
low level commands. They correspond to the widgets in
traditional toolkits, and we call them fudgets (Functional
Widgets). When developing an application, you (the appli-
cation programmer) write stream functions that handle high
level messages and somehow connect them with the fudgets
from the toolkit.

3.1 The fudget type

Let us take a closer look at the types of the four differ-
ent streams. The low level command type has constructors
corresponding closely to the drawing commands that you
could send to the X server. Similarly, the low level event
type mostly consists of constructors for the various events
that the server could produce. These types are fixed and is
something that the application programmer normally need
not worry about.

The type of high level events and commands (which we
will simply call input and output) cannot so easily be de-
termined once and for all. For example, consider a fudget
textF for displaying and entering a line of text. We want
the input type to be String, telling that the fudget accepts
new strings to show. Suppose we want the fudget to output
the text value whenever the return key is pressed, this is
indicated by having the output type String too. Similarly,
imagine a push button fudget buttonF which could output
a unit value (of type () in Haskell), whenever it is clicked,
and could input a boolean value True or False to make it
sensitive or insensitive to mouse-clicks.

It seems reasonable to have the type of the high level
event and commands as parametersin the fudget type. We
introduce the notation

Fap (1)

for the type of fudgets with input type o and output type f.
Thus, textF will have type F String String, and buttonF
will have the type F Bool ().

We will visualize the fudget as a circle with four pins, see
Figure 2. The information flows through the fudget from
right to left. The high level messages go through the upper
pins, the low level events and commands through the lower
pins. You can think of the lower pins as being connected
directly to the fudget’s window.

B o

[Window

Figure 2: The fudget F o .

3.2 Putting fudgets together

Complex graphic interfaces are constructed from simpler
building blocks, so we need a set of combinators for this. A
simple combinator would take two fudgets as arguments and
put them “in parallel’ into one composite fudget, and we will
call this combinator >+<. It routes the low level commands
and events to and from each fudget independently, so they
exist side by side without having to bother about each other,
each one controlling its own window. Since the composite
fudget consists of two subfudgets, we need a mechanism for
distinguishing the output from them, and adressing input to
each one of them. For this reason, we introduce the type of
disjoint union, called Either in Haskell:

data Either a b = Left a | Right b

Either a f will be abbreviated as o 4+ 3. The type of >+<
will then be

Fai f1 = Faz 2 — F (a1 + a2) (B1 + F2)

We use the constructors in Either to indicate that a high
level message is sent to or from either the left or the right
subfudget. Now, we can for example put together our text
fudget and button fudget:

textF >+< buttonF :: F (String + Bool) (String + ())

Say that we want to enable the button, this is done by send-
ing Right True to the composed fudget.

3.2.1 Fudget composition

The pairing combinator allows us to put any number of fud-
gets together into one single fudget, but we need a means by
which they can communicate high level information to one
other. Normally in functional programming, this is done
with an operator for function composition with type

([5‘—>7)—>(a—>[§‘)—>a—>7
With this in mind, we introduce a combinator for fudget
composition, which we will name >==<, with type

FAy—Faf—-Fay

Just as >+< >==< will put two fudgets together and let them
control their windows independently, and in addition, the
output from the right fudget is connected to the input of
the left fudget. Consider the somewhat silly fudget

textF >==< textF

If text is entered in the right text fudget, it will be echoed
in the left one. See also Figure 3.

c{[
Window 1

Figure 3: The fudget £1 >==< £2

3.2.2 Abstract fudgets

With the right set of primitive fudgets (such as textF and
buttonF), we can now imagine rather complex interfaces be-
ing built. But we must also have the ability to combine this
interface with the application specific code, corresponding
to the right box in Figure 1. We will do this by an operator
that lets the programmer turn an arbitrary stream function
into a fudget. The operator is called absF and has type

SPaff—-Fal/p

(SP is an abbreviation for Stream Processor). We also need
to tools for writing stream functions. This is done in a con-
tinuation style with the functions

getSP :: (a->SP ab) ->SPab

putSP :: [al -> (SP b a) -> SP b a

getSP (\a -> sf) i1s a stream function that will wait
for a message and then become the stream function sf.
putSP 1 sp will output all the messages in the list 1 and
then become the stream function sf.

