
Fudgets

A Graphical User Interface in a Lazy Functional Language

Magnus Carlsson� Thomas Hallgren

Chalmers University of Technology

fmagnus�hallgreng�cs�chalmers�se

Abstract

This paper describes an implementation of a small window�
based graphical user interface toolkit for XWindows written
in the lazy functional language LML� By using this toolkit�
a Haskell or LML programmer can create a user interface
with menus� buttons and other graphical interface objects�
without conforming to more or less imperative programming
paradigms imposed if she were to use a traditional �impera�
tive� toolkit� Instead� the power of the abstraction methods
provided by Haskell or LML are used�

The main abstraction we use is the fudget� Fudgets are
combined in a hierarchical structure� and they interact by
message passing� The current implementation is based on a
sequential evaluator� but by using non�determinism and ora�
cles� we suggest how the fudgets can evaluate in parallel� We
believe that the toolkit can be extended to a full�feathered
and practically useful high level graphical toolkit�

� Introduction

Not so long ago� the dominating way for a user to inter�
act with a computer was by typing text on a keyboard and
reading text of a screen� Today� this traditional text oriented
user interface is being replaced by graphical user interfaces�
where the user interacts with the computer by manipulat�
ing graphical objects on a screen with a pointing device�
typically a mouse�

Graphic user interfaces are more �exible and therefore
more complex to program� To deal with this extra complex�
ity more levels of abstractions are used� As in all program�
ming it is important to �nd the right abstractions� This has
led to the development of Graphical User Interface �GUI�
toolkits to simplify the application programmer�s job�

A major advantage of functional programming languages
over traditional imperative languages is the abstraction
methods they provide� higher order functions� polymor�
phism and algebraic data types� This suggests that func�
tional languages may be better equipped to handle the
complexity of graphical user interfaces than traditional lan�
guages� But functional languages are often criticized for
having poor I	O facilities� making it hard to write interac�
tive programs� in particular programs with fancy graphical

user interfaces�
The major goals with our work are to show�

� that the abstraction methods and I	O facilities pro�
vided by functional languages are adequate for imple�
menting programs with graphical user interfaces� and

� that implementations of lazy functional languages are
e
cient enough to deal with the potentially large �ow
of data and swift responses required by a graphical
user interface�

So� rather than de�ning an interface between an existing
GUI toolkit �such as the Macintosh Toolbox or Motif� and
a functional language� we choose to start from a lower level
and implement a GUI toolkit in the functional language it�
self� This approach allows us to use the power of the abstrac�
tion methods provided by the functional language� instead
of relying on abstractions designed for imperative languages�
It also puts a larger part of burden of handling a GUI on
the functional program� thus requiring the implementation
to be more e
cient to obtain good performance�

The functional languages we work with are Lazy ML ��

and Haskell ��
 and the window system is X Windows ���
�
The interface to X Windows goes through Xlib ���
� Except
for one example in C� all code in the paper is given in Haskell�

The main abstraction we use is the fudget� the functional
correspondence to what is called the widget in some tradi�
tional GUI toolkits� We have developed a library of fudgets
implementing common user interface components� like but�
tons� menus� scroll bars� etc� Complex user interfaces are
built up by combining fudgets in a hierachical structure�
where the fudgets interact by message passing� There is no
global state� state information� when needed� is encapsu�
lated inside the fudgets� hidden from the outside world�

The remainder of this paper is organized as follows� we
start with a brief introduction to the X Windows system
and look at a small example program written in C using the
Motif toolkit �Section ��� We then describe our approach
to GUI program structuring in a lazy functional language
and introduce the fudget type �Section �� and present the
same example now implemented using fudgets� In Section �
we present a mechanism for automatic and dynamic layout
of fudgets� Section � contains a larger fudget programming
example� We present some details on how fudgets are repre�
sented �Section ��� With the chosen representation� we can
easily add mechanisms for parallelism and nondeterminism�
as is illustrated in Section �� We take a quick look at the im�
plementation of the interface to Xlib in Section �� Related



work is presented in Section � and conclusions are given in
Section ���

� The X Windows system

In the X Windows system ���
� you write a client program�
which interacts with the user by communicating with a
server process �the X server� which handles the lowest level
interface with the hardware �display� keyboard� mouse�� The
client sends a stream of commands �for creating windows�
drawing lines� writing text etc�� to the server and receives
a stream of events �which tell the client about keystrokes�
mouse button presses� motion of the mouse� etc�� from the
server� Most commands and events are related to a spe�
ci�c window� Each window has its own coordinate system
used for the drawing commands� All drawing commands are
relative to a window and drawing is usually clipped by the
window boundaries� This way� client programs only have
to bother about their own windows and are usually com�
pletely unaware of the existence of windows controlled by
other clients� Therefore� a user can handle many indepen�
dent activities simultaneously� possibly on di�erent comput�
ers in a network�

The windows have a hierarchical organization with win�
dows in other windows� Each window has a speci�c position
in a parent window� Most events are sent to the window
under the pointer� which the user controls with the mouse�
For each window� the programmer can decide how sensitive
it should be to various events� For example� to implement a
graphical button� you could create a window that is sensi�
tive only to events telling when the pointer enters or leaves
the window and when a speci�c mouse button is pressed or
released in it� Most user interface objects �like scroll bars�
pulldown menus and buttons�� often called widgets �window
gadgets�� are built up by a number of windows in this way�

The root of this window tree is a window that simply
covers the whole screen� and is usually �lled with some back�
ground color or pattern� The children of the root window
are usually so called shell windows� They have a title bar
and it is usually possible to move them around and resize
them by using the mouse� So the shell windows are the most
�window like� windows� from the user�s point of view�

In addition to the window tree� sibling windows are orga�
nized in a stacking order� telling which window should hide
which when they overlap� When a hidden part of a win�
dow becomes visible �e�g� because the user rearranged the
windows�� the X server sends an Expose event to the client�
telling it that the newly exposed part of the window needs
to be redrawn��

��� Imperative toolkit programming

Before introducing our functional toolkit solution� let us
warm up by looking at a simple imperative program that
uses a conventional toolkit� We will discover that program
control is somewhat di�erent from what we �nd in programs
with simple text interfaces�

In traditional imperative X Window based toolkits� you
create a tree of widgets and connect callback routines to
them� They are called callback routines because there are

�Unless you are using backing store� where bitmaps for the hidden
parts of a window are stored o� screen� This method is patented by
AT�T� but allegedly� Richard Stallman implemented it way back but
didn�t bother to write about it�

usually no direct calls to them in your code� but the toolkit
will call them in response to various events� We will name
the code you write the application�

After creating the widget tree and specifying the callback
routines� you enter the main event loop� where events are
dispatched to the widgets� which in turn respond by calling
the callback routines� In short� we could say that the toolkit
converts low level events� such as �Mouse button is pressed
at �x� y��� into high level events� such as calling the OK but�
ton callback routine� See Figure �� The callback routines� in
turn� can react with high level commands� such as �Pop up
the Save dialog box��� by calling routines in the toolkit� The
toolkit then emits a number of low level commands to carry
out the high level command� Typically� there is also a num�
ber of low level events that the toolkit could handle more
or less autonomously� such as expose events and requests
for resizing windows� The toolkit somewhat resembles lower
systems in the brain� controlling various functions of the
body without bothering the cerebral cortex �the application
code��

So the picture is that the toolkit is in control� handling
the low level events and maintaining the visual state of the
interface� Sometimes� application speci�c computation is
necessary� and then the toolkit calls application code�

Application

Low level

commands

Low level

events

Toolkit

commands

events

High level

High level

Client

Figure �� The structure of the client� The purpose of the
toolkit is to take care of handling all low level commands
and events� The toolkit can also emit high level events as
a response on low level events� The high level events are
handled by the application code� which in turn can emit
high level commands�

��� The Motif counter example

Let us look at a small example with a window containing
a button and a number display� Whenever the button is
pressed� the number is increased by one� The example is
written in C using the popular toolkit Motif ���
��

static int count � ��
static Widget display�

static void SetDisplay�Widget display� int i�
�
char s���	�
Arg wargs��	�

sprintf�s� 
�d
� i��

�The example has been somewhat stripped� the callback arguments
and arguments for determining various widget attributes are omitted�
and so is the conversion between C�strings and Motif strings�



XtSetArg�wargs��	� XmNlabelString� s��
XtSetValues�display� wargs� ���

�

static void increment��
�
count

�
SetDisplay�display� count��

�

void main��
�
Widget top� row� button�

top � XtInitialize���
row � XtCreateManagedWidget�
row
�

xmRowColumnWidgetClass� top��
display � XtCreateManagedWidget�
display
�

xmLabelWidgetClass� row��
button � XtCreateManagedWidget�
button
�

xmPushButtonWidgetClass� row��
SetDisplay�display� count��
XtAddCallback�button� �XtCallbackProc�increment�

�XtPointer�display��
XtRealizeWidget�top��
XtMainLoop���

�

The program starts with creating a shell widget
called top� which will be the root of the widget tree�
The rest of the tree is created with repeated calls of
XtCreateManagedWidget� where the arguments specify what
kind of widget to create� and where to put it in the tree� The
widgets are�

� row� a layout widget which put all its children in a row
or in a column�

� display� which shows a string which will be the count�

� button� a button that the user can press� Whenever
this happens� an associated callback routine is called�

When the widget tree is created� the display is reset to
show zero� and the C�function increment is registered as
a callback routine for the button widget� increment incre�
ments the counter and updates the display widget�

� Our approach

If we want to apply the callback style directly in a pure lazy
functional toolkit� we must �nd out what it means to �call a
routine�� A straightforward solution would be to stick to the
imperative style by using variations of the state monad ���
�
This suggests a simple way of using an existing imperative
toolkit in a functional program� It is likely though� that
this will imply a imperative style throughout the program�
so why then use a functional language at all�

Instead� we chose to use a stream processing style� with
functions operating on streams of events and commands�
As suggested by Figure �� we can distinguish four types of
streams� high level command and event streams� and low
level ditos� Our toolkit consists of stream functions con�
suming high and low level events� and producing high and
low level commands� They correspond to the widgets in
traditional toolkits� and we call them fudgets �Functional
Widgets�� When developing an application� you �the appli�
cation programmer� write stream functions that handle high
level messages and somehow connect them with the fudgets
from the toolkit�

��� The fudget type

Let us take a closer look at the types of the four di�er�
ent streams� The low level command type has constructors
corresponding closely to the drawing commands that you
could send to the X server� Similarly� the low level event
type mostly consists of constructors for the various events
that the server could produce� These types are �xed and is
something that the application programmer normally need
not worry about�

The type of high level events and commands �which we
will simply call input and output� cannot so easily be de�
termined once and for all� For example� consider a fudget
textF for displaying and entering a line of text� We want
the input type to be String� telling that the fudget accepts
new strings to show� Suppose we want the fudget to output
the text value whenever the return key is pressed� this is
indicated by having the output type String too� Similarly�
imagine a push button fudget buttonF which could output
a unit value �of type �� in Haskell�� whenever it is clicked�
and could input a boolean value True or False to make it
sensitive or insensitive to mouse�clicks�

It seems reasonable to have the type of the high level
event and commands as parameters in the fudget type� We
introduce the notation

F � � ���

for the type of fudgets with input type � and output type ��
Thus� textF will have type F String String� and buttonF
will have the type F Bool ���

We will visualize the fudget as a circle with four pins� see
Figure �� The information �ows through the fudget from
right to left� The high level messages go through the upper
pins� the low level events and commands through the lower
pins� You can think of the lower pins as being connected
directly to the fudget�s window�

β α

Window

Fudget

Figure �� The fudget F � ��

��� Putting fudgets together

Complex graphic interfaces are constructed from simpler
building blocks� so we need a set of combinators for this� A
simple combinator would take two fudgets as arguments and
put them �in parallel� into one composite fudget� and we will
call this combinator ���� It routes the low level commands
and events to and from each fudget independently� so they
exist side by side without having to bother about each other�
each one controlling its own window� Since the composite
fudget consists of two subfudgets� we need a mechanism for
distinguishing the output from them� and adressing input to
each one of them� For this reason� we introduce the type of
disjoint union� called Either in Haskell�

data Either a b � Left a � Right b



Either � � will be abbreviated as �� �� The type of ���
will then be

F �� �� � F �� �� � F ��� � ��� ��� � ���

We use the constructors in Either to indicate that a high
level message is sent to or from either the left or the right
subfudget� Now� we can for example put together our text
fudget and button fudget�

textF �
� buttonF �� F �String 
 Bool� �String 
 ���

Say that we want to enable the button� this is done by send�
ing Right True to the composed fudget�

����� Fudget composition

The pairing combinator allows us to put any number of fud�
gets together into one single fudget� but we need a means by
which they can communicate high level information to one
other� Normally in functional programming� this is done
with an operator for function composition with type

�� � �� � �� � �� � � � �

With this in mind� we introduce a combinator for fudget
composition� which we will name ����� with type

F � � � F � � � F � �

Just as ���� ���� will put two fudgets together and let them
control their windows independently� and in addition� the
output from the right fudget is connected to the input of
the left fudget� Consider the somewhat silly fudget

textF ���� textF

If text is entered in the right text fudget� it will be echoed
in the left one� See also Figure ��

Ct Et Ct Et

αβγ

f2f1

Window 1 Window 2

Figure �� The fudget f� ���� f�

����� Abstract fudgets

With the right set of primitive fudgets �such as textF and
buttonF�� we can now imagine rather complex interfaces be�
ing built� But we must also have the ability to combine this
interface with the application speci�c code� corresponding
to the right box in Figure �� We will do this by an operator
that lets the programmer turn an arbitrary stream function
into a fudget� The operator is called absF and has type

SP � � � F � �

�SP is an abbreviation for Stream Processor�� We also need
to tools for writing stream functions� This is done in a con�
tinuation style with the functions

getSP �� �a �� SP a b� �� SP a b

putSP �� �a	 �� �SP b a� �� SP b a

getSP ��a 	� sf� is a stream function that will wait
for a message and then become the stream function sf�
putSP l sp will output all the messages in the list l and
then become the stream function sf�

A useful function derived from these is mapSP �cf� the
standard map function on lists� of type

�� � �� � SP � �

����� The counter example with fudgets

We can now construct a fudget with the same behavior as the
simple counter program in Section ���� The fudget consists
of a button� an abstract fudget that does the counting� and
an integer display fudget intDispF of type F Int �� �See
Figure ���

Figure �� A small counter

We use fudget composition to connect the button with
the counter and the counter with the display�

intDispF ���� �absF counter� ���� buttonF

Here� counter has type SP �� Int and can be de�ned as�

counter � count �
where count n � getSP � � � ��

putSP �n
�	 �
count �n
��

The three fudgets can be seen in Figure ��

n.c.

counter buttondisplay

n.c.n.c.

()Int n.c.