A useful function derived from these is mapSP (cf. the
standard map function on lists) of type

(¢ = pB) —=58Palp

3.2.3 The counter example with fudgets

We can now construct a fudget with the same behavior as the
simple counter program in Section 2.2. The fudget consists
of a button, an abstract fudget that does the counting, and
an integer display fudget intDispF of type F Int o” (See
Figure 4).

Figure 4: A small counter

We use fudget composition to connect the button with
the counter and the counter with the display:
intDispF >==< (absF counter) >==< buttonF

Here, counter has type SP () Int and can be defined as*

counter = count O
where count n = getSP $ \ _ ->
putSP [n+1] $
count (n+1)

The three fudgets can be seen in Figure 5.

I nt)
n.c. n.c.

10

n.c.

Inc

Figure 5: Whenever the button fudget is pressed, it sends a
() to counter, which counts the number of clicks and sends
this count to the display. Connectors marked n.c. are not
connected.

3.2.4 Loops

If fudgets need to exchange information both back and forth,
they can be connected with the operator loopLeft of type

Flat+p)(at+v) —=FfBy

Whenever the enclosed fudget outputs an o message, it is
fed back into the fudget.
As an example, consider the definitions

3The type variable on the output indicates that the fudget never
outputs anything.
*$ is function application in Haskell

stripEither :: Either a a -> a
stripEither Left a = a
| Right a = a

loopAll :: F ab->Fcd
loopAll f = loopLeft (absF (mapSP Left) >==< f >==<
(absF (mapSP StripEither)))

Now, with
loopAll (textF >==< textF)

we get two text fudgets, and if text is entered in one of
them, it is echoed in the other® (See also Section 3.2.1).

3.2.5 Some derived combinators

The following combinators and operators are not necessary
since they can be derived from the ones introduces sofar,
but they are quite useful and some of them are actually
implemented more efficiently than the following definitions
suggest:

(>*"=¢) :: SPbc->Fab->Fac
p >""=<f = absF p >==< £

(>=""¢) :: Fbc->SPab->Fac
f >=""< p = f >==< absF p

(>=<) :: (b->c) =>Fab->Fac
p >"=< f = mapSP p >""=< f

(>="<) :: Fbc->(a=->b) ->Fac
£ >="<p =1 >=""< mapSP p

With these, 1oopAll in the previous section could be writ-
ten

loopAll f = loopLeft (Left >"=< f >="< stripEither)

3.2.6 The list combinator

Sometimes you want to create a list of similar interface ob-
jects (examples are button panels, menu choices or file lists).
For this purpose, we introduce the list fudget combinator
listF :: [(7,F a §)] — F (7,a) (7, 3). It combines a list of
tagged fudgets of some type into one fudget, where the high
level in- and outgoing messages are tagged to determine des-
tination or source, respectively.

3.3 A Haskell program with fudgets

We have learned how to compose a fudget from the primitive
fudgets and application specific abstract fudgets. We will
now put this fudget into a shell fudget (corresponding to
the top shell widget in the Motif example) and present a
Haskell program with this fudget.

The shell fudget wraps a shell window with a title bar
around an enclosed fudget, and it is called shellF :: String
—Faf — Faf. As the type suggests, the high level
messages are simply passed through the shell fudget.

Before presenting the Haskell program, we will briefly
describe how input/output is done in Haskell. The in-
put/output model is stream based, and a Haskell program
must contain a function main of type Dialogue, where

5For this to work, textF must only output the content when it is
altered by the user, not when a new content is input from the other
fudget. Otherwise, we get an infinite loop.

type Dialogue = [Response] ->[Request]

A Haskell program is a stream function that outputs re-
quests (such as “Write this string to that file”) to the outer
world, and consumes responses (i.e. “Ok” or “That file is
write protected!”) from it.°

So we introduce a function fudlogue (fudget dialogue),
with type F a # — Dialogue. fudlogue will turn the low
level commands from the fudget into suitable requests, and
extract low level events from the response stream to feed
back into the fudget.

Now, let us look at the counter example as a Haskell
program:

module Main(main) where
import Fudgets

main = fudlogue (shellF "Counter" counter_f)

startstate = 0

counter_f = intDispF startstate >==< absF counter
>==< buttonF "Inc"

counter = count startstate

where count n = getSP $ \ _ ->
putSP [n+1] $
count (n+1)

Here, we use more practical versions of the intDispF and
buttonF fudgets, with additional parameters for the initial
state and the button name, respectively.

4 Dynamic layout

The simplest approach to layout (from the toolkit imple-
mentor’s point of view) is to let each fudget take an extra
argument defining the window geometry. (The geometry de-
termines the height and width of a window, and where it is
placed in its parent window.) The programmer can then
completely control where to put the fudgets. This is not the
level one usually wants to work on, however.”

We implemented a simple layout scheme to make appli-
cation programming easier, by inventing a layout-conscious
cousin of >+<, called >+#<:

>+#< :: F a b -> (Distance, Orientation, F ¢ d)
->F (a+b) (c +d)

Here, Distance is the distance between the fudgets in pix-
els, and the Orientation argument specifies how the first
fudget should be placed relative to the second:

data Orientation = LAbove | LBelow | LRightOf | LLeftOf

The composition combinator >==#< is defined similarly.

4.1 Drawbacks with this layout mechanism

The layout mechanism described has two obvious draw-
backs. Firstly, the layout of fudgets is connected to the
structure of the program. There is no easy way of saying
that two fudgets should be placed together if they are not

8There are other means of doing input/output in Haskell, see [8].

"Parts of the problem could be solved by using a graphical layout
program which lets you place and resize fudgets with the mouse. Code
with explicit window geometry information will be generated by the
layout program. A prototype layout program has been developed for
the FUDGETS library [1].

combined in the program. Secondly, the program is some-
what cluttered with alot of layout arguments which possibly
hide the fudget structure.

A solution is to wrap a layout filter around the combined
fudgets, where the programmer specifies to the layout filter
how the subfudgets should be placed. This allows a more
“global” placement.

5 A larger example: Life

Let us look at a somewhat more complicated example, a sim-
ulator for Conway’s game of Life. The user will see two shell
windows, a board window with cells and a button panel, con-
trolled by the fudgets board and panel (See Figure 6). The
user can click anywhere on the board to insert or remove
cells or resize the board. The size of the cells is chosen from
a radio group in the panel, which also has a toggle button
for starting and stopping the simulation, and a quit button.
In the following sections, we will take a closer look at board
and panel.

When the simulation is started, new generations are com-
puted and shown at regular intervals. A generation can be
represented as a list of the cells which are alive, together
with the bounds of the board:

type Cell = Bool

type Pos = (Int,Int)
type Bounds = Pos

type Generation = [Pos]

5.1 The Life fudget

The fudget board should visualize a generation. It should be
easy to update either the whole generation or any individual
cell in the shown generation. It must also permit the cell
size to be changed. We capture this with the types

Int
NewCell (Pos, Cell) | HewGen Generation
| NewCellSize CellSize

type CellSize
data LifeCmds

We want board to report when the user clicks at a certain
position with the mouse, and when the window is resized.
So the high level events are defined as

data LifeEvts = MouseClick Pos | HNewBounds Bounds

and board will get the type F LifeCmds LifeEvts.

5.2 The Panel fudget

The type of panel will be F (Bool + CellSize) (() +
CellSize). When the toggle button is on, the panel will
output a () as a tick at regular intervals®, and if the user
chooses a new cell size, the size is output. The input type
of panel indicates that it can be used to control the settings
of the toggle and the radio group, but we will not use this
possibility.

5.3 The control stream function

The stream function control will receive the ticks from
panel. On each tick, it will compute a new generation and
output this. Clearly, the output from control must be con-
nected to the input of board. But control must know when
the user has clicked in the board window, so the output from
board must go to control as well. We need to use the loop
combinator to connect them (See also Figure 6):

8 This is implemented by having the runtime system sending special
timer alarm events to the Haskell program

control :: SP (LifeEvts + (() + CellSize)) LifeCmds

toplevel = loopLeft ((Left >"=< board) >=""< control)
>==< panel

() Tiny
[] Small
000 Medium
3 Huge
o
Figure 6:

We will not go into more detail about the internal struc-
ture of board, control or panel, but simply leave this ex-
ample now.

5.4 Dynamic creation of fudgets

Our examples so far have had a static fudget structure, as
indicated by the figures. Now, we will introduce a higher
order combinator that can be used to create fudgets on
the fly: dynListF :: F (r,(Fa 8)+a) (r,5). A message
to dynListF is tagged and can be either a new fudget F o 2
or a message to an already created fudget. (Cf. the de-
scription of 1istF.) The tag is used to associate fudgets
with their messages.

Suppose we have a fudget noteF which i1s a small
notepad. Now, we want to have a control panel that will
let us create notepads and other handy little tools at will.
Since we might want an arbitrary number of notepads, they
have to be created dynamically. A simple control panel with
just one button for creating notepads would be

module Main(main) where
import Fudgets
import HoteF(noteF)

main = fudlogue (shellF "Applications" newNoteFButton)
newFudget :: F (F a b) (Int,b)
newFudget = dynListF >=""< countSP 1

newlNoteFButton = newFudget >==<
(const noteF >"=< buttonF "New Notepad")

countSP :: Int -> SP a (Int,a)
countSP n =
getSP § \x->

putSP [(n,x)] $
countSP (n+1)

6 Representation of Fudgets

Writing applications using the FUDGETS library will mostly
consist of combining existing fudgets and writing abstract
fudgets. So, most of the time you need not worry about
the details of how fudgets are represented. But when imple-
menting new primitive fudgets, you need to know some of
the details.

As we have seen (c.f. Section 3.1), fudgets are stream
processors with two input streams and two output streams.
In the current implementation fudgets are represented as

type F a b = SP (TEvent + a) (TCommand + b)

where TEvent and TCommand are the types representing low
level events and commands. The high and low level streams
are merged into single streams allowing us to use the stream
processor type also for fudgets. Fudget combinators, like
>+< and >==<, take care of the details of separately routing
low and high level messages to the appropriate places.

6.1 Representation of Stream Processors

Streams processors can be represented in several ways. In a
lazy language, streams can naturally be represented as lists:

type SP a b = [a] -> [[b]l]

This is the definition used in the current implementation
of the FUDGETS library. Notice, though, that the definition
is internal to the FUDGETS library and not visible to ap-
plication programmers. Stream processors are constructed
using operations like putSP and getSP.

We also need an operation to compose stream processors
in parallel:

parSP :: SP al bl -> SP a2 b2 -> SP (al+a2) (b1+b2)

To make it possible to deterministically merge the output
streams from two stream processors composed in parallel
we impose the following restriction on all stream processors
sp:

Vn.sp (f1:02:.. 10t L) = 01:02:...10p10 (2)

This means that there is a one-to-one correspondence be-
tween elements in the input output lists. This allows the
order between the elements in the output stream of a par-
allel composition parSP spl sp2 to be determined from the
input stream. For example, if Left x appears at some point
in the input stream, the next element in the output should
be Left y, where y is the next element in the output stream
from spl.

The above restriction is also the reason why the output
stream is represented as a list of lists rather than just list.

A problem with this representation of stream processors
is that a straightforward implementation of parSP, causes a
nasty space leak. parSP can be defined something like

parSP spl sp2 is = merge is (spl (onlyLeft is))
(sp2 (onlyRight is))

The problem is that there are two references to the input
stream is. Now, if a long initial segment of the input stream
to parSP spl sp2 contains only elements for sp1, merge will
take elements only from the output of spl and thus leave the
subexpression (sp2 (onlyRight is)) unevaluated with its
reference to the beginning of the input stream. This is really
annoying, because we know that the large fragment kept in
memory for is really is garbage, since it will be thrown away
by onlyRight as soon as we try to evaluate it!

In the early days, the FUDGETS library suffered severely
from this space leak. A surprisingly simple method to elim-
inate space leaks of this kind [20], has been successfully ap-
plied to the FUDGETS library.

7 Parallelism and nondeterminism

Maintaining a graphical user interface is really a task that is
parallel in its nature, if you regard it as simultaneously view
and update different parts of the interface. This is something
that we would like to capture by permitting stream proces-
sors to evaluate in parallel, merging their output streams
nondeterministically. One fudget could then be busy updat-
ing a complicated drawing for example, while other fudgets
could respond to user actions. We will now introduce the
choose operator, which makes this possible.

7.1 Parallel evaluation with choose and oracles

The operator choose has been implemented for doing non-
deterministic programming in LML [2]. Tt has the type

choose: O0Oracle -> a -> b -> Bool

choose o a bwill evaluate the arguments a and b to WHNF
in parallel (possibly using time slicing), and return True if a
terminates first, otherwise False. The oracle o is consulted
to determine this, and if the same oracle is used once again in
another choose expression, that will immediately evaluate
to the same boolean value. Hence, referential transparency
is preserved:

f (choose o a b) (choose o a b)
is equivalent to
let b = choose o a b in f b b

Obviously, choose is not very useful when applied to only
one oracle in a program. You need an everlasting supply
of oracles. This is provided by the value oracletree ::
OracleTree where

data OracleTree = MkOnode OracleTree Oracle OracleTree

A complication is that you have to distribute this oracle
tree over those parts of your program that need nondeter-
ministic choice. At first, it seems like we are forced to add
an extra oracle tree argument to all our fudgets, whether or
not they will use it. But there is a better solution, and that
is to send the oracle tree as the first element in the event
stream. The >+< and 1listF combinators take care of split-
ting the tree, so that each fudget will get its own subtree.
This way, deterministic fudgets need not know at all about
the oracles.

Our streams can now be represented as lists, and to
merge two streams, we can use pmergeEithe:r:9

pmerge :: [Oracle] -> [a] -> [a] -> [al
pmerge (o0:0s) as bs
let (e:es,unes)

if choose o as bs
then (as,bs) else (bs,as)
in e : merge os es unes

pmergeEither :: [Oracle] -> [a] -> [b] -> [a + b]
pmergeEither os as bs =
pmerge os (map Left as) (map Right bs)

7.2 A more general fudget type

Consider a more general fudget type Foa 8 =
[E] — a — ([C], B) where typically a = [a1], # = [F1] .
With this type, the loop combinator from Section 3.2.4 is

9The definition of pmerge is from [7], where it is used in implemen-
tations of real-time multi-user games in LML.

not needed as a primitive to recursively connect the differ-
ent high level streams of our fudgets, instead we name the
streams directly. The pairing combinator >+< will have the

type Fo a1 1 — Fq a2 f2 — Fq (a1,a2) (61, 32). Here is
how we could define the loop combinator:

loopLeft :: F (a,b) (a,c)

loopLeft f evs inp =
let (cmds, (1,out)) = f evs (1,inp)
in (cmds, out)

The function pmergeEither and the oracles introduced in
the previous section can then be used to merge the high and
low level event streams if that is needed inside fudgets.

More issues about fudgets and parallel evaluation can be
found in [4].

8 Implementation

The FUDGETS library is built on top of Xlib [11], which
contains a number of routines for creating and managing
windows, rendering, reading events, etc. So, the implemen-
tation consists of two parts: the FUDGETS library itself and
an interface to Xlib.

The implementation (source and documentation) is
available via anonymous ftp [5]. The FUDGETS library is
written in LML and consists of about 4000 lines of code.
The Xlib interface is outlined below.

8.1 Implementation of the interface to Xlib

The facilities provided by XLib have been made available
to the functional programs by extending the Haskell 1/O
system [8] (which can be used also in LML programs) with
a few new requests and responses:

data Request =
-- file system requests:
| ReadFile
| WriteFile

String
String String

-- New requests for X1ib interface
| XDoCommand XWId XCommand
| XGetEvents

data Response = Success
| Str String
| StrList [String]

-- New responses for X1ib interface
| XEventList [XEvent]

The type XCommand contains constructors corresponding
to routines in Xlib. The type XEvent correspond to the
type XEvent defined in Xlib. About 40 commands and 40
event types are currently supported. Apart from these two
types, a number auxiliary types used in Xlib have been given
analogous definitions in Haskell/LML.

Thanks to the integration of the XLib interface with the
Haskell I/O system, fudgets can output not only X com-
mands, but any I/O request, and receive responses. Thus,
ordinary I/O operations can be performed inside fudgets.

A few lines of C code for every Xlib call and other con-
structor, have been added to the run-time system to imple-
ment the interface. Using the C monad [9] (not currently
supported by the Chalmers Haskell compiler), most of this
can be written directly in Haskell instead.

9 Related work

To our knowledge, FUDGETSis the first implementation of a
toolkit in a lazy functional language that is not built on top
of an existing toolkit.

A number of interfaces for functional languages have
been built on top of existing toolkits, for example Lazy Wafe
by Sinclair [18], XView/Miranda by Singh [19] and MIRAX
by Tebbs [21]. In general, these interfaces lack combinators
useful for structuring large applications.

9.1 eXene

eXene, by Reppy and Gansner [14, 6], is a toolkit for X Win-
dows and Standard ML of New Jersey. It is written on top
of Concurrent ML (CML) [13], and is thus multi-threaded.
eXene aims towards being a full-fledged toolkit, completely
written in SML (including the communication with the
X server).

Events from the X server and control messages between
parents and children are distributed in streams (coded as
CML event values) through the window hierarchy, where
each window has at least one thread taking care of the
events. Drawing is done in a imperative style, by calling
drawing procedures. High level events are reported either
imperatively or by message passing: e.g., when a button is
pressed, a callback routine is called, or a message is output
on a channel.

9.2 Interactions

In [22], Thompson uses interactionsto do 1/0:
type Interaction a b = (Input,a) -> (Input,b,Output)

An Interaction o 3 is a function that, when applied to
the input stream, will consume some input and return the
rest, together with some output commands. It also trans-
forms some value « into a 8 value.’® Interactions can be
composed by the sequential composition operator

sq :: Interaction a b -> Interaction b ¢ -> Interaction a ¢

sq i1 i2 (in,st) = (rest,st2,outl++out?2)
where (inl,stl,outl) = il (in,st)
(in2,st2,out2) = i2 (inil,st1)

These interactions have been used by Tebbs to imple-
ment an X Window interface in Miranda on top of an im-
perative toolkit written in C [21].

Having polymorphic input and output, the interactions
resemble our fudgets. The difference is that all interactions
are serially connected, where each interaction consumes a
bit of event stream (input) and prepends a bit of command
stream (output), whereas the fudgets are organized in a tree
with the event stream being split and distributed over it, re-
sulting in a number of fudget command streams being col-
lected in one single stream.

Whereas the interactions and dialogues might be good
for text-based 1/O, we do not find them appropriate for deal-
ing with the parallel nature of a GUI.

9.3 Concurrent Clean input/output

Concurrent Cleanis a lazy language, where parts of the pro-
gram can be evaluated in parallel [10]. The type system is

10The interactions are a generalization of Dwelly’s Dialogue com-
binators, which have the same type on the input and output values.

extended with so called unique types, which very much re-
semble linear types. In [12], objects of unique types are used
to model different aspects of the operating system, and func-
tions for manipulating these objects can have instant real
world effects, since the objects are unshared. This opens
the possibility to do I/O ‘inside’ the program. A graphi-
cal user interface system has been implemented on top of
the Macintosh toolbox as well as the Open Look toolkit for
X Windows. The connection to these toolkits gives the pro-
grams an imperative touch, where you have a user defined
program state which is manipulated by action functions trig-
gered by the user choosing menu commands, for example.

10 Conclusions

We have implemented a subset of a GUI toolkit, the Fup-
GETS library, which can be extended to a full-feathered and
practically useful high level graphical interface toolkit.

With a small reservation concerning efficiency, we believe
that the goals stated in the introduction are met. The fudget
concept has proved to be a useful structuring tool when
developing programs with GUIs, allowing large programs to
be built in a structured way. As a spinoff, the fudget concept
has also been used to do standard Haskell I/O. The fudgets
can emit any kind of request, and the response will be routed
back to the fudget.

It should be noted, that this is still work in progress.
We lack the experience of writing a really large application
using the FUDGETS library.

The efficiency is in most cases adequate. Our test ap-
plications start up in a few seconds (running on a SPARC-
station IPX). Response times are short. The rendering in
response to e.g. the user pressing a button or selecting a
menu item is in general as immediate as in conventional X
programs. Some operations are slower, e.g. adjusting the
sizes and positions of all the buttons in the calculator when
the user resizes the window. Sometimes, you notice “the
embarrassing pause” caused by garbage collection.

The garbage collection (GC) pause in our test applica-
tion is in most cases less than 0.2s. The GC time is pro-
portional to the size of live data with the copying garbage
collector we currently use, so applications dealing with large
data structures may suffer more from the GC pauses. We
hope, however, that program transformations that reduce
the amount of garbage generated and/or an appropriately
tuned generational garbage collector [16] can be used to solve
this problem.

10.1 Sample applications

We have implemented a number of small applications using
the FUDGETS library: calc: a pocket calculator providing
infinite precision rational numbers; clock: a transparent
clock; graph: a program for viewing graphs of real valued
functions of one real variable. The program allows the user
to zoom in/out, differentiate functions, and search for roots;
life: an implementation of Conway’s game of life. (See Sec-
tion 5 for a more detailed description); sss: a simple spread
sheet; x1mls: a GUI to a previously written program to
search for functions in the LML library by type [15]; xmail:
a simple mail reader; guit: a graphical user interface builder
for the FUDGETS library.

Figure 7 shows a screen dump with most of these pro-
grams, and some more.

10.2 Future work

By means of parallel evaluation and oracles, it seems like we
could come even closer of capturing the parallel nature of a
GUI, and permit a more natural way of connecting stream
functions. Therefore, a tempting experiment would be to
modify FUDGETS in this direction.

A source of inefficiency in many functional programs is
the repeated destruction and reconstruction of data struc-
tures. The event and command streams processed by fud-
gets is a typical example of this. It would be interesting to
see to what extent automatic program transformation, like
deforestation [23], can be used to eliminate this inefficiency.

11 Acknowledgements

We wish to thank Lennart Augustsson, for his assistance in
the extension of the run-time system to support the Xlib in-
terface. Jan Sparud’s fix of the space leaks suddenly made
our programs much more useful. Jan, Lennart and Niklas
Réjemo also did proof-reading and suggested various im-
provements.

John Launchbury pointed out that the C-monads could
be used to implement the calls to Xlib.

References

[1] C. Ahlberg. GUIT, a Graphical User Interface Builder for
the FUDGETs Library. In Proceedings of the Winter Meeting.
Department of Computer Sciences, Chalmers, January 1993.

[2] L. Augustsson. Non-deterministic Programming in a Deter-
ministic Functional Language. PMG Memo 66, Department
of Computer Sciences, Chalmers University of Technology,
S—412 96 Goteborg, 1988.

[3] L. Augustsson and T. Johnsson. Lazy ML User’s Man-
wal. Programming Methodology Group, Department of Com-
puter Sciences, Chalmers, S—412 96 Géteborg, Sweden, 1993.
Distributed with the LML compiler.

[4] M. Carlsson. Fudgets - Graphical User Interfaces and I/O
in Lazy Functional Languages. Licentiate Thesis, Chalmers
University of Technology and University of Géteborg, Swe-
den, 1993.

[5] M. Carlsson and T. Hallgren. The FUDGETs library.
Chalmers University. Anon. FTP: ftp.cs.chalmers.se:
/pub/haskell/chalmers/1lml-<version>.lmlx.tar.Z,
March 1993.

[6] E.R. Gansner and J. Reppy. The eXene widgets manual.
Cornell University. Anon. FTP: ramses.cs.cornell.edu:
/pub/eXene-doc.tar.Z, June 1991.

[7] T. Hallgren. Introduction to Real-time Multi-user Games
Programming in LML. Technical Report Memo 89, Depart-
ment of Computer Sciences, Chalmers, S—412 96 Goéteborg,
Sweden, January 1990.

[8] Paul Hudak et al. Report on the Programming Language
Haskell: A Non-Strict, Purely Functional Language, March
1992. Version 1.2. Also in Sigplan Notices, May 1992.

[9] S.L. Peyton Jones and P. Wadler. Imperative functional pro-
gramming. In Proceedings of the 1998 Conference on Prin-
ciples of Programming Languages, 1993.

[10] E.G.J.M.H. Nocker, J.E.W. Smetsers, M.C.J.D. van Eekelen,
and M.J. Plasmeyer. Concurrent clean. In Proceedings of
the PARLE’91 Parallel Architectures and Languages Europe
conference (LNCS 505), Eindhoven, June 1991.

[11] A. Nye. Xlib reference manual, volume 2. O'Reilly & Asso-
ciates, Inc., 1990.

augustss Fri Feb 28 02139123 1992 hbi
thomas@abalon.se Mon Mar 2 09:23:13 1332 Din nanne

thomas@abalon.se Tug Mar 3 17:43:24 1392 Ret Din nanne

hwk-BRstudent .cs.chalmers,se Thu Mar 5 18130123 1932 Ret DeleteliskObje
rittri Tue Apr 14 11:18:10 1992 ESA Information Retrieval Service

magnuz Mon May 11 14202:02 1992 lmlx - exempel

pelle Sun May 17 03:36:57 1992 MIME

bjerner Tue May 19 16:42:43 1932 Kurs,litt

augustss Med May 20 003343104 1332 HINE-mail

dimikaslBdtek chalmers,se Ned May 20 08:54:48 1932 Rey HST 14400 nodem s

rom: Lennart Augustsson <augustssy

o3 multi

ubject: MIME-mail

ontent-Type: text/plain: charset=150-8853-1

ag har fixat en enkel wersion av MIME-standarden for EMACS.
etta gor att man kan skicka och ta emot datorpost med 250 i.
or att arwanda WIME =& 1399 in raden

{load "mime"}
din .emacs. Jag kommer i fortsattningen att skicka alla mina
rev enligt den standarden. Om du tucker det ser Fult ut si beror
et pd att du arwander ett fordldrat mail-program.

-- Lennart

List Int—Int

u] Find more general types

Surn : List Int—Int
Tirnes ! List [nt—l]

ax : List o—
Min : List e—

hd ! List o—e
last ! List ei—d

length : List ey M

A

Y

aetnodting

sum all elements in alist,

Sum [oxlr w2y . oxn] =xl # 2+

sum [T a =a
| sum 2,13 a = sum 1 {x+al
end

(12]

(13]

(14]

15]

Figure 7: A collage of fudget applications. All windows belong to programs developed with the FUDGETS library.

J. von Groningen P. Achten and R. Plasmeijer. High Level
Specification of I/O in Functional Languages. In Proc. of the
International Workshop on Functional Languages. Springer
Lecture Notes in Computer Science, 1992. Anon. FTP:
ftp.cs.kun.nl:/ pub/Clean/papers/CleanI0Paper.ps.Z.

J. Reppy. CML: A Higher-order Concurrent Language. In
Proceedings of the SIGPLAN’91 Conference on Program-
ming Language Design and Implementation, pages 293-305,
June 1991.

J. Reppy and E.R. Gansner. The eXene library manual.
Cornell University. Anon. FTP: ramses.cs.cornell.edu:
/pub/eXene-doc.tar.Z, June 1991.

M. Rittri. Using types as search keys in function libraries. J.
of Functional Programming, 1(1):71-89, 1991. Earlier ver-
sion in Func. Prog. Lang. and Comput. Arch., 4th Conf.,
ACM Press 1989.

N. R6jemo. Generational garbage collection is Leak-Prone.
Submitted to FPCA 1993, December 1992.

R.W. Scheifler and J. Gettys. The X Window System. A CM
Transactions on Graphics, 5(2), April 1986.

D.C. Sinclair. Lazy Wafe - Graphical Interfaces for Func-
tional Languages. Departement of Computing Science, Uni-
versity of Glasgow, 1992. Draft.

(19]

(20]

(21]

(22]

(23]

(24]

(23]

S. Singh. Using XView/X11 from Miranda. In Heldal
et al., editor, Glasgow Workshop on Functional Program-
ming, 1991.

J. Sparud. Fixing Some Space Leaks without a Garbage
Collector. Submitted to FPCA 1993, December 1992.

M. Tebbs. MIRAX - An X-window Interface for the Func-
tional Programming Language Miranda. Technical report,
School of Engineering and Applied Science, April 1991.

S. Thompson. Interactive Functional Programming. In D.A.
Turner, editor, Research topics in Functional Programming.
Addison-Wesley Publishing Company, 1990.

P. Wadler. Deforestation: Transforming programs to elimi-
nate trees. In European Symposium on Programming, pages
344-358, Nancy, March 1988.

P. Wadler. The essence of functional programming. In
Proceedings 1992 Symposium on principles of Programming
Languages, pages 1-14, Albuquerque, New Mexico, 1992.

D.A. Young. The X window System : programming and
Applications with Xt. OSF/Motif Edition. Prentice Hall,
1990.