Figure �� Whenever the button fudget is pressed� it sends a
�� to counter� which counts the number of clicks and sends
this count to the display� Connectors marked n
c
 are not
connected�

����� Loops

If fudgets need to exchange information both back and forth�
they can be connected with the operator loopLeft of type

F ��� �� ��� �� � F � �

Whenever the enclosed fudget outputs an � message� it is
fed back into the fudget�

As an example� consider the de�nitions

�The type variable on the output indicates that the fudget never
outputs anything�

�� is function application in Haskell



stripEither �� Either a a �� a
stripEither Left a � a

� Right a � a

loopAll �� F a b �� F c d
loopAll f � loopLeft �absF �mapSP Left� ���� f ����

�absF �mapSP StripEither���

Now� with

loopAll �textF ���� textF�

we get two text fudgets� and if text is entered in one of
them� it is echoed in the other� �See also Section �������

����� Some derived combinators

The following combinators and operators are not necessary
since they can be derived from the ones introduces sofar�
but they are quite useful and some of them are actually
implemented more e
ciently than the following de�nitions
suggest�

������� �� SP b c �� F a b �� F a c
p ����� f � absF p ���� f

������� �� F b c �� SP a b �� F a c
f ����� p � f ���� absF p

������ �� �b �� c� �� F a b �� F a c
p ���� f � mapSP p ����� f

������ �� F b c �� �a �� b� �� F a c
f ���� p � f ����� mapSP p

With these� loopAll in the previous section could be writ�
ten

loopAll f � loopLeft �Left ���� f ���� stripEither�

����� The list combinator

Sometimes you want to create a list of similar interface ob�
jects �examples are button panels� menu choices or �le lists��
For this purpose� we introduce the list fudget combinator
listF �� ����F � ��
 � F ��� �� ��� ��� It combines a list of
tagged fudgets of some type into one fudget� where the high
level in� and outgoing messages are tagged to determine des�
tination or source� respectively�

��� A Haskell program with fudgets

We have learned how to compose a fudget from the primitive
fudgets and application speci�c abstract fudgets� We will
now put this fudget into a shell fudget �corresponding to
the top shell widget in the Motif example� and present a
Haskell program with this fudget�

The shell fudget wraps a shell window with a title bar
around an enclosed fudget� and it is called shellF �� String
� F � � � F � �� As the type suggests� the high level
messages are simply passed through the shell fudget�

Before presenting the Haskell program� we will brie�y
describe how input	output is done in Haskell� The in�
put	output model is stream based� and a Haskell program
must contain a function main of type Dialogue� where

�For this to work� textF must only output the content when it is
altered by the user� not when a new content is input from the other
fudget� Otherwise� we get an in�nite loop�

type Dialogue � �Response	 ���Request	

A Haskell program is a stream function that outputs re�

quests �such as �Write this string to that �le�� to the outer
world� and consumes responses �i�e� �Ok� or �That �le is
write protected��� from it��

So we introduce a function fudlogue �fudget dialogue��
with type F � � � Dialogue� fudlogue will turn the low
level commands from the fudget into suitable requests� and
extract low level events from the response stream to feed
back into the fudget�

Now� let us look at the counter example as a Haskell
program�

module Main�main� where
import Fudgets

main � fudlogue �shellF 
Counter
 counter�f�

startstate � �

counter�f � intDispF startstate ���� absF counter
���� buttonF 
Inc


counter � count startstate
where count n � getSP � � � ��

putSP �n
�	 �
count �n
��

Here� we use more practical versions of the intDispF and
buttonF fudgets� with additional parameters for the initial
state and the button name� respectively�

� Dynamic layout

The simplest approach to layout �from the toolkit imple�
mentor�s point of view� is to let each fudget take an extra
argument de�ning the window geometry� �The geometry de�
termines the height and width of a window� and where it is
placed in its parent window�� The programmer can then
completely control where to put the fudgets� This is not the
level one usually wants to work on� however��

We implemented a simple layout scheme to make appli�
cation programming easier� by inventing a layout�conscious
cousin of ���� called �����

�
�� �� F a b �� �Distance� Orientation� F c d�
�� F �a 
 b� �c 
 d�

Here� Distance is the distance between the fudgets in pix�
els� and the Orientation argument speci�es how the �rst
fudget should be placed relative to the second�

data Orientation � LAbove � LBelow � LRightOf � LLeftOf

The composition combinator ����� is de�ned similarly�

��� Drawbacks with this layout mechanism

The layout mechanism described has two obvious draw�
backs� Firstly� the layout of fudgets is connected to the
structure of the program� There is no easy way of saying
that two fudgets should be placed together if they are not

�There are other means of doing input�output in Haskell� see 	
��
�Parts of the problem could be solved by using a graphical layout

program which lets you place and resize fudgets with the mouse� Code
with explicit window geometry information will be generated by the
layout program� A prototype layout program has been developed for
the Fudgets library 	���



combined in the program� Secondly� the program is some�
what cluttered with a lot of layout arguments which possibly
hide the fudget structure�

A solution is to wrap a layout �lter around the combined
fudgets� where the programmer speci�es to the layout �lter
how the subfudgets should be placed� This allows a more
�global� placement�

� A larger example� Life

Let us look at a somewhat more complicated example� a sim�
ulator for Conway�s game of Life� The user will see two shell
windows� a board window with cells and a button panel� con�
trolled by the fudgets board and panel �See Figure ��� The
user can click anywhere on the board to insert or remove
cells or resize the board� The size of the cells is chosen from
a radio group in the panel� which also has a toggle button
for starting and stopping the simulation� and a quit button�
In the following sections� we will take a closer look at board
and panel�

When the simulation is started� new generations are com�
puted and shown at regular intervals� A generation can be
represented as a list of the cells which are alive� together
with the bounds of the board�

type Cell � Bool
type Pos � �Int�Int�
type Bounds � Pos
type Generation � �Pos	

��� The Life fudget

The fudget board should visualize a generation� It should be
easy to update either the whole generation or any individual
cell in the shown generation� It must also permit the cell
size to be changed� We capture this with the types

type CellSize � Int
data LifeCmds � NewCell �Pos� Cell� � NewGen Generation

� NewCellSize CellSize

We want board to report when the user clicks at a certain
position with the mouse� and when the window is resized�
So the high level events are de�ned as

data LifeEvts � MouseClick Pos � NewBounds Bounds

and board will get the type F LifeCmds LifeEvts�

��� The Panel fudget

The type of panel will be F �Bool � CellSize� ��� �
CellSize�� When the toggle button is on� the panel will
output a �� as a tick at regular intervals� � and if the user
chooses a new cell size� the size is output� The input type
of panel indicates that it can be used to control the settings
of the toggle and the radio group� but we will not use this
possibility�

��� The control stream function

The stream function control will receive the ticks from
panel� On each tick� it will compute a new generation and
output this� Clearly� the output from controlmust be con�
nected to the input of board� But controlmust know when
the user has clicked in the board window� so the output from
board must go to control as well� We need to use the loop
combinator to connect them �See also Figure ���

�This is implemented by having the runtime system sending special
timer alarm events to the Haskell program

control �� SP �LifeEvts 
 ��� 
 CellSize�� LifeCmds
toplevel � loopLeft ��Left ���� board� ����� control�

���� panel

panelboard

control
map

Left

Figure ��

We will not go into more detail about the internal struc�
ture of board� control or panel� but simply leave this ex�
ample now�

��� Dynamic creation of fudgets

Our examples so far have had a static fudget structure� as
indicated by the �gures� Now� we will introduce a higher
order combinator that can be used to create fudgets on
the �y� dynListF �� F ��� �F � �� � �� ��� ��� A message
to dynListF is tagged and can be either a new fudget F � �
or a message � to an already created fudget� �Cf� the de�
scription of listF�� The tag is used to associate fudgets
with their messages�

Suppose we have a fudget noteF which is a small
notepad� Now� we want to have a control panel that will
let us create notepads and other handy little tools at will�
Since we might want an arbitrary number of notepads� they
have to be created dynamically� A simple control panel with
just one button for creating notepads would be

module Main�main� where
import Fudgets
import NoteF�noteF�

main � fudlogue �shellF 
Applications
 newNoteFButton�
newFudget �� F �F a b� �Int�b�
newFudget � dynListF ����� countSP �

newNoteFButton � newFudget ����
�const noteF ���� buttonF 
New Notepad
�

countSP �� Int �� SP a �Int�a�
countSP n �

getSP � �x��
putSP ��n�x�	 �
countSP �n
��

� Representation of Fudgets

Writing applications using the Fudgets library will mostly
consist of combining existing fudgets and writing abstract
fudgets� So� most of the time you need not worry about
the details of how fudgets are represented� But when imple�
menting new primitive fudgets� you need to know some of
the details�



As we have seen �c�f� Section ����� fudgets are stream
processors with two input streams and two output streams�
In the current implementation fudgets are represented as

type F a b � SP �TEvent 
 a� �TCommand 
 b�

where TEvent and TCommand are the types representing low
level events and commands� The high and low level streams
are merged into single streams allowing us to use the stream
processor type also for fudgets� Fudget combinators� like
��� and ����� take care of the details of separately routing
low and high level messages to the appropriate places�

��� Representation of Stream Processors

Streams processors can be represented in several ways� In a
lazy language� streams can naturally be represented as lists�

type SP a b � �a	 �� ��b		

This is the de�nition used in the current implementation
of the Fudgets library� Notice� though� that the de�nition
is internal to the Fudgets library and not visible to ap�
plication programmers� Stream processors are constructed
using operations like putSP and getSP�

We also need an operation to compose stream processors
in parallel�

parSP �� SP a� b� �� SP a� b� �� SP �a�
a�� �b�
b��

To make it possible to deterministically merge the output
streams from two stream processors composed in parallel
we impose the following restriction on all stream processors
sp�

�n�sp �i��i������in��� � o��o������on�o ���

This means that there is a one�to�one correspondence be�
tween elements in the input output lists� This allows the
order between the elements in the output stream of a par�
allel composition parSP sp� sp� to be determined from the
input stream� For example� if Left x appears at some point
in the input stream� the next element in the output should
be Left y� where y is the next element in the output stream
from sp��

The above restriction is also the reason why the output
stream is represented as a list of lists rather than just list�

A problem with this representation of stream processors
is that a straightforward implementation of parSP� causes a
nasty space leak� parSP can be de�ned something like

parSP sp� sp� is � merge is �sp� �onlyLeft is��
�sp� �onlyRight is��

The problem is that there are two references to the input
stream is� Now� if a long initial segment of the input stream
to parSP sp� sp� contains only elements for sp�� merge will
take elements only from the output of sp� and thus leave the
subexpression �sp� �onlyRight is�� unevaluated with its
reference to the beginning of the input stream� This is really
annoying� because we know that the large fragment kept in
memory for is really is garbage� since it will be thrown away
by onlyRight as soon as we try to evaluate it�

In the early days� the Fudgets library su�ered severely
from this space leak� A surprisingly simple method to elim�
inate space leaks of this kind ���
� has been successfully ap�
plied to the Fudgets library�

� Parallelism and nondeterminism

Maintaining a graphical user interface is really a task that is
parallel in its nature� if you regard it as simultaneously view
and update di�erent parts of the interface� This is something
that we would like to capture by permitting stream proces�
sors to evaluate in parallel� merging their output streams
nondeterministically� One fudget could then be busy updat�
ing a complicated drawing for example� while other fudgets
could respond to user actions� We will now introduce the
choose operator� which makes this possible�

��� Parallel evaluation with choose and oracles

The operator choose has been implemented for doing non�
deterministic programming in LML ��
� It has the type

choose� Oracle �� a �� b �� Bool

choose o a bwill evaluate the arguments a and b to WHNF
in parallel �possibly using time slicing�� and return True if a
terminates �rst� otherwise False� The oracle o is consulted
to determine this� and if the same oracle is used once again in
another choose expression� that will immediately evaluate
to the same boolean value� Hence� referential transparency
is preserved�

f �choose o a b� �choose o a b�

is equivalent to

let b � choose o a b in f b b

Obviously� choose is not very useful when applied to only
one oracle in a program� You need an everlasting supply
of oracles� This is provided by the value oracletree ��
OracleTree where

data OracleTree � MkOnode OracleTree Oracle OracleTree

A complication is that you have to distribute this oracle
tree over those parts of your program that need nondeter�
ministic choice� At �rst� it seems like we are forced to add
an extra oracle tree argument to all our fudgets� whether or
not they will use it� But there is a better solution� and that
is to send the oracle tree as the �rst element in the event
stream� The ��� and listF combinators take care of split�
ting the tree� so that each fudget will get its own subtree�
This way� deterministic fudgets need not know at all about
the oracles�

Our streams can now be represented as lists� and to
merge two streams� we can use pmergeEither��

pmerge �� �Oracle	 �� �a	 �� �a	 �� �a	
pmerge �o�os� as bs �

let �e�es�unes� � if choose o as bs
then �as�bs� else �bs�as�

in e � merge os es unes

pmergeEither �� �Oracle	 �� �a	 �� �b	 �� �a 
 b	
pmergeEither os as bs �

pmerge os �map Left as� �map Right bs�

��� A more general fudget type

Consider a more general fudget type F	 � � �
�E
 � � � ��C
� �� where typically � � ���
� � � ���
 �
With this type� the loop combinator from Section ����� is

�The de�nition of pmerge is from 	
�� where it is used in implemen�
tations of real�time multi�user games in LML�



not needed as a primitive to recursively connect the di�er�
ent high level streams of our fudgets� instead we name the
streams directly� The pairing combinator ��� will have the
type F	 �� �� � F	 �� �� � F	 ���� ��� ���� ���� Here is
how we could de�ne the loop combinator�

loopLeft �� F �a�b� �a�c�
loopLeft f evs inp �
let �cmds� �l�out�� � f evs �l�inp�
in �cmds� out�

The function pmergeEither and the oracles introduced in
the previous section can then be used to merge the high and
low level event streams if that is needed inside fudgets�

More issues about fudgets and parallel evaluation can be
found in ��
�

	 Implementation

The Fudgets library is built on top of Xlib ���
� which
contains a number of routines for creating and managing
windows� rendering� reading events� etc� So� the implemen�
tation consists of two parts� the Fudgets library itself and
an interface to Xlib�

The implementation �source and documentation� is
available via anonymous ftp ��
� The Fudgets library is
written in LML and consists of about ���� lines of code�
The Xlib interface is outlined below�

	�� Implementation of the interface to Xlib

The facilities provided by XLib have been made available
to the functional programs by extending the Haskell I	O
system ��
 �which can be used also in LML programs� with
a few new requests and responses�

data Request �
�� file system requests�

� ReadFile String
� WriteFile String String
�
�

�� New requests for Xlib interface
� XDoCommand XWId XCommand
� XGetEvents

data Response � Success
� Str String
� StrList �String	
�
�

�� New responses for Xlib interface
� XEventList �XEvent	

The type XCommand contains constructors corresponding
to routines in Xlib� The type XEvent correspond to the
type XEvent de�ned in Xlib� About �� commands and ��
event types are currently supported� Apart from these two
types� a number auxiliary types used in Xlib have been given
analogous de�nitions in Haskell	LML�

Thanks to the integration of the XLib interface with the
Haskell I	O system� fudgets can output not only X com�
mands� but any I	O request� and receive responses� Thus�
ordinary I	O operations can be performed inside fudgets�

A few lines of C code for every Xlib call and other con�
structor� have been added to the run�time system to imple�
ment the interface� Using the C monad ��
 �not currently
supported by the Chalmers Haskell compiler�� most of this
can be written directly in Haskell instead�


 Related work

To our knowledge� Fudgetsis the �rst implementation of a
toolkit in a lazy functional language that is not built on top
of an existing toolkit�

A number of interfaces for functional languages have
been built on top of existing toolkits� for example Lazy Wafe
by Sinclair ���
� XView	Miranda by Singh ���
 and MIRAX
by Tebbs ���
� In general� these interfaces lack combinators
useful for structuring large applications�


�� eXene

eXene� by Reppy and Gansner ���� �
� is a toolkit for X Win�
dows and Standard ML of New Jersey� It is written on top
of Concurrent ML �CML� ���
� and is thus multi�threaded�
eXene aims towards being a full��edged toolkit� completely
written in SML �including the communication with the
X server��

Events from the X server and control messages between
parents and children are distributed in streams �coded as
CML event values� through the window hierarchy� where
each window has at least one thread taking care of the
events� Drawing is done in a imperative style� by calling
drawing procedures� High level events are reported either
imperatively or by message passing� e�g�� when a button is
pressed� a callback routine is called� or a message is output
on a channel�


�� Interactions

In ���
� Thompson uses interactions to do I	O�

type Interaction a b � �Input�a� �� �Input�b�Output�

An Interaction � � is a function that� when applied to
the input stream� will consume some input and return the
rest� together with some output commands� It also trans�
forms some value � into a � value��
 Interactions can be
composed by the sequential composition operator

sq �� Interaction a b �� Interaction b c �� Interaction a c
sq i� i� �in�st� � �rest�st��out�

out��

where �in��st��out�� � i� �in�st�
�in��st��out�� � i� �in��st��

These interactions have been used by Tebbs to imple�
ment an X Window interface in Miranda on top of an im�
perative toolkit written in C ���
�

Having polymorphic input and output� the interactions
resemble our fudgets� The di�erence is that all interactions
are serially connected� where each interaction consumes a
bit of event stream �input� and prepends a bit of command
stream �output�� whereas the fudgets are organized in a tree
with the event stream being split and distributed over it� re�
sulting in a number of fudget command streams being col�
lected in one single stream�

Whereas the interactions and dialogues might be good
for text�based I	O� we do not �nd them appropriate for deal�
ing with the parallel nature of a GUI�


�� Concurrent Clean input�output

Concurrent Clean is a lazy language� where parts of the pro�
gram can be evaluated in parallel ���
� The type system is

�
The interactions are a generalization of Dwelly�s Dialogue com�

binators� which have the same type on the input and output values�



extended with so called unique types� which very much re�
semble linear types� In ���
� objects of unique types are used
to model di�erent aspects of the operating system� and func�
tions for manipulating these objects can have instant real
world e�ects� since the objects are unshared� This opens
the possibility to do I	O �inside� the program� A graphi�
cal user interface system has been implemented on top of
the Macintosh toolbox as well as the Open Look toolkit for
X Windows� The connection to these toolkits gives the pro�
grams an imperative touch� where you have a user de�ned
program state which is manipulated by action functions trig�
gered by the user choosing menu commands� for example�

�� Conclusions

We have implemented a subset of a GUI toolkit� the Fud�
gets library� which can be extended to a full�feathered and
practically useful high level graphical interface toolkit�

With a small reservation concerning e
ciency� we believe
that the goals stated in the introduction are met� The fudget
concept has proved to be a useful structuring tool when
developing programs with GUIs� allowing large programs to
be built in a structured way� As a spino�� the fudget concept
has also been used to do standard Haskell I	O� The fudgets
can emit any kind of request� and the response will be routed
back to the fudget�

It should be noted� that this is still work in progress�
We lack the experience of writing a really large application
using the Fudgets library�

The e
ciency is in most cases adequate� Our test ap�
plications start up in a few seconds �running on a SPARC�
station IPX�� Response times are short� The rendering in
response to e�g� the user pressing a button or selecting a
menu item is in general as immediate as in conventional X
programs� Some operations are slower� e�g� adjusting the
sizes and positions of all the buttons in the calculator when
the user resizes the window� Sometimes� you notice �the
embarrassing pause� caused by garbage collection�

The garbage collection �GC� pause in our test applica�
tion is in most cases less than ���s� The GC time is pro�
portional to the size of live data with the copying garbage
collector we currently use� so applications dealing with large
data structures may su�er more from the GC pauses� We
hope� however� that program transformations that reduce
the amount of garbage generated and	or an appropriately
tuned generational garbage collector ���
 can be used to solve
this problem�

���� Sample applications

We have implemented a number of small applications using
the Fudgets library� calc� a pocket calculator providing
in�nite precision rational numbers� clock� a transparent
clock� graph� a program for viewing graphs of real valued
functions of one real variable� The program allows the user
to zoom in	out� di�erentiate functions� and search for roots�
life� an implementation of Conway�s game of life� �See Sec�
tion � for a more detailed description�� sss� a simple spread
sheet� xlmls� a GUI to a previously written program to
search for functions in the LML library by type ���
� xmail�
a simple mail reader� guit� a graphical user interface builder
for the Fudgets library�

Figure � shows a screen dump with most of these pro�
grams� and some more�

���� Future work

By means of parallel evaluation and oracles� it seems like we
could come even closer of capturing the parallel nature of a
GUI� and permit a more natural way of connecting stream
functions� Therefore� a tempting experiment would be to
modify Fudgets in this direction�

A source of ine
ciency in many functional programs is
the repeated destruction and reconstruction of data struc�
tures� The event and command streams processed by fud�
gets is a typical example of this� It would be interesting to
see to what extent automatic program transformation� like
deforestation ���
� can be used to eliminate this ine
ciency�

�� Acknowledgements

We wish to thank Lennart Augustsson� for his assistance in
the extension of the run�time system to support the Xlib in�
terface� Jan Sparud�s �x of the space leaks suddenly made
our programs much more useful� Jan� Lennart and Niklas
R ojemo also did proof�reading and suggested various im�
provements�

John Launchbury pointed out that the C�monads could
be used to implement the calls to Xlib�

References

��� C� Ahlberg� GUIT� a Graphical User Interface Builder for
the Fudgets Library� In Proceedings of the Winter Meeting�
Department of Computer Sciences� Chalmers� January �����

��� L� Augustsson� Non�deterministic Programming in a Deter�
ministic Functional Language� PMG Memo 		� Department
of Computer Sciences� Chalmers University of Technology�
S
��� �	 G�oteborg� ��

�

��� L� Augustsson and T� Johnsson� Lazy ML User�s Man�
ual� ProgrammingMethodologyGroup� Departmentof Com�
puter Sciences� Chalmers� S
��� �	 G�oteborg� Sweden� �����
Distributed with the LML compiler�

��� M� Carlsson� Fudgets � Graphical User Interfaces and I�O
in Lazy Functional Languages� Licentiate Thesis� Chalmers
University of Technology and University of G�oteborg� Swe�
den� �����

��� M� Carlsson and T� Hallgren� The Fudgets library�
Chalmers University� Anon� FTP� ftp�cs�chalmers�se�
�pub�haskell�chalmers�lml��version��lmlx�tar�Z�
March �����

�	� E�R� Gansner and J� Reppy� The eXene widgets manual�
Cornell University� Anon� FTP� ramses�cs�cornell�edu�
�pub�eXene�doc�tar�Z� June �����

��� T� Hallgren� Introduction to Real�time Multi�user Games
Programming in LML� Technical Report Memo 
�� Depart�
ment of Computer Sciences� Chalmers� S
��� �	 G�oteborg�
Sweden� January �����

�
� Paul Hudak et al� Report on the Programming Language
Haskell� A Non�Strict� Purely Functional Language� March
����� Version ���� Also in Sigplan Notices� May �����

��� S�L� Peyton Jones and P� Wadler� Imperative functional pro�
gramming� In Proceedings of the ���� Conference on Prin�
ciples of Programming Languages� �����

���� E�G�J�M�H� N�ocker� J�E�W� Smetsers�M�C�J�D� van Eekelen�
and M�J� Plasmeyer� Concurrent clean� In Proceedings of
the PARLE��� Parallel Architectures and Languages Europe
conference �LNCS �	�
� Eindhoven� June �����

���� A� Nye� Xlib reference manual� volume �� O�Reilly � Asso�
ciates� Inc�� �����



Figure �� A collage of fudget applications� All windows belong to programs developed with the Fudgets library�

���� J� von Groningen P� Achten and R� Plasmeijer� High Level
Speci�cation of I�O in Functional Languages� In Proc� of the
International Workshop on Functional Languages� Springer
Lecture Notes in Computer Science� ����� Anon� FTP�
ftp�cs�kun�nl�� pub�Clean�papers�CleanIOPaper�ps�Z�

���� J� Reppy� CML� A Higher�order Concurrent Language� In
Proceedings of the SIGPLAN��� Conference on Program�
ming Language Design and Implementation� pages ���
����
June �����

���� J� Reppy and E�R� Gansner� The eXene library manual�
Cornell University� Anon� FTP� ramses�cs�cornell�edu�
�pub�eXene�doc�tar�Z� June �����

���� M� Rittri� Using types as search keys in function libraries� J�
of Functional Programming� �������

�� ����� Earlier ver�
sion in Func� Prog� Lang� and Comput� Arch�� �th Conf��
ACM Press ��
��

��	� N� R�ojemo� Generational garbage collection is Leak�Prone�
Submitted to FPCA ����� December �����

���� R�W� Schei�er and J� Gettys� The X Window System� ACM
Transactions on Graphics� ����� April ��
	�

��
� D�C� Sinclair� Lazy Wafe � Graphical Interfaces for Func�
tional Languages� Departement of Computing Science� Uni�
versity of Glasgow� ����� Draft�

���� S� Singh� Using XView�X�� from Miranda� In Heldal
et al�� editor� Glasgow Workshop on Functional Program�
ming� �����

���� J� Sparud� Fixing Some Space Leaks without a Garbage
Collector� Submitted to FPCA ����� December �����

���� M� Tebbs� MIRAX � An X�window Interface for the Func�
tional Programming Language Miranda� Technical report�
School of Engineering and Applied Science� April �����

���� S� Thompson� Interactive Functional Programming� In D�A�
Turner� editor� Research topics in Functional Programming�
Addison�Wesley Publishing Company� �����

���� P� Wadler� Deforestation� Transforming programs to elimi�
nate trees� In European Symposium on Programming� pages
���
��
� Nancy� March ��

�

���� P� Wadler� The essence of functional programming� In
Proceedings ���� Symposium on principles of Programming
Languages� pages �
��� Albuquerque� New Mexico� �����

���� D�A� Young� The X window System � programming and
Applications with Xt� OSF
Motif Edition� Prentice Hall�
�����


